forked from libwww-perl/URI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rfc3986.txt
3419 lines (2397 loc) · 138 KB
/
rfc3986.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Network Working Group T. Berners-Lee
Request for Comments: 3986 W3C/MIT
STD: 66 R. Fielding
Updates: 1738 Day Software
Obsoletes: 2732, 2396, 1808 L. Masinter
Category: Standards Track Adobe Systems
January 2005
Uniform Resource Identifier (URI): Generic Syntax
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
A Uniform Resource Identifier (URI) is a compact sequence of
characters that identifies an abstract or physical resource. This
specification defines the generic URI syntax and a process for
resolving URI references that might be in relative form, along with
guidelines and security considerations for the use of URIs on the
Internet. The URI syntax defines a grammar that is a superset of all
valid URIs, allowing an implementation to parse the common components
of a URI reference without knowing the scheme-specific requirements
of every possible identifier. This specification does not define a
generative grammar for URIs; that task is performed by the individual
specifications of each URI scheme.
Berners-Lee, et al. Standards Track [Page 1]
RFC 3986 URI Generic Syntax January 2005
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Overview of URIs . . . . . . . . . . . . . . . . . . . . 4
1.1.1. Generic Syntax . . . . . . . . . . . . . . . . . 6
1.1.2. Examples . . . . . . . . . . . . . . . . . . . . 7
1.1.3. URI, URL, and URN . . . . . . . . . . . . . . . 7
1.2. Design Considerations . . . . . . . . . . . . . . . . . 8
1.2.1. Transcription . . . . . . . . . . . . . . . . . 8
1.2.2. Separating Identification from Interaction . . . 9
1.2.3. Hierarchical Identifiers . . . . . . . . . . . . 10
1.3. Syntax Notation . . . . . . . . . . . . . . . . . . . . 11
2. Characters . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1. Percent-Encoding . . . . . . . . . . . . . . . . . . . . 12
2.2. Reserved Characters . . . . . . . . . . . . . . . . . . 12
2.3. Unreserved Characters . . . . . . . . . . . . . . . . . 13
2.4. When to Encode or Decode . . . . . . . . . . . . . . . . 14
2.5. Identifying Data . . . . . . . . . . . . . . . . . . . . 14
3. Syntax Components . . . . . . . . . . . . . . . . . . . . . . 16
3.1. Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Authority . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1. User Information . . . . . . . . . . . . . . . . 18
3.2.2. Host . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3. Port . . . . . . . . . . . . . . . . . . . . . . 22
3.3. Path . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4. Query . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5. Fragment . . . . . . . . . . . . . . . . . . . . . . . . 24
4. Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1. URI Reference . . . . . . . . . . . . . . . . . . . . . 25
4.2. Relative Reference . . . . . . . . . . . . . . . . . . . 26
4.3. Absolute URI . . . . . . . . . . . . . . . . . . . . . . 27
4.4. Same-Document Reference . . . . . . . . . . . . . . . . 27
4.5. Suffix Reference . . . . . . . . . . . . . . . . . . . . 27
5. Reference Resolution . . . . . . . . . . . . . . . . . . . . . 28
5.1. Establishing a Base URI . . . . . . . . . . . . . . . . 28
5.1.1. Base URI Embedded in Content . . . . . . . . . . 29
5.1.2. Base URI from the Encapsulating Entity . . . . . 29
5.1.3. Base URI from the Retrieval URI . . . . . . . . 30
5.1.4. Default Base URI . . . . . . . . . . . . . . . . 30
5.2. Relative Resolution . . . . . . . . . . . . . . . . . . 30
5.2.1. Pre-parse the Base URI . . . . . . . . . . . . . 31
5.2.2. Transform References . . . . . . . . . . . . . . 31
5.2.3. Merge Paths . . . . . . . . . . . . . . . . . . 32
5.2.4. Remove Dot Segments . . . . . . . . . . . . . . 33
5.3. Component Recomposition . . . . . . . . . . . . . . . . 35
5.4. Reference Resolution Examples . . . . . . . . . . . . . 35
5.4.1. Normal Examples . . . . . . . . . . . . . . . . 36
5.4.2. Abnormal Examples . . . . . . . . . . . . . . . 36
Berners-Lee, et al. Standards Track [Page 2]
RFC 3986 URI Generic Syntax January 2005
6. Normalization and Comparison . . . . . . . . . . . . . . . . . 38
6.1. Equivalence . . . . . . . . . . . . . . . . . . . . . . 38
6.2. Comparison Ladder . . . . . . . . . . . . . . . . . . . 39
6.2.1. Simple String Comparison . . . . . . . . . . . . 39
6.2.2. Syntax-Based Normalization . . . . . . . . . . . 40
6.2.3. Scheme-Based Normalization . . . . . . . . . . . 41
6.2.4. Protocol-Based Normalization . . . . . . . . . . 42
7. Security Considerations . . . . . . . . . . . . . . . . . . . 43
7.1. Reliability and Consistency . . . . . . . . . . . . . . 43
7.2. Malicious Construction . . . . . . . . . . . . . . . . . 43
7.3. Back-End Transcoding . . . . . . . . . . . . . . . . . . 44
7.4. Rare IP Address Formats . . . . . . . . . . . . . . . . 45
7.5. Sensitive Information . . . . . . . . . . . . . . . . . 45
7.6. Semantic Attacks . . . . . . . . . . . . . . . . . . . . 45
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 46
9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 46
10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1. Normative References . . . . . . . . . . . . . . . . . . 46
10.2. Informative References . . . . . . . . . . . . . . . . . 47
A. Collected ABNF for URI . . . . . . . . . . . . . . . . . . . . 49
B. Parsing a URI Reference with a Regular Expression . . . . . . 50
C. Delimiting a URI in Context . . . . . . . . . . . . . . . . . 51
D. Changes from RFC 2396 . . . . . . . . . . . . . . . . . . . . 53
D.1. Additions . . . . . . . . . . . . . . . . . . . . . . . 53
D.2. Modifications . . . . . . . . . . . . . . . . . . . . . 53
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 60
Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 61
Berners-Lee, et al. Standards Track [Page 3]
RFC 3986 URI Generic Syntax January 2005
1. Introduction
A Uniform Resource Identifier (URI) provides a simple and extensible
means for identifying a resource. This specification of URI syntax
and semantics is derived from concepts introduced by the World Wide
Web global information initiative, whose use of these identifiers
dates from 1990 and is described in "Universal Resource Identifiers
in WWW" [RFC1630]. The syntax is designed to meet the
recommendations laid out in "Functional Recommendations for Internet
Resource Locators" [RFC1736] and "Functional Requirements for Uniform
Resource Names" [RFC1737].
This document obsoletes [RFC2396], which merged "Uniform Resource
Locators" [RFC1738] and "Relative Uniform Resource Locators"
[RFC1808] in order to define a single, generic syntax for all URIs.
It obsoletes [RFC2732], which introduced syntax for an IPv6 address.
It excludes portions of RFC 1738 that defined the specific syntax of
individual URI schemes; those portions will be updated as separate
documents. The process for registration of new URI schemes is
defined separately by [BCP35]. Advice for designers of new URI
schemes can be found in [RFC2718]. All significant changes from RFC
2396 are noted in Appendix D.
This specification uses the terms "character" and "coded character
set" in accordance with the definitions provided in [BCP19], and
"character encoding" in place of what [BCP19] refers to as a
"charset".
1.1. Overview of URIs
URIs are characterized as follows:
Uniform
Uniformity provides several benefits. It allows different types
of resource identifiers to be used in the same context, even when
the mechanisms used to access those resources may differ. It
allows uniform semantic interpretation of common syntactic
conventions across different types of resource identifiers. It
allows introduction of new types of resource identifiers without
interfering with the way that existing identifiers are used. It
allows the identifiers to be reused in many different contexts,
thus permitting new applications or protocols to leverage a pre-
existing, large, and widely used set of resource identifiers.
Berners-Lee, et al. Standards Track [Page 4]
RFC 3986 URI Generic Syntax January 2005
Resource
This specification does not limit the scope of what might be a
resource; rather, the term "resource" is used in a general sense
for whatever might be identified by a URI. Familiar examples
include an electronic document, an image, a source of information
with a consistent purpose (e.g., "today's weather report for Los
Angeles"), a service (e.g., an HTTP-to-SMS gateway), and a
collection of other resources. A resource is not necessarily
accessible via the Internet; e.g., human beings, corporations, and
bound books in a library can also be resources. Likewise,
abstract concepts can be resources, such as the operators and
operands of a mathematical equation, the types of a relationship
(e.g., "parent" or "employee"), or numeric values (e.g., zero,
one, and infinity).
Identifier
An identifier embodies the information required to distinguish
what is being identified from all other things within its scope of
identification. Our use of the terms "identify" and "identifying"
refer to this purpose of distinguishing one resource from all
other resources, regardless of how that purpose is accomplished
(e.g., by name, address, or context). These terms should not be
mistaken as an assumption that an identifier defines or embodies
the identity of what is referenced, though that may be the case
for some identifiers. Nor should it be assumed that a system
using URIs will access the resource identified: in many cases,
URIs are used to denote resources without any intention that they
be accessed. Likewise, the "one" resource identified might not be
singular in nature (e.g., a resource might be a named set or a
mapping that varies over time).
A URI is an identifier consisting of a sequence of characters
matching the syntax rule named <URI> in Section 3. It enables
uniform identification of resources via a separately defined
extensible set of naming schemes (Section 3.1). How that
identification is accomplished, assigned, or enabled is delegated to
each scheme specification.
This specification does not place any limits on the nature of a
resource, the reasons why an application might seek to refer to a
resource, or the kinds of systems that might use URIs for the sake of
identifying resources. This specification does not require that a
URI persists in identifying the same resource over time, though that
is a common goal of all URI schemes. Nevertheless, nothing in this
Berners-Lee, et al. Standards Track [Page 5]
RFC 3986 URI Generic Syntax January 2005
specification prevents an application from limiting itself to
particular types of resources, or to a subset of URIs that maintains
characteristics desired by that application.
URIs have a global scope and are interpreted consistently regardless
of context, though the result of that interpretation may be in
relation to the end-user's context. For example, "http://localhost/"
has the same interpretation for every user of that reference, even
though the network interface corresponding to "localhost" may be
different for each end-user: interpretation is independent of access.
However, an action made on the basis of that reference will take
place in relation to the end-user's context, which implies that an
action intended to refer to a globally unique thing must use a URI
that distinguishes that resource from all other things. URIs that
identify in relation to the end-user's local context should only be
used when the context itself is a defining aspect of the resource,
such as when an on-line help manual refers to a file on the end-
user's file system (e.g., "file:///etc/hosts").
1.1.1. Generic Syntax
Each URI begins with a scheme name, as defined in Section 3.1, that
refers to a specification for assigning identifiers within that
scheme. As such, the URI syntax is a federated and extensible naming
system wherein each scheme's specification may further restrict the
syntax and semantics of identifiers using that scheme.
This specification defines those elements of the URI syntax that are
required of all URI schemes or are common to many URI schemes. It
thus defines the syntax and semantics needed to implement a scheme-
independent parsing mechanism for URI references, by which the
scheme-dependent handling of a URI can be postponed until the
scheme-dependent semantics are needed. Likewise, protocols and data
formats that make use of URI references can refer to this
specification as a definition for the range of syntax allowed for all
URIs, including those schemes that have yet to be defined. This
decouples the evolution of identification schemes from the evolution
of protocols, data formats, and implementations that make use of
URIs.
A parser of the generic URI syntax can parse any URI reference into
its major components. Once the scheme is determined, further
scheme-specific parsing can be performed on the components. In other
words, the URI generic syntax is a superset of the syntax of all URI
schemes.
Berners-Lee, et al. Standards Track [Page 6]
RFC 3986 URI Generic Syntax January 2005
1.1.2. Examples
The following example URIs illustrate several URI schemes and
variations in their common syntax components:
ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt
ldap://[2001:db8::7]/c=GB?objectClass?one
mailto:[email protected]
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2
1.1.3. URI, URL, and URN
A URI can be further classified as a locator, a name, or both. The
term "Uniform Resource Locator" (URL) refers to the subset of URIs
that, in addition to identifying a resource, provide a means of
locating the resource by describing its primary access mechanism
(e.g., its network "location"). The term "Uniform Resource Name"
(URN) has been used historically to refer to both URIs under the
"urn" scheme [RFC2141], which are required to remain globally unique
and persistent even when the resource ceases to exist or becomes
unavailable, and to any other URI with the properties of a name.
An individual scheme does not have to be classified as being just one
of "name" or "locator". Instances of URIs from any given scheme may
have the characteristics of names or locators or both, often
depending on the persistence and care in the assignment of
identifiers by the naming authority, rather than on any quality of
the scheme. Future specifications and related documentation should
use the general term "URI" rather than the more restrictive terms
"URL" and "URN" [RFC3305].
Berners-Lee, et al. Standards Track [Page 7]
RFC 3986 URI Generic Syntax January 2005
1.2. Design Considerations
1.2.1. Transcription
The URI syntax has been designed with global transcription as one of
its main considerations. A URI is a sequence of characters from a
very limited set: the letters of the basic Latin alphabet, digits,
and a few special characters. A URI may be represented in a variety
of ways; e.g., ink on paper, pixels on a screen, or a sequence of
character encoding octets. The interpretation of a URI depends only
on the characters used and not on how those characters are
represented in a network protocol.
The goal of transcription can be described by a simple scenario.
Imagine two colleagues, Sam and Kim, sitting in a pub at an
international conference and exchanging research ideas. Sam asks Kim
for a location to get more information, so Kim writes the URI for the
research site on a napkin. Upon returning home, Sam takes out the
napkin and types the URI into a computer, which then retrieves the
information to which Kim referred.
There are several design considerations revealed by the scenario:
o A URI is a sequence of characters that is not always represented
as a sequence of octets.
o A URI might be transcribed from a non-network source and thus
should consist of characters that are most likely able to be
entered into a computer, within the constraints imposed by
keyboards (and related input devices) across languages and
locales.
o A URI often has to be remembered by people, and it is easier for
people to remember a URI when it consists of meaningful or
familiar components.
These design considerations are not always in alignment. For
example, it is often the case that the most meaningful name for a URI
component would require characters that cannot be typed into some
systems. The ability to transcribe a resource identifier from one
medium to another has been considered more important than having a
URI consist of the most meaningful of components.
In local or regional contexts and with improving technology, users
might benefit from being able to use a wider range of characters;
such use is not defined by this specification. Percent-encoded
octets (Section 2.1) may be used within a URI to represent characters
outside the range of the US-ASCII coded character set if this
Berners-Lee, et al. Standards Track [Page 8]
RFC 3986 URI Generic Syntax January 2005
representation is allowed by the scheme or by the protocol element in
which the URI is referenced. Such a definition should specify the
character encoding used to map those characters to octets prior to
being percent-encoded for the URI.
1.2.2. Separating Identification from Interaction
A common misunderstanding of URIs is that they are only used to refer
to accessible resources. The URI itself only provides
identification; access to the resource is neither guaranteed nor
implied by the presence of a URI. Instead, any operation associated
with a URI reference is defined by the protocol element, data format
attribute, or natural language text in which it appears.
Given a URI, a system may attempt to perform a variety of operations
on the resource, as might be characterized by words such as "access",
"update", "replace", or "find attributes". Such operations are
defined by the protocols that make use of URIs, not by this
specification. However, we do use a few general terms for describing
common operations on URIs. URI "resolution" is the process of
determining an access mechanism and the appropriate parameters
necessary to dereference a URI; this resolution may require several
iterations. To use that access mechanism to perform an action on the
URI's resource is to "dereference" the URI.
When URIs are used within information retrieval systems to identify
sources of information, the most common form of URI dereference is
"retrieval": making use of a URI in order to retrieve a
representation of its associated resource. A "representation" is a
sequence of octets, along with representation metadata describing
those octets, that constitutes a record of the state of the resource
at the time when the representation is generated. Retrieval is
achieved by a process that might include using the URI as a cache key
to check for a locally cached representation, resolution of the URI
to determine an appropriate access mechanism (if any), and
dereference of the URI for the sake of applying a retrieval
operation. Depending on the protocols used to perform the retrieval,
additional information might be supplied about the resource (resource
metadata) and its relation to other resources.
URI references in information retrieval systems are designed to be
late-binding: the result of an access is generally determined when it
is accessed and may vary over time or due to other aspects of the
interaction. These references are created in order to be used in the
future: what is being identified is not some specific result that was
obtained in the past, but rather some characteristic that is expected
to be true for future results. In such cases, the resource referred
to by the URI is actually a sameness of characteristics as observed
Berners-Lee, et al. Standards Track [Page 9]
RFC 3986 URI Generic Syntax January 2005
over time, perhaps elucidated by additional comments or assertions
made by the resource provider.
Although many URI schemes are named after protocols, this does not
imply that use of these URIs will result in access to the resource
via the named protocol. URIs are often used simply for the sake of
identification. Even when a URI is used to retrieve a representation
of a resource, that access might be through gateways, proxies,
caches, and name resolution services that are independent of the
protocol associated with the scheme name. The resolution of some
URIs may require the use of more than one protocol (e.g., both DNS
and HTTP are typically used to access an "http" URI's origin server
when a representation isn't found in a local cache).
1.2.3. Hierarchical Identifiers
The URI syntax is organized hierarchically, with components listed in
order of decreasing significance from left to right. For some URI
schemes, the visible hierarchy is limited to the scheme itself:
everything after the scheme component delimiter (":") is considered
opaque to URI processing. Other URI schemes make the hierarchy
explicit and visible to generic parsing algorithms.
The generic syntax uses the slash ("/"), question mark ("?"), and
number sign ("#") characters to delimit components that are
significant to the generic parser's hierarchical interpretation of an
identifier. In addition to aiding the readability of such
identifiers through the consistent use of familiar syntax, this
uniform representation of hierarchy across naming schemes allows
scheme-independent references to be made relative to that hierarchy.
It is often the case that a group or "tree" of documents has been
constructed to serve a common purpose, wherein the vast majority of
URI references in these documents point to resources within the tree
rather than outside it. Similarly, documents located at a particular
site are much more likely to refer to other resources at that site
than to resources at remote sites. Relative referencing of URIs
allows document trees to be partially independent of their location
and access scheme. For instance, it is possible for a single set of
hypertext documents to be simultaneously accessible and traversable
via each of the "file", "http", and "ftp" schemes if the documents
refer to each other with relative references. Furthermore, such
document trees can be moved, as a whole, without changing any of the
relative references.
A relative reference (Section 4.2) refers to a resource by describing
the difference within a hierarchical name space between the reference
context and the target URI. The reference resolution algorithm,
Berners-Lee, et al. Standards Track [Page 10]
RFC 3986 URI Generic Syntax January 2005
presented in Section 5, defines how such a reference is transformed
to the target URI. As relative references can only be used within
the context of a hierarchical URI, designers of new URI schemes
should use a syntax consistent with the generic syntax's hierarchical
components unless there are compelling reasons to forbid relative
referencing within that scheme.
NOTE: Previous specifications used the terms "partial URI" and
"relative URI" to denote a relative reference to a URI. As some
readers misunderstood those terms to mean that relative URIs are a
subset of URIs rather than a method of referencing URIs, this
specification simply refers to them as relative references.
All URI references are parsed by generic syntax parsers when used.
However, because hierarchical processing has no effect on an absolute
URI used in a reference unless it contains one or more dot-segments
(complete path segments of "." or "..", as described in Section 3.3),
URI scheme specifications can define opaque identifiers by
disallowing use of slash characters, question mark characters, and
the URIs "scheme:." and "scheme:..".
1.3. Syntax Notation
This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC2234], including the following core ABNF syntax rules
defined by that specification: ALPHA (letters), CR (carriage return),
DIGIT (decimal digits), DQUOTE (double quote), HEXDIG (hexadecimal
digits), LF (line feed), and SP (space). The complete URI syntax is
collected in Appendix A.
2. Characters
The URI syntax provides a method of encoding data, presumably for the
sake of identifying a resource, as a sequence of characters. The URI
characters are, in turn, frequently encoded as octets for transport
or presentation. This specification does not mandate any particular
character encoding for mapping between URI characters and the octets
used to store or transmit those characters. When a URI appears in a
protocol element, the character encoding is defined by that protocol;
without such a definition, a URI is assumed to be in the same
character encoding as the surrounding text.
The ABNF notation defines its terminal values to be non-negative
integers (codepoints) based on the US-ASCII coded character set
[ASCII]. Because a URI is a sequence of characters, we must invert
that relation in order to understand the URI syntax. Therefore, the
Berners-Lee, et al. Standards Track [Page 11]
RFC 3986 URI Generic Syntax January 2005
integer values used by the ABNF must be mapped back to their
corresponding characters via US-ASCII in order to complete the syntax
rules.
A URI is composed from a limited set of characters consisting of
digits, letters, and a few graphic symbols. A reserved subset of
those characters may be used to delimit syntax components within a
URI while the remaining characters, including both the unreserved set
and those reserved characters not acting as delimiters, define each
component's identifying data.
2.1. Percent-Encoding
A percent-encoding mechanism is used to represent a data octet in a
component when that octet's corresponding character is outside the
allowed set or is being used as a delimiter of, or within, the
component. A percent-encoded octet is encoded as a character
triplet, consisting of the percent character "%" followed by the two
hexadecimal digits representing that octet's numeric value. For
example, "%20" is the percent-encoding for the binary octet
"00100000" (ABNF: %x20), which in US-ASCII corresponds to the space
character (SP). Section 2.4 describes when percent-encoding and
decoding is applied.
pct-encoded = "%" HEXDIG HEXDIG
The uppercase hexadecimal digits 'A' through 'F' are equivalent to
the lowercase digits 'a' through 'f', respectively. If two URIs
differ only in the case of hexadecimal digits used in percent-encoded
octets, they are equivalent. For consistency, URI producers and
normalizers should use uppercase hexadecimal digits for all percent-
encodings.
2.2. Reserved Characters
URIs include components and subcomponents that are delimited by
characters in the "reserved" set. These characters are called
"reserved" because they may (or may not) be defined as delimiters by
the generic syntax, by each scheme-specific syntax, or by the
implementation-specific syntax of a URI's dereferencing algorithm.
If data for a URI component would conflict with a reserved
character's purpose as a delimiter, then the conflicting data must be
percent-encoded before the URI is formed.
Berners-Lee, et al. Standards Track [Page 12]
RFC 3986 URI Generic Syntax January 2005
reserved = gen-delims / sub-delims
gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
/ "*" / "+" / "," / ";" / "="
The purpose of reserved characters is to provide a set of delimiting
characters that are distinguishable from other data within a URI.
URIs that differ in the replacement of a reserved character with its
corresponding percent-encoded octet are not equivalent. Percent-
encoding a reserved character, or decoding a percent-encoded octet
that corresponds to a reserved character, will change how the URI is
interpreted by most applications. Thus, characters in the reserved
set are protected from normalization and are therefore safe to be
used by scheme-specific and producer-specific algorithms for
delimiting data subcomponents within a URI.
A subset of the reserved characters (gen-delims) is used as
delimiters of the generic URI components described in Section 3. A
component's ABNF syntax rule will not use the reserved or gen-delims
rule names directly; instead, each syntax rule lists the characters
allowed within that component (i.e., not delimiting it), and any of
those characters that are also in the reserved set are "reserved" for
use as subcomponent delimiters within the component. Only the most
common subcomponents are defined by this specification; other
subcomponents may be defined by a URI scheme's specification, or by
the implementation-specific syntax of a URI's dereferencing
algorithm, provided that such subcomponents are delimited by
characters in the reserved set allowed within that component.
URI producing applications should percent-encode data octets that
correspond to characters in the reserved set unless these characters
are specifically allowed by the URI scheme to represent data in that
component. If a reserved character is found in a URI component and
no delimiting role is known for that character, then it must be
interpreted as representing the data octet corresponding to that
character's encoding in US-ASCII.
2.3. Unreserved Characters
Characters that are allowed in a URI but do not have a reserved
purpose are called unreserved. These include uppercase and lowercase
letters, decimal digits, hyphen, period, underscore, and tilde.
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
Berners-Lee, et al. Standards Track [Page 13]
RFC 3986 URI Generic Syntax January 2005
URIs that differ in the replacement of an unreserved character with
its corresponding percent-encoded US-ASCII octet are equivalent: they
identify the same resource. However, URI comparison implementations
do not always perform normalization prior to comparison (see Section
6). For consistency, percent-encoded octets in the ranges of ALPHA
(%41-%5A and %61-%7A), DIGIT (%30-%39), hyphen (%2D), period (%2E),
underscore (%5F), or tilde (%7E) should not be created by URI
producers and, when found in a URI, should be decoded to their
corresponding unreserved characters by URI normalizers.
2.4. When to Encode or Decode
Under normal circumstances, the only time when octets within a URI
are percent-encoded is during the process of producing the URI from
its component parts. This is when an implementation determines which
of the reserved characters are to be used as subcomponent delimiters
and which can be safely used as data. Once produced, a URI is always
in its percent-encoded form.
When a URI is dereferenced, the components and subcomponents
significant to the scheme-specific dereferencing process (if any)
must be parsed and separated before the percent-encoded octets within
those components can be safely decoded, as otherwise the data may be
mistaken for component delimiters. The only exception is for
percent-encoded octets corresponding to characters in the unreserved
set, which can be decoded at any time. For example, the octet
corresponding to the tilde ("~") character is often encoded as "%7E"
by older URI processing implementations; the "%7E" can be replaced by
"~" without changing its interpretation.
Because the percent ("%") character serves as the indicator for
percent-encoded octets, it must be percent-encoded as "%25" for that
octet to be used as data within a URI. Implementations must not
percent-encode or decode the same string more than once, as decoding
an already decoded string might lead to misinterpreting a percent
data octet as the beginning of a percent-encoding, or vice versa in
the case of percent-encoding an already percent-encoded string.
2.5. Identifying Data
URI characters provide identifying data for each of the URI
components, serving as an external interface for identification
between systems. Although the presence and nature of the URI
production interface is hidden from clients that use its URIs (and is
thus beyond the scope of the interoperability requirements defined by
this specification), it is a frequent source of confusion and errors
in the interpretation of URI character issues. Implementers have to
be aware that there are multiple character encodings involved in the
Berners-Lee, et al. Standards Track [Page 14]
RFC 3986 URI Generic Syntax January 2005
production and transmission of URIs: local name and data encoding,
public interface encoding, URI character encoding, data format
encoding, and protocol encoding.
Local names, such as file system names, are stored with a local
character encoding. URI producing applications (e.g., origin
servers) will typically use the local encoding as the basis for
producing meaningful names. The URI producer will transform the
local encoding to one that is suitable for a public interface and
then transform the public interface encoding into the restricted set
of URI characters (reserved, unreserved, and percent-encodings).
Those characters are, in turn, encoded as octets to be used as a
reference within a data format (e.g., a document charset), and such
data formats are often subsequently encoded for transmission over
Internet protocols.
For most systems, an unreserved character appearing within a URI
component is interpreted as representing the data octet corresponding
to that character's encoding in US-ASCII. Consumers of URIs assume
that the letter "X" corresponds to the octet "01011000", and even
when that assumption is incorrect, there is no harm in making it. A
system that internally provides identifiers in the form of a
different character encoding, such as EBCDIC, will generally perform
character translation of textual identifiers to UTF-8 [STD63] (or
some other superset of the US-ASCII character encoding) at an
internal interface, thereby providing more meaningful identifiers
than those resulting from simply percent-encoding the original
octets.
For example, consider an information service that provides data,
stored locally using an EBCDIC-based file system, to clients on the
Internet through an HTTP server. When an author creates a file with
the name "Laguna Beach" on that file system, the "http" URI
corresponding to that resource is expected to contain the meaningful
string "Laguna%20Beach". If, however, that server produces URIs by
using an overly simplistic raw octet mapping, then the result would
be a URI containing "%D3%81%87%A4%95%81@%C2%85%81%83%88". An
internal transcoding interface fixes this problem by transcoding the
local name to a superset of US-ASCII prior to producing the URI.
Naturally, proper interpretation of an incoming URI on such an
interface requires that percent-encoded octets be decoded (e.g.,
"%20" to SP) before the reverse transcoding is applied to obtain the
local name.
In some cases, the internal interface between a URI component and the
identifying data that it has been crafted to represent is much less
direct than a character encoding translation. For example, portions
of a URI might reflect a query on non-ASCII data, or numeric
Berners-Lee, et al. Standards Track [Page 15]
RFC 3986 URI Generic Syntax January 2005
coordinates on a map. Likewise, a URI scheme may define components
with additional encoding requirements that are applied prior to
forming the component and producing the URI.
When a new URI scheme defines a component that represents textual
data consisting of characters from the Universal Character Set [UCS],
the data should first be encoded as octets according to the UTF-8
character encoding [STD63]; then only those octets that do not
correspond to characters in the unreserved set should be percent-
encoded. For example, the character A would be represented as "A",
the character LATIN CAPITAL LETTER A WITH GRAVE would be represented
as "%C3%80", and the character KATAKANA LETTER A would be represented
as "%E3%82%A2".
3. Syntax Components
The generic URI syntax consists of a hierarchical sequence of
components referred to as the scheme, authority, path, query, and
fragment.
URI = scheme ":" hier-part [ "?" query ] [ "#" fragment ]
hier-part = "//" authority path-abempty
/ path-absolute
/ path-rootless
/ path-empty
The scheme and path components are required, though the path may be
empty (no characters). When authority is present, the path must
either be empty or begin with a slash ("/") character. When
authority is not present, the path cannot begin with two slash
characters ("//"). These restrictions result in five different ABNF
rules for a path (Section 3.3), only one of which will match any
given URI reference.
The following are two example URIs and their component parts:
foo://example.com:8042/over/there?name=ferret#nose
\_/ \______________/\_________/ \_________/ \__/
| | | | |
scheme authority path query fragment
| _____________________|__
/ \ / \
urn:example:animal:ferret:nose
Berners-Lee, et al. Standards Track [Page 16]
RFC 3986 URI Generic Syntax January 2005
3.1. Scheme
Each URI begins with a scheme name that refers to a specification for
assigning identifiers within that scheme. As such, the URI syntax is
a federated and extensible naming system wherein each scheme's
specification may further restrict the syntax and semantics of
identifiers using that scheme.
Scheme names consist of a sequence of characters beginning with a
letter and followed by any combination of letters, digits, plus
("+"), period ("."), or hyphen ("-"). Although schemes are case-
insensitive, the canonical form is lowercase and documents that
specify schemes must do so with lowercase letters. An implementation
should accept uppercase letters as equivalent to lowercase in scheme
names (e.g., allow "HTTP" as well as "http") for the sake of
robustness but should only produce lowercase scheme names for
consistency.
scheme = ALPHA *( ALPHA / DIGIT / "+" / "-" / "." )
Individual schemes are not specified by this document. The process
for registration of new URI schemes is defined separately by [BCP35].
The scheme registry maintains the mapping between scheme names and
their specifications. Advice for designers of new URI schemes can be
found in [RFC2718]. URI scheme specifications must define their own
syntax so that all strings matching their scheme-specific syntax will
also match the <absolute-URI> grammar, as described in Section 4.3.
When presented with a URI that violates one or more scheme-specific
restrictions, the scheme-specific resolution process should flag the
reference as an error rather than ignore the unused parts; doing so
reduces the number of equivalent URIs and helps detect abuses of the
generic syntax, which might indicate that the URI has been
constructed to mislead the user (Section 7.6).
3.2. Authority
Many URI schemes include a hierarchical element for a naming
authority so that governance of the name space defined by the
remainder of the URI is delegated to that authority (which may, in
turn, delegate it further). The generic syntax provides a common
means for distinguishing an authority based on a registered name or
server address, along with optional port and user information.
The authority component is preceded by a double slash ("//") and is
terminated by the next slash ("/"), question mark ("?"), or number
sign ("#") character, or by the end of the URI.
Berners-Lee, et al. Standards Track [Page 17]
RFC 3986 URI Generic Syntax January 2005
authority = [ userinfo "@" ] host [ ":" port ]
URI producers and normalizers should omit the ":" delimiter that
separates host from port if the port component is empty. Some
schemes do not allow the userinfo and/or port subcomponents.
If a URI contains an authority component, then the path component
must either be empty or begin with a slash ("/") character. Non-
validating parsers (those that merely separate a URI reference into
its major components) will often ignore the subcomponent structure of
authority, treating it as an opaque string from the double-slash to
the first terminating delimiter, until such time as the URI is
dereferenced.
3.2.1. User Information
The userinfo subcomponent may consist of a user name and, optionally,
scheme-specific information about how to gain authorization to access
the resource. The user information, if present, is followed by a
commercial at-sign ("@") that delimits it from the host.
userinfo = *( unreserved / pct-encoded / sub-delims / ":" )
Use of the format "user:password" in the userinfo field is
deprecated. Applications should not render as clear text any data
after the first colon (":") character found within a userinfo
subcomponent unless the data after the colon is the empty string
(indicating no password). Applications may choose to ignore or
reject such data when it is received as part of a reference and
should reject the storage of such data in unencrypted form. The
passing of authentication information in clear text has proven to be
a security risk in almost every case where it has been used.
Applications that render a URI for the sake of user feedback, such as
in graphical hypertext browsing, should render userinfo in a way that
is distinguished from the rest of a URI, when feasible. Such
rendering will assist the user in cases where the userinfo has been
misleadingly crafted to look like a trusted domain name
(Section 7.6).
3.2.2. Host