From d7cc043d9fc391e2b9792b11af591bafd6ee4a7c Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Wed, 8 Dec 2021 16:31:58 -0500 Subject: [PATCH 01/32] Add files via upload --- .../functions/xor_rxor_aware_unaware_fns.py | 536 ++++++++++++++++++ 1 file changed, 536 insertions(+) create mode 100644 docs/experiments/functions/xor_rxor_aware_unaware_fns.py diff --git a/docs/experiments/functions/xor_rxor_aware_unaware_fns.py b/docs/experiments/functions/xor_rxor_aware_unaware_fns.py new file mode 100644 index 0000000000..70c218c5f7 --- /dev/null +++ b/docs/experiments/functions/xor_rxor_aware_unaware_fns.py @@ -0,0 +1,536 @@ +# import +import numpy as np +from sklearn.datasets import make_blobs +from numpy.random import uniform, normal +import matplotlib.pyplot as plt + +# k sample testing from hyppo +from hyppo.ksample import KSample +from hyppo.tools import rot_ksamp + +from proglearn.forest import LifelongClassificationForest, UncertaintyForest +from proglearn.sims import * +from proglearn.progressive_learner import ProgressiveLearner +from proglearn.deciders import SimpleArgmaxAverage +from proglearn.transformers import ( + TreeClassificationTransformer, + NeuralClassificationTransformer, +) +from proglearn.voters import TreeClassificationVoter, KNNClassificationVoter +from math import log2, ceil +from joblib import Parallel, delayed +import seaborn as sns + + +def generate_gaussian_parity( + n_samples, + centers=None, + class_label=None, + cluster_std=0.25, + center_box=(-1.0, 1.0), + angle_params=None, + random_state=None, +): + """ + Generate 2-dimensional Gaussian XOR distribution. + (Classic XOR problem but each point is the + center of a Gaussian blob distribution) + Parameters + ---------- + n_samples : int + Total number of points divided among the four + clusters with equal probability. + centers : array of shape [n_centers,2], optional (default=None) + The coordinates of the ceneter of total n_centers blobs. + class_label : array of shape [n_centers], optional (default=None) + class label for each blob. + cluster_std : float, optional (default=1) + The standard deviation of the blobs. + center_box : tuple of float (min, max), default=(-1.0, 1.0) + The bounding box for each cluster center when centers are generated at random. + angle_params: float, optional (default=None) + Number of radians to rotate the distribution by. + random_state : int, RandomState instance, default=None + Determines random number generation for dataset creation. Pass an int + for reproducible output across multiple function calls. + Returns + ------- + X : array of shape [n_samples, 2] + The generated samples. + y : array of shape [n_samples] + The integer labels for cluster membership of each sample. + """ + + if random_state != None: + np.random.seed(random_state) + + if centers == None: + centers = np.array([(-0.5, 0.5), (0.5, 0.5), (-0.5, -0.5), (0.5, -0.5)]) + + if class_label == None: + class_label = [0, 1, 1, 0] + + blob_num = len(class_label) + + # get the number of samples in each blob with equal probability + samples_per_blob = np.random.multinomial( + n_samples, 1 / blob_num * np.ones(blob_num) + ) + + X, y = make_blobs( + n_samples=samples_per_blob, + n_features=2, + centers=centers, + cluster_std=cluster_std, + center_box=center_box, + ) + + for blob in range(blob_num): + y[np.where(y == blob)] = class_label[blob] + + if angle_params != None: + R = _generate_2d_rotation(angle_params) + X = X @ R + + return X, y.astype(int) + + +def _generate_2d_rotation(theta=0): + R = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)]]) + + return R + + +def calc_ksample_pval_vs_angle(mc_reps, angle_sweep): + last_angle = max(angle_sweep) + 1 + + # arrays to store stats and pvals, 100 samples + stats_100 = np.empty([last_angle, mc_reps]) + pvals_100 = np.empty([last_angle, mc_reps]) + + # arrays to store stats and pvals. 500 samples + stats_500 = np.empty([last_angle, mc_reps]) + pvals_500 = np.empty([last_angle, mc_reps]) + + # arrays to store stats and pvals, 1000 samples + stats_1000 = np.empty([last_angle, mc_reps]) + pvals_1000 = np.empty([last_angle, mc_reps]) + + # run exp 10 times + for k in range(mc_reps): + for n in angle_sweep: + # 100 samples + n_samples = 100 + xor = generate_gaussian_parity(n_samples, random_state=k) + rxor = generate_gaussian_parity( + n_samples, angle_params=np.radians(n), random_state=k + ) + stats_100[n, k], pvals_100[n, k] = KSample(indep_test="Dcorr").test( + xor[0], rxor[0] + ) + + # 500 samples + n_samples = 500 + xor = generate_gaussian_parity(n_samples, random_state=k) + rxor = generate_gaussian_parity( + n_samples, angle_params=np.radians(n), random_state=k + ) + stats_500[n, k], pvals_500[n, k] = KSample(indep_test="Dcorr").test( + xor[0], rxor[0] + ) + + # 1000 samples + n_samples = 1000 + xor = generate_gaussian_parity(n_samples, random_state=k) + rxor = generate_gaussian_parity( + n_samples, angle_params=np.radians(n), random_state=k + ) + stats_1000[n, k], pvals_1000[n, k] = KSample(indep_test="Dcorr").test( + xor[0], rxor[0] + ) + + return pvals_100, pvals_500, pvals_1000 + + +def plot_pval_vs_angle(pvals_100, pvals_500, pvals_1000, angle_sweep): + # avg the experiments + pval_means_100 = np.mean(pvals_100, axis=1) + pval_means_500 = np.mean(pvals_500, axis=1) + pval_means_1000 = np.mean(pvals_1000, axis=1) + + # add error bars + qunatiles_100 = np.nanquantile(pvals_100, [0.25, 0.75], axis=1) + qunatiles_500 = np.nanquantile(pvals_500, [0.25, 0.75], axis=1) + qunatiles_1000 = np.nanquantile(pvals_1000, [0.25, 0.75], axis=1) + plt.fill_between( + angle_sweep, qunatiles_100[0], qunatiles_100[1], facecolor="r", alpha=0.3 + ) + plt.fill_between( + angle_sweep, qunatiles_500[0], qunatiles_500[1], facecolor="b", alpha=0.3 + ) + plt.fill_between( + angle_sweep, qunatiles_1000[0], qunatiles_1000[1], facecolor="cyan", alpha=0.3 + ) + + # plot + plt.xlabel("Angle of Rotation") + plt.ylabel("P-Value") + plt.title("Angle of Rotation vs K-sample Test P-Value") + plt.plot(angle_sweep, pval_means_100, label="100 samples", color="r") + plt.plot(angle_sweep, pval_means_500, label="500 samples", color="b") + plt.plot(angle_sweep, pval_means_1000, label="1000 samples", color="cyan") + + # draw line at p val = 0.05 + plt.axhline(y=0.05, color="g", linestyle="--") + + plt.show + plt.legend() + + +# calc BTE and gen error, runs aware_experiment function +# modified from xor/rxor experiment in proglearn experiments folder +def bte_ge_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep): + mean_te = np.zeros(len(angle_sweep), dtype=float) + mean_error = np.zeros([len(angle_sweep), 6], dtype=float) + for ii, angle in enumerate(angle_sweep): + error = np.array( + Parallel(n_jobs=-1, verbose=0)( + delayed(aware_experiment)( + task1_sample, + task2_sample, + task2_angle=angle * np.pi / 180, + max_depth=ceil(log2(task1_sample)), + ) + for _ in range(mc_rep) + ) + ) + + mean_te[ii] = np.mean(error[:, 0]) / np.mean(error[:, 1]) + mean_error[ii] = np.mean(error, axis=0) + return mean_te, mean_error + + +# below function from xor/rxor experiment in proglearn experiments folder +def aware_experiment( + n_task1, + n_task2, + n_test=1000, + task1_angle=0, + task2_angle=np.pi / 2, + n_trees=10, + max_depth=None, + random_state=None, +): + + """ + A function to do Odif experiment between two tasks + where the task data is generated using Gaussian parity. + Parameters + ---------- + n_task1 : int + Total number of train sample for task 1. + n_task2 : int + Total number of train dsample for task 2 + n_test : int, optional (default=1000) + Number of test sample for each task. + task1_angle : float, optional (default=0) + Angle in radian for task 1. + task2_angle : float, optional (default=numpy.pi/2) + Angle in radian for task 2. + n_trees : int, optional (default=10) + Number of total trees to train for each task. + max_depth : int, optional (default=None) + Maximum allowable depth for each tree. + random_state : int, RandomState instance, default=None + Determines random number generation for dataset creation. Pass an int + for reproducible output across multiple function calls. + Returns + ------- + errors : array of shape [6] + Elements of the array is organized as single task error task1, + multitask error task1, single task error task2, + multitask error task2, naive UF error task1, + naive UF task2. + """ + + if n_task1 == 0 and n_task2 == 0: + raise ValueError("Wake up and provide samples to train!!!") + + if random_state != None: + np.random.seed(random_state) + + errors = np.zeros(6, dtype=float) + + progressive_learner = LifelongClassificationForest(default_n_estimators=n_trees) + uf1 = LifelongClassificationForest(default_n_estimators=n_trees) + naive_uf = LifelongClassificationForest(default_n_estimators=n_trees) + uf2 = LifelongClassificationForest(default_n_estimators=n_trees) + + # source data + X_task1, y_task1 = generate_gaussian_parity(n_task1, angle_params=task1_angle) + test_task1, test_label_task1 = generate_gaussian_parity( + n_test, angle_params=task1_angle + ) + + # target data + X_task2, y_task2 = generate_gaussian_parity(n_task2, angle_params=task2_angle) + test_task2, test_label_task2 = generate_gaussian_parity( + n_test, angle_params=task2_angle + ) + + if n_task1 == 0: + progressive_learner.add_task(X_task2, y_task2, n_estimators=n_trees) + uf2.add_task(X_task2, y_task2, n_estimators=n_trees) + + errors[0] = 0.5 + errors[1] = 0.5 + + uf_task2 = uf2.predict(test_task2, task_id=0) + l2f_task2 = progressive_learner.predict(test_task2, task_id=0) + + errors[2] = 1 - np.mean(uf_task2 == test_label_task2) + errors[3] = 1 - np.mean(l2f_task2 == test_label_task2) + + errors[4] = 0.5 + errors[5] = 1 - np.mean(uf_task2 == test_label_task2) + elif n_task2 == 0: + progressive_learner.add_task(X_task1, y_task1, n_estimators=n_trees) + uf1.add_task(X_task1, y_task1, n_estimators=n_trees) + + uf_task1 = uf1.predict(test_task1, task_id=0) + l2f_task1 = progressive_learner.predict(test_task1, task_id=0) + + errors[0] = 1 - np.mean(uf_task1 == test_label_task1) + errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) + + errors[2] = 0.5 + errors[3] = 0.5 + + errors[4] = 1 - np.mean(uf_task1 == test_label_task1) + errors[5] = 0.5 + else: + progressive_learner.add_task(X_task1, y_task1, n_estimators=n_trees) + progressive_learner.add_task(X_task2, y_task2, n_estimators=n_trees) + + uf1.add_task(X_task1, y_task1, n_estimators=2 * n_trees) + uf2.add_task(X_task2, y_task2, n_estimators=2 * n_trees) + + naive_uf_train_x = np.concatenate((X_task1, X_task2), axis=0) + naive_uf_train_y = np.concatenate((y_task1, y_task2), axis=0) + naive_uf.add_task(naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees) + + uf_task1 = uf1.predict(test_task1, task_id=0) + l2f_task1 = progressive_learner.predict(test_task1, task_id=0) + uf_task2 = uf2.predict(test_task2, task_id=0) + l2f_task2 = progressive_learner.predict(test_task2, task_id=1) + naive_uf_task1 = naive_uf.predict(test_task1, task_id=0) + naive_uf_task2 = naive_uf.predict(test_task2, task_id=0) + + errors[0] = 1 - np.mean(uf_task1 == test_label_task1) + errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) + errors[2] = 1 - np.mean(uf_task2 == test_label_task2) + errors[3] = 1 - np.mean(l2f_task2 == test_label_task2) + errors[4] = 1 - np.mean(naive_uf_task1 == test_label_task1) + errors[5] = 1 - np.mean(naive_uf_task2 == test_label_task2) + + return errors + + +# below function from xor/rxor experiment in proglearn experiments folder +def plot_bte_v_angle(mean_te): + angle_sweep = range(0, 90, 1) + + sns.set_context("talk") + fig, ax = plt.subplots(1, 1, figsize=(8, 8)) + ax.plot(angle_sweep, mean_te, linewidth=3, c="r") + ax.set_xticks([0, 45, 90]) + ax.set_xlabel("Angle of Rotation (Degrees)") + ax.set_ylabel("Backward Transfer Efficiency (XOR)") + ax.hlines(1, 0, 90, colors="gray", linestyles="dashed", linewidth=1.5) + + ax.set_yticks([0.9, 1, 1.1, 1.2]) + ax.set_ylim(0.89, 1.22) + log_lbl = np.round(np.log([0.9, 1, 1.1, 1.2]), 2) + labels = [item.get_text() for item in ax.get_yticklabels()] + + for ii, _ in enumerate(labels): + labels[ii] = str(log_lbl[ii]) + + ax.set_yticklabels(labels) + + right_side = ax.spines["right"] + right_side.set_visible(False) + top_side = ax.spines["top"] + top_side.set_visible(False) + + +def unaware_experiment( + n_task1, + n_task2, + n_test=1000, + task1_angle=0, + task2_angle=np.pi / 2, + n_trees=10, + max_depth=None, + random_state=None, +): + + """ + A function to do Odif experiment between two tasks + where the task data is generated using Gaussian parity. + Parameters + ---------- + n_task1 : int + Total number of train sample for task 1. + n_task2 : int + Total number of train dsample for task 2 + n_test : int, optional (default=1000) + Number of test sample for each task. + task1_angle : float, optional (default=0) + Angle in radian for task 1. + task2_angle : float, optional (default=numpy.pi/2) + Angle in radian for task 2. + n_trees : int, optional (default=10) + Number of total trees to train for each task. + max_depth : int, optional (default=None) + Maximum allowable depth for each tree. + random_state : int, RandomState instance, default=None + Determines random number generation for dataset creation. Pass an int + for reproducible output across multiple function calls. + Returns + ------- + errors : array of shape [6] + Elements of the array is organized as single task error task1, + multitask error task1, single task error task2, + multitask error task2, naive UF error task1, + naive UF task2. + """ + + if n_task1 == 0 and n_task2 == 0: + raise ValueError("Wake up and provide samples to train!!!") + + if random_state != None: + np.random.seed(random_state) + + errors = np.zeros(6, dtype=float) + + progressive_learner = LifelongClassificationForest(default_n_estimators=n_trees) + uf1 = LifelongClassificationForest(default_n_estimators=n_trees) + naive_uf = LifelongClassificationForest(default_n_estimators=n_trees) + uf2 = LifelongClassificationForest(default_n_estimators=n_trees) + + # source data + X_task1, y_task1 = generate_gaussian_parity(n_task1, angle_params=task1_angle) + test_task1, test_label_task1 = generate_gaussian_parity( + n_test, angle_params=task1_angle + ) + + # target data + X_task2, y_task2 = generate_gaussian_parity(n_task2, angle_params=task2_angle) + test_task2, test_label_task2 = generate_gaussian_parity( + n_test, angle_params=task2_angle + ) + + if KSample(indep_test="Dcorr").test(X_task1, X_task2)[1] <= 0.05: + progressive_learner.add_task(X_task1, y_task1, n_estimators=n_trees) + progressive_learner.add_task(X_task2, y_task2, n_estimators=n_trees) + + uf1.add_task(X_task1, y_task1, n_estimators=2 * n_trees) + uf2.add_task(X_task2, y_task2, n_estimators=2 * n_trees) + + naive_uf_train_x = np.concatenate((X_task1, X_task2), axis=0) + naive_uf_train_y = np.concatenate((y_task1, y_task2), axis=0) + naive_uf.add_task(naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees) + + uf_task1 = uf1.predict(test_task1, task_id=0) + l2f_task1 = progressive_learner.predict(test_task1, task_id=0) + uf_task2 = uf2.predict(test_task2, task_id=0) + l2f_task2 = progressive_learner.predict(test_task2, task_id=1) + naive_uf_task1 = naive_uf.predict(test_task1, task_id=0) + naive_uf_task2 = naive_uf.predict(test_task2, task_id=0) + + errors[0] = 1 - np.mean(uf_task1 == test_label_task1) + errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) + errors[2] = 1 - np.mean(uf_task2 == test_label_task2) + errors[3] = 1 - np.mean(l2f_task2 == test_label_task2) + errors[4] = 1 - np.mean(naive_uf_task1 == test_label_task1) + errors[5] = 1 - np.mean(naive_uf_task2 == test_label_task2) + else: + naive_uf_train_x = np.concatenate((X_task1, X_task2), axis=0) + naive_uf_train_y = np.concatenate((y_task1, y_task2), axis=0) + progressive_learner.add_task( + naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees + ) + + uf1.add_task(X_task1, y_task1, n_estimators=2 * n_trees) + uf2.add_task(X_task2, y_task2, n_estimators=2 * n_trees) + + naive_uf.add_task(naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees) + + uf_task1 = uf1.predict(test_task1, task_id=0) + l2f_task1 = progressive_learner.predict(test_task1, task_id=0) + uf_task2 = uf2.predict(test_task2, task_id=0) + # l2f_task2 = progressive_learner.predict(test_task2, task_id=1) # NOT USED here but is used in task aware setting + naive_uf_task1 = naive_uf.predict(test_task1, task_id=0) + naive_uf_task2 = naive_uf.predict(test_task2, task_id=0) + + errors[0] = 1 - np.mean(uf_task1 == test_label_task1) + errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) + errors[2] = 1 - np.mean(uf_task2 == test_label_task2) + errors[3] = 0 + errors[4] = 1 - np.mean(naive_uf_task1 == test_label_task1) + errors[5] = 1 - np.mean(naive_uf_task2 == test_label_task2) + + return errors + + +# modified function from xor/rxor experiment in proglearn experiments +# returns numpy arrays mean_te and mean_error +def unaware_bte_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep): + mean_te = np.zeros(len(angle_sweep), dtype=float) + mean_error = np.zeros([len(angle_sweep), 6], dtype=float) + for ii, angle in enumerate(angle_sweep): + error = np.array( + Parallel(n_jobs=-1, verbose=0)( + delayed(unaware_experiment)( + task1_sample, + task2_sample, + task2_angle=angle * np.pi / 180, + max_depth=ceil(log2(task1_sample)), + ) + for _ in range(mc_rep) + ) + ) + + mean_te[ii] = np.mean(error[:, 0]) / np.mean(error[:, 1]) + mean_error[ii] = np.mean(error, axis=0) + return mean_te, mean_error + + +# modified plot bte using function from xor/rxor example +def plot_unaware_bte_v_angle(mean_te): + angle_sweep = range(0, 90, 1) + + sns.set_context("talk") + fig, ax = plt.subplots(1, 1, figsize=(8, 8)) + ax.plot(angle_sweep, mean_te, linewidth=3, c="r") + ax.set_xticks([0, 45, 90]) + ax.set_xlabel("Angle of Rotation (Degrees)") + ax.set_ylabel("Backward Transfer Efficiency (XOR)") + ax.hlines(1, 0, 90, colors="gray", linestyles="dashed", linewidth=1.5) + + ax.set_yticks([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2]) + log_lbl = np.round( + np.log([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2]), 2 + ) + labels = [item.get_text() for item in ax.get_yticklabels()] + + for ii, _ in enumerate(labels): + labels[ii] = str(log_lbl[ii]) + + ax.set_yticklabels(labels) + + right_side = ax.spines["right"] + right_side.set_visible(False) + top_side = ax.spines["top"] + top_side.set_visible(False) From 2d838b9313de40e3c8d864591b7c6f38c39c7d44 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Wed, 8 Dec 2021 16:32:29 -0500 Subject: [PATCH 02/32] Add files via upload --- .../gaussian_xor_rxor_aware_vs_unaware.ipynb | 444 ++++++++++++++++++ 1 file changed, 444 insertions(+) create mode 100644 docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb diff --git a/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb b/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb new file mode 100644 index 0000000000..95b0cf8602 --- /dev/null +++ b/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb @@ -0,0 +1,444 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "35724379", + "metadata": {}, + "source": [ + "# Gaussian xor vs rxor in task aware vs unaware settings" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6bf38cee", + "metadata": {}, + "outputs": [], + "source": [ + "# import dependencies\n", + "import numpy as np\n", + "import random\n", + "from proglearn.sims import generate_gaussian_parity\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# functions to perform the experiments in this notebook\n", + "import functions.xor_rxor_aware_unaware_fns as fn" + ] + }, + { + "cell_type": "markdown", + "id": "bdf19366", + "metadata": {}, + "source": [ + "## Ksample test\n", + "Using ksample test from hyppo we can determine at which angle rxor is significantly different enough from xor to require a new task/transformer. The following code using functions from xor_rxor_aware_unaware_fns.py to calculate p-values from k sample test dcorr from rxor angles 0 to 90 degrees for sample sizes 100, 500, and 1000. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "3742fbf3", + "metadata": {}, + "outputs": [], + "source": [ + "# number of times to run the experiment, decrease for shorter run times\n", + "mc_rep = 10\n", + "# set angle range\n", + "angle_sweep = range(0, 90, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "d1026fd1", + "metadata": {}, + "outputs": [], + "source": [ + "# calculates and plots angle vs pvalue from ksample test xor vs rxor\n", + "# returns numpy array containing all p-vals from all mc_rep experiments at all angles in angle_sweep\n", + "pvals_100, pvals_500, pvals_1000 = fn.calc_ksample_pval_vs_angle(mc_rep, angle_sweep)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3e86cd1a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAIGCAYAAADeNBwtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADH8ElEQVR4nOydd3gc1dm376MuWbYsuTfcu42NMb0asAl2AJtQAiSBQEIKJOENJCTkS4BASIAQAiGNFFoIHYMBQ+img6lu2Ma4d0uyetee749nRrtabddKW/Tc17XXjGbPzJ5d7c785qnGWouiKIqiKIo/GYmegKIoiqIoyYmKBEVRFEVRAqIiQVEURVGUgKhIUBRFURQlICoSFEVRFEUJiIoERVEURVECoiJBCYkxZpQxxhpjrk3wPPobY+4zxux05vNaIufTlRhjjnfe44WJnovSPRhjLnT+58cnei6KF2PM5nQ+10SCioQkxxhTbIxpcE4gX0v0fBLIrcA5wN+ArwO/CTbQR9j4PuqNMauNMdcZYwpinYRzAb/WGNM31mM4x5npHGdUZ46T6vgIoisDPHecMabSGLPLGHNgIuaXqgT5DQR9xPm1L49W4AaYU4Mx5nNjzB+MMSUh9rvUGX95mOPf64w7Mpp5KZCV6AkoYTkfyAE2ARcD/0nsdBLGXOB/1tpfR7HPi8B9zvoA4CvAr4AjgHkxzuN44BrgHqAixmMAzHSO8xqw2e+514F8oLkTx09pjDFfBh4FdgNzrbUbEjylVGMfIqZ9OQNYBNwIfNaFr3058p2+J8r9PkFuBgBKgPnA/wFzjTEHW2ubAuzzAPB74JvAHwMd1BjTG/ntr7XWvh3lnHo8KhKSn4uBV4GngD8aY8Zaa79I8JwSwWCgPMp91ltr20SVMeYO4F28J50P4znBeGGt9QANiZ5HojDGnAfcC6xHBMLOBE8p5bDW1uJ3Q2GMGYeIhBetta8lYl5h2OH7ewXuMMY8DXwZOB0Rje2w1lYYY54AzjPGzLLWfhTguGcDvYB/d8Wk0x11NyQxxphZyB3nvYhibkYUc6Cx1hhzjzHmCGPMMmNMrTGm1BjzT2NMYYDxxxlj3nHM8LuNMbcbY6ZGE39gjDnHGPOmMabaGFNnjHnPGHNmFO+vlzHmt8aYL4wxjc487jPGjPQZc61jDjXABT7myAsjfR0Xa20rcucOMN5vLqOMMfcbY/Y4c/nCGHOjr2vCGHMPcvcPsMlnLtc6zw81xtxqjPnEGLPfMZmuMcZcZYzJ9H1PwN3On6/6HOce5/mAMQmRfF7++xtjvmnEzdJojNlijPlpuM/JGNPXmfsTQZ7/rXP8mc7fJcaY25x5NRhjyowxHxpjfhLutQIc+3vA/cBHwLGRCARjzALnO1/qfJ+3GmOeMMZM8BkzyRjzF+ezcL+vHxpjvh3geNc672+KMeaPRtwdtcaYl40xE50xZxhjPnJeb7Mx5pIAx3F/kycZY951XtP9rfWK8PPINcZc7cy7wRhTYYx52hhzUCT7x/M1jHC5MWaF8xlWGWPWGWP+ZYzJdt8zMBI4zrR3H4yKcXr/c5bjQoz5l7O8KMjzFwEtOFZFY8z3jTEvGGN2GGOanP/vfyKdo+9v1W97wLgSY0yRMeYmY8wG53e4zxjzoDFmTCSvl2jUkpDcXAzUAo9ba2uNMc8iF8pfOXeb/swEnkEuQP9FTOMXAx6g7SRmjDkaeAHYD/wOMZufDRwV6cSMMTcAvwCeB37pvMYi4FFjzGXW2j+H2T8LOQEcBTyGmBnHA98D5hljZltrtwNPABuQC8cbwF3OIWI1G451lm1WCeci+z5QBPwVuYM9Hvg5cJQx5kRrbQvwd6CP8z7/Dyh1DrHCWR6ImHQXA18A2cApyGc8BviOM+4JYAjyP/E1/Qa1EEXxefnyXWAQchKtAL4G3GSM2W6t/W+w13LuzpYApxtjSqy1vp9VBuICW2Gt/cTZ/ChwrPP5fAoUAJOQz/CWYK8T4D3+HPk8XgFOt9bWRLDPccASYCXwW+d9DgVOQi4s652hxztzfAZx3fUCzgLuMsb0t9b+NsDh7wVqnDkNAK4A/meM+SVwM/Jd+TfyG/u7MWaNtfZNv2PMAs4E/oFcpOYAPwSmGWPmBvkdu+8tG/l9HYl8/+9EvqPfBt4yxhxrrf0g3GcUiihf4/8BvwaeRmKDWoHRwGlALnIT83XgNuS34Rs3tC/GKbpivjTEmFeR/+l5xpgrrLWNPu9vgvPenrLW7nE2X4lYFO9AzgPTgG8BJxhjpltry2KcaweMMUXIueoA5LuyGvntfx94z/ndbonX63UJ1lp9JOEDyEO+wPf4bDsdsMApAcZb5EJ9uN/2Z5Efb6HPtvcRc/YYn23ZwFvOca712T4qwLZZzrYbA8zjSaAK6B3m/X3bOcbNftsXONvvD/D+7gl1zABz/ifQ33lMQuIRLLANyPUZ/4Czfb7fcW5xtl/ss+1aZ9uoAK+bD5gA2+9HTqhDfLZd6Bzn+ADjj3eeuzCWz8tn/51AX5/tBcjJ+p0IPkP3uN/3236is/3Hzt9Fzt9/ifF77s71C2e52Pd/E8H+f3D2GxhmXK8A2zIQy1IlkB3gf/y07/8TubhboBo4wGf7AOT39GCA76wFFvptv93Z/tVQ3wdEiFrgZL/9+wBbgdei/Kyv7cxrINadNRG8zuYY5mYREez+Xsc7c2tChF+4/+8vnWOc7bf9t87208J8F9zv9U/DvReCnIuC/A9vB+qBGX5jRyLnyQ7HSbaHuhuSlzOAYuRuxuVZYC/BzWrvWGvf9dv2CmIxGgVgjBkEHIIo643uIGttM/KFjoTzkR/DvUZSE9seyF1dbyQ4MBSLEFHT7g7OWvssEsB0unPX2hkuRi6K+5C79euQu44TrXO34bzGacDH1tqlfvv/Fq+FJCzW2nrrnAGMMTlGzPD9kZNfBjC7E+8lls/rbmtthc/YOuQOajzh+R+wB/iG3/ZvIILnAefveqAROKwTJmWQuyuAjdbnTjACKp3lVxxrS0Cs+OgBMMbkGWP6IcFxLyAXxEkBdrvD/X86vOEsn7LWbvU59j5gHYE/13XW2if9tv3OWYb7Xn0NWAt86Pcby0GCco82xuSHOUY4onmNSmCYY4nsCubh/b2uRwTgGmCetXZvmH3vQX4fbe5YIy6+byDBr22/bfe7YIzJcFwB/RELWCVwWLzejDHGIOfK14Edfp9vLfJbjDWAuttQd0Py4l7gthsJOHJ5ETjLMZH6m+A20hHXdNbPWY52lusCjA20LRCTkRiBtSHGDApzjNHATmvt/gDPrUZcJ/0RURQrTyHm00zkBP5TYARyUXMZABQ6r9kOa225MWYX4ioIi3OR+hlyYhqHfEa+FEc5f19i+byCfR/6BdjeDmttizHmv8D/GWMmWGvXO370M4DnrWO6tdY2GUk/ux2J01iDCNMnrbUvR/zu5MJ5HPBjYwzW2ivcJ4wxOcgF3ZcaK+6IOxEL218QV8qbiPn8Qefi7R6jELmTPhv5DvgT6H/j//m5n/2mAGP3I3eH/nTIIrDW7jLGVBD+ezUZsU6FMtX3RyxjsRLNa1yNWArfMMbsRKwwzwKP2cCZB9HyHuLSAPmNbvEVY45YKfLbp9IR59uMMS8grrfhVlxvJyOup5utuAvd45yAWBUPQyy2vnTmN+rPAOS35oqfQAR1NyULKhKSEGPMaMR3afD6VP35Gh1TflpDHdZv2RkMjtsjxGt2uOgGmU9Xst1a+5Kz/j9jzHNI/MBDxpgjnbvEeM7jD8APgIcRf+xexNUzC7iJzgUKxzLPUN+HSLgXMfl+Azl5n4EIqvt8B1lr/2aMeQpxURyH+OAvM8Y8bK39aoSvVYdEsT+NCIUMa+3/Oc8diViAfLkOcYGVGWMOAY5B0mSPRXzi1xlj5ltr33HG/9c5/l3InV05EszmptkF+t8E+/yCbQ/0P7IBtgUbG2jMSuDHIcbE6uuP+jWste8YY8YiF985zuM84P8ZY462PrErMVLq83sNxDl4A35dvok31fLfwJeQ7+uNeK0KbVkNznflBSTO6WeI4KtH/k8P0bnfqP/11P0fv4T8/lMSFQnJyTeRL9i3CZyLfwNiafhjDMd2744mBngu0LZAfI78GLdaa2PNt/4C+JIxpq+vSdxhCuKvCxWsFDXW2i+MMb9H7iLORS4cexEf81T/8caYYsQM/onvYUK8xNeB1/0vjH6WoEiOE4hEfF6fGmM+Bb7mBOt9A/k+LgkwdhcSA/JPx8x7P3CuMeZWa+3yCF+v3hhzqnP8y40xxlp7OWIKnus33NdV5matvAZgpPDSh4iwWWCk8NWXkbiN7/oexBhzUiRz6wRT/DcYY4Ygd8SBLD2+fI7cjb5iQwQ4dpKoXsOx3jzuPDDGfB/4M3I+coNUo/1uR8r/6Pg98L0ZeQr5DVxojPk74kZ8y1rrayE9D7EsnmKtbbMIOVaySK0I5XS0bEFHy9A+5PfSJ4z4SWo0JiHJcPzKFwIrrbX/tNY+5v8AHkSiow+J9viOmfgDxIfd9qV2opx/FOFh7neWNxqf1D6fYw2M4BhPIt+/n/ntewpwELCki06MtyG+x2uMMZnOazwNHGSM+ZLf2J85c1zss82NuA90kmjF7w7ROfn8X4CxoY4TiCdJzOd1L2JGPw84AXjYWttWw8EYU2D8Klg6F2034yPS9+fuW4+c3F8EfmSMucNau99a+5LfY6Pz+v0DHGYtcnfovrZ75+//vxmCRLV3JRONMQv9tl3lLJ8Ms+99SH2QgHf5TnxRZ4n4NYJ81m5dAt//cw1R/t8jwVq7K8D3YJfP801IbYjxSOZJDt70SJeA3wXElRLp9XA9cIRpnx5djF96uvN7fAA41ARJDY/wXJlQ1JKQfMxDfKb+X25fHkf8qxcDEd2l+XElchJ+2xjzF+SieTbyo4IwdwLW2uXGmGsQk+8nxphHkUj6IcDBiAk3J8QhQEyEFwBXOQFvryN+/O8jAXNXR/2uIsBKet+dSPrmeYjguRq5Q3nS+Tw2IGbrc5x5+QaPuoGhNxljHkCi2ldZa1chqYnfMcY8jJgYByFBpoFSqpYj/shfOCeYWmCTtfa9IFO/hwR8XshJ7mbE559B+88CYAKwzBizGFiF+OYnI6mZm/AG+0WMY1E4Dbkz/IHjergsyPB/GGOGIybkLYh//RwkePY+53jVjr/6a8aYeuSzH4mkpG4ighiNTrAS+I8x5h/IXfscxB2zDHFLheJ25Ht5i+NHfwWxGB2AROM3OMfrDNG8xmfGmHeR2AH3934JkoHwkM8x3wUuNsZcj8RkeICnfYNHu5B/IRUfz0LEin8BpsWIaF9qjLkLmftcJH05UkvcnYgYecUYcz/QF7H6bkEEly+/QNKWHzHGPIJ8Nk3I928+YvG6MNI3lxDinS6hj849kC+1BaaHGbcOMWXlO39HnJbjbD8B+cI2IBeZ25FAnnZpQARIgfR5bgFiAixHAo22Ac8B34vwvfZCovU3Ij+cvchFe2SAsQHfX5DjunO+M8jz/RAXw+dAprNttPPae525bET8mgUB9v+p83yz72eDpBjegpwsGpzj/wxvetWFfse5AInebvJ9fwRIgYzm8wq2v/PcPfKzj+o7+bRzvPVBPsvbEJdMBXIHvwFxhQ2J4NjuXK8M8FweEoRoEZN2oPTSMxD3xHbnO7gPuQB/xW9cf8QdstP536xETuwX0jFt7VoCpLkS+rfwGrA50HcWqdnwnvPZ7AH+hF+KcKB5ONuzkNTL5YiQrHW+Vw8gUf/R/B+v7cxrIN/l153vnft7fxSY5Xe8gciNTDkiEDp8lkF+389E835CHOs953j/CvL8QuTiXIsIg4cQUbSZjumOHbY523+C/M4bESF0UYj/YQGSornS+Q5UO/v8AzgsHu+5Kx/GeROKgjHmK8jd8LnW2ofCjVcUJThGqg/ea629MNFzUZRY0ZiEHogR8vy2ZSN+yRa8pYsVRVGUHozGJPRMcoEtjk99HWIyPgfxy91krd2dyMkpiqIoyYGKhJ5JM1IE5XQk+MggYuFSa+1fEjkxRVEUJXnQmAQfjDEtiAumKtFzURRFUZRuoA/gsdYGNBqoSPDBGOMBTFGRf+VPRVEURUk/KisrQTKeAsYoqruhPVVFRUVFFRUViZ6HoiiKonQ5ffv2pbKyMqj1XLMbFEVRFEUJiIoERVEURVECoiJBURRFUZSAqEhQFEVRFCUgKhIURVEURQmIigRFURRFUQKiKZCKoigRYK2ltLSUhoYGPB5PoqejKCHJyMggLy+P/v37Y4yJ+TgqEhRFUcJgrWXHjh1UV1eTm5tLZmZmoqekKCFpbm6mpqaGxsZGhg0bFrNQUJGgKIoShtLSUqqrqxk0aBAlJSWJno6iRER5eTl79uyhtLSUAQMGxHQMjUlQFEUJQ0NDA7m5uSoQlJSipKSE3NxcGhoaYj6GigRFUZQweDwedTEoKUlmZmanYmhUJCiKoiiKEhAVCYqiKIqiBCShIsEYM9wYc7sx5k1jTI0xxhpjjo9i/7HGmCeNMZXGmGpjzFJjzJSum7GiKIqi9BwSbUkYB5wL1AAvR7OjMWYg8AYwCrjAOU4JsMwYMzy+01QURUlPtm/fzo9+9COOPvpoCgsLMcbw2muvBR3/4osvcvjhh5Ofn8/AgQP5zne+Q0VFRYdxNTU1/PCHP2TIkCHk5+cze/ZslixZ0nVvJMHcc889GGPYvHlzoqcSVxItEl631g601n4JuDvKfa8EioH51tonrbXPAAuAXOAXcZ6noihKWrJhwwYefPBBCgsLOfHEE0OOfe2115g/fz4jRozg6aef5ve//z1LlixhwYIFHYLjFi1axAMPPMANN9zAs88+y5QpU1i0aBFLly7tyrejxJmE1kmw1nambNki4EVr7U6f45UZY54GzgC+19n5KYqipDvHHnsse/fuBeDJJ58Mebf/05/+lGnTpvHwww+TkSH3mEOGDGHevHk8+uijnHPOOQAsXbqUl156iSeeeIJFixYBMGfOHDZu3MgVV1zB/Pnzu/hdKfEi0ZaEmDDG5ANjgVUBnl4BDHTcEf77VYR6AEXxnGfe6kZMhU2qR0aZh/wr6+lrKkM+Lsm5B/r27fzj8MOhvDyeH6uiJActLbB5c/I8WlpiehvuxT4cO3bsYPny5Xz9619vt8/cuXMZNmwYjz/+eNu2xYsXU1RUxOmnn962zRjDBRdcwNq1a1mzZk3I1/roo49YsGABAwcOJDc3l+HDh7Nw4UL279/fNubaa6/lkEMOobi4mKKiIg499FAeeeSRDscyxnD55Zfzl7/8hXHjxpGfn89hhx3Gxx9/TEtLC7/61a8YPnw4RUVFLFq0iH379rXbf9SoUSxcuJCHHnqIyZMnk5eXx6RJk3jggQci+tzuv/9+DjnkEAoKCigqKmLhwoV8/vnnUb/fRJGqFReLAQMEuvq42/oBe7ttRgFo6Z0JfWOvmd0VWAwN382n4db8kOP+0Xwh3628g1l83LkXfO89uOIKuDtab1KceOMN8DWDFhXBzJmJmYuSXmzfDqNHJ3oWXjZtglGjuuzwq1bJPdm0adM6PDd9+vS2592xU6ZM6SBADjzwwHbPB6Kmpoa5c+cya9Ys7rrrLoqLi9m5cycvvvhiu6JAW7du5dJLL2XEiBG0tLTw6quvct5551FdXc3FF1/c7piLFy9m9OjR3HrrrTQ3N3PFFVdw2mmnMW/ePJqamvjnP//Jtm3b+PGPf8wll1zC4sWL2+3/wQcfsGLFCq677jqKi4v5+9//zte+9jWys7M5++yzg35m11xzDTfccAPf/e53uf7666msrOT666/nqKOO4tNPP2XIkCERv99EkaoiwcVG85y1tm+og8XbmnDdWxupWRavo3Wez0YW8tSxQ+kzuJl7f/ZR0HE/v38Ka3f05k8nLObuH4hI2LoV9uxpP27WLAhZX+bdd+Gmm+Cee+Dcc2HevM6/iWhpaJCHS1UVHHAAaOU8RYmKsrIygIBVJ0tKSvjoo4/ajZ0wYULAcb7HCsTatWspLy/n97//PTNmzGjbfu6557Yb9+9//7tt3ePxcOKJJ1JaWsqdd97ZQSS0trby3HPPkZ8vN0e1tbVceOGFbN68mZdf9sbMr1mzhttvv526ujoKCgratu/cuZPVq1czefJkAObPn8/06dP55S9/GVQkbN26lRtvvJErrriCm2++uW37Mcccw/jx4/nDH/7ALbfcEvH7TRSpKhL2IyKgX4Dn3G9wwm3cvzi3448kkSwFngKaCrNZ+NvDgo7bPRK+9z148K2R3PzQSAYMgLq1sLu9hYymkyA/lEHitNPgzTfhrbfgO9+BlSuhsDAebyVycnLaiwSAzz6Do47q3nko6cfw4XL3niwM756krmCNgvy3h2ooFOq58ePHU1xczLe+9S0uu+wyjj32WEYHsNi8+uqr/O53v+OTTz5h3759WCv3hXl5eR3GnnDCCW0CAWi72C9YsKDduMmTJ2OtZevWrUyaNKlt+4wZM9r2AXHRnH322Vx77bXs3r2bwYMHd3jNF154gZaWFs4//3xafFxBAwcOZNasWSxbtiyq95soUlIkWGvrjTEbgY52L5gO7LPWJtTVkIz0dpYNQDOQHWTc174GP/sZVFbCP/8JP/95YItBU1MYkZCRAf/6F8yYIT7T//f/4I9/7MQ7iIGcnI7bysth714Y2CFsRVEiJyurS837yUa/fnJPFsgKUF5e3s7C0K9fv6DjILA1wqWoqIhly5Zx/fXXc/nll1NRUcHo0aO59NJL+fGPf4wxhnfffZe5c+dywgkn8Oc//5lhw4aRnZ3NX//613YWBhf/18txzgvBtvub+QOJgEGDBgHyeQR6fo9jep0ZxL3pCoFI3m8iScnARYfFwFxjTNt/xxhTApwKPJGwWSUxvX3Wq0OMKyyEiy6S9b/+VeKhAomE5uYIXnTiRLjmGlm/4w5xQXQngUQCwNq13TsPRUlxpk6dCtAu9sBl5cqV7WIVpk6dymeffdYhLXLlypVA4LgGX6ZPn84jjzxCeXk5n3zyCSeffDJXXnkldzuxTQ8//DDZ2dk8/fTTnHnmmRxxxBHMnj2bpqamTr3HYOzevbvDNlcEuOLJn/79+wOSMbJ8+fIOj6eeeqptbLj3m0gSLhKMMWcaY84EjnA2HedsO8VnzGvGGP8Yg98DlcBSY8zpxpgFwLNAC3Bjd8w91ejjsx5KJABceikYA9u2wZIlwS0JEXHllRIsaC1cfDE0Nka4YxwIJhIqK2HXru6bh6KkOMOHD2f27Nk88MAD7S7+L7/8Mjt27OCMM85o27Zo0SIqKip4+umn2x3jvvvuY+LEiUGDFv0xxjBjxgzuvPNOsrKy+PTTT9u2Z2VltQuM3Lt3b7sLbzxZsWIFn332WdvfHo+HRx55hAkTJgS0IgDMmzePzMxMNm7cyOzZszs8pk+f3mGfYO83kSSDu+FRv7+vdZZbkGqKAbHW7jHGHIOIhfsRwfMGcKy1dmv8p5n6RGpJABg7FubPh2efhT/9Ce6/v+OYiCwJANnZ4nY49FBYswZuuAGuvz7CnTtJMJEAYk0YPFjUkKL0YB577DEAli9fDsCyZcsoLS2lV69enHJK2/0aN910E/PmzePcc8/lkksuYefOnVx11VUcdthhnHXWWW3j5s+fz5w5c7j44ospKytj9OjR3Hvvvbz55pthL+TPPPMMf/3rX1m4cCGjR4+mtbWVBx54gNbWVr70pS8BEktw2223cf7553PJJZewe/durr/+egYNGkR1dbizW/QMGTKEL3/5y23ZDX/7299Ys2YNDz/8cNB9Ro8ezS9/+UuuuuoqNm7cyNy5c+nTpw+7du3irbfeYtKkSVx22WURvd+EYq3Vh/MAKoqKimy6Um+9b/atCMY//7y1cvtv7UsvWbtkSfvH+vVRTuCqq+RgGRnWvhXJDOLApk0dJ+772Late+ahpDSbN2+2mzdvTvQ0ugwkELzDY+TIkR3GPvfcc/bQQw+1ubm5tn///vZb3/qWLS8v7zCusrLSXnrppXbQoEE2NzfXHnTQQXbx4sVh57J27Vr71a9+1Y4ZM8bm5eXZvn372iOPPNI+9thj7cbddddddty4cTY3N9dOmDDB/uUvf7HXXHONlcta+/f2ox/9qN22jz/+2AL27rvvbrf97rvvtoD9+OOP27aNHDnSnn766fbBBx+0kyZNsjk5OXbChAn2/vvvD7jvpk2b2m1/5JFH7DHHHGMLCwttXl6eHTNmjD3//PPt+++/H9X7jZVw392ioiILVNgg10Vjbagswp6FMaaiqKioKFAd8nTAAjmIP+Z54OQw4z0emDwZ1q+Hr38dfG4UALE2RGg1FBob4bDD4NNPJeDrk0+kbkFXsnMnfPhh8OcLCmDOHAmyVJQgbNmyBYCRI0cmeCZKdzNq1ChmzpzJk08+meipxES4727fvn2prKystEFKBOiZsQdh8MYlRGKQy8iAyy6T9ccfh5qa9s9HHSOUmwv//S/k5Um2w6WXRnmAGAjlbgCoq5OHoiiK0gEVCT0MNy4hUq/dBRdItkNdHfg3hos4JsGXKVPgD3+Q9QcekEdXEk4kQIxvRFEUJf1RkdDDcEVCVYTj+/QBtzHc9u3tn4s52+i735VCSyBVm7qyII2KBEVROsHmzZtT1tUQD1Qk9DCitSSAt+ZQlZ+yiPnaaoxUaRo8GKqr4fzzu+5CrSJBURQlZlQk9DCiiUlwcUVCZWX77Z2qWzJgANx3n6y/8w4sWNBRhcSDjAxJwQyFigRFUZSAqEjoYcRiSRgwQJb+IqHT19a5c+F3v5P1F1+EY47p6NOIB+GsCSoSFEVRAqIioYcRbUwCBBcJHg+0tnZyQlddJV0is7JgxQo4/HBJkYwn4URCF5VyVRRFSXVUJPQwXJFQGXJUe1x3Q3W1CANf4nJ9veACeO45iZLcsUMsCkuXxuHADmpJUBRFiQkVCT0MNyYhFkuCx9OxVkLcrq8nnSRtpYcNEzWyYIG0l45HnIKKBEVRlJhQkdDD6Iy7AeIcvOjP9Onw3ntw5JHy9113wbRp8MILnTuuigRFUZSYUJHQw4hFJDgdT4EuCF70Z9gweP11KbiUlydtKE8+Gb79bfDr8R4xubmhn1eRoPRgXnvtNYwxAR9rA7RUf/HFFzn88MPJz89n4MCBfOc73yFQKfuamhp++MMfMmTIEPLz85k9ezZLlizphneUGO655x6MMWzevDnRU4krKhJ6GK5IqAk5qj05OdC3r6z7W/+7JOYvMxP+7/8kkPGoo2TbP/8J11wT2/E0cFFRwnLTTTfxzjvvtHuMGjWq3ZjXXnuN+fPnM2LECJ5++ml+//vfs2TJEhYsWNCufTRIu+gHHniAG264gWeffZYpU6awaNEilsYz3kjpcpKhVbTSjbgxCdGIBBCXQ0WFPHzp0uvr+PGwbBlceSX88Y/y+O53YfTo6I6j7gZFCcuECRM4/PDDQ4756U9/yrRp03j44YfJcJqiDRkyhHnz5vHoo49yzjnnALB06VJeeuklnnjiCRYtWgTAnDlz2LhxI1dccQXz58/v2jejxA21JPQwXEtCHeAJNdCPuFddjJTMTPjNb2D4cFEkV10V/THCiYTW1o5pG4qitGPHjh0sX76cr3/9620CAWDu3LkMGzaMxx9/vG3b4sWLKSoq4vTTT2/bZozhggsuYO3ataxZsybka3300UcsWLCAgQMHkpuby/Dhw1m4cCH79+9vG3PttddyyCGHUFxcTFFREYceeiiPPPJIh2MZY7j88sv5y1/+wrhx48jPz+ewww7j448/pqWlhV/96lcMHz6coqIiFi1axL59+9rtP2rUKBYuXMhDDz3E5MmTycvLY9KkSTwQYd+Z+++/n0MOOYSCggKKiopYuHAhn3/+edTvN1GoJaGH0dtnvdbv71B0WUGlSCgogN/+VvpVP/oovPWW1w0RCZGWZg4Xu6AoPrS0dE3tr1gZPlzKjcTKd77zHc4880x69erFMcccw3XXXcfBBx/c9vyqVasAmDZtWod9p0+f3va8O3bKlCntxATAgQce2O75QNTU1DB37lxmzZrFXXfdRXFxMTt37uTFF1+kwScuaevWrVx66aWMGDGClpYWXn31Vc477zyqq6u5+OKL2x1z8eLFjB49mltvvZXm5mauuOIKTjvtNObNm0dTUxP//Oc/2bZtGz/+8Y+55JJLWLx4cbv9P/jgA1asWMF1111HcXExf//73/na175GdnY2Z599dtDP9JprruGGG27gu9/9Ltdffz2VlZVcf/31HHXUUXz66acMGTIk4vebKFQk9DB8RUEVnRcJ3ebOP+88uOMOWL4cfvxjKeWcEaEhTEWC0gVs3x6956sr2bQJ/EIIIqKoqIjLL7+c448/npKSEj777DN+97vfcdRRR7Fs2TIOO+wwAMrKygAoKSnpcIySkhI++uijtr/LysqYMGFCwHG+xwrE2rVrKS8v5/e//z0zZsxo237uuee2G/fvf/+7bd3j8XDiiSdSWlrKnXfe2UEktLa28txzz5Gfnw9AbW0tF154IZs3b+bll19uG7dmzRpuv/126urqKCgoaNu+c+dOVq9ezeTJkwGYP38+06dP55e//GVQkbB161ZuvPFGrrjiCm6++ea27ccccwzjx4/nD3/4A7fcckvE7zdRqLuhh9HHZz0epZm7TSRkZHhbTL//Pjz0UOT7ZmeHFxQal6D0UA466CBuu+02Tj/9dI455hguueQS3n77bQoLC/nFL37RYbwxJuBx/LcHGxfuufHjx1NcXMy3vvUt7r33XjYF6RL76quvcvLJJzNo0CCysrLIzs7mX//6V8CMjBNOOKFNIABtF/sFCxa0Gzd58mSstWzdurXd9hkzZrTtA5CRkcHZZ5/N+vXr2b17d8D5vfDCC7S0tHD++efT0tLS9hg4cCCzZs1i2bJlUb3fRKGWhB6Gr+UgoZ0gY+Hoo+HMM+Gxx+BnP4OFC8UVEQk5OaFTKFUkKFEyfHjXdjmPluHD43eswYMHM2/evHYpi/369QMCWwHKy8vbWRj69esXdBwEtka4FBUVsWzZMq6//nouv/xyKioqGD16NJdeeik//vGPMcbw7rvvMnfuXE444QT+/Oc/M2zYMLKzs/nrX//azsLg4v96OY51Mdh2fzP/4MGDOxxz0KBBgHwegZ7fs2cPADNnzgz4Pkc7ZqhI3m8iUZHQw+gFGMASW0El/+yGbr+23nQTLFki9RNuuw0C3OkEREWCEmeysmIz76cKHo+n3QVq6tSpgMQTzJs3r93YlStXcqRbBM0Z+/jjj+PxeNrFJaxcuRIIHNfgy/Tp03nkkUew1rJixQr+9re/ceWVV1JcXMxFF13Eww8/THZ2Nk8//TS5Pm7Cpi4ybQayFrgiwBVP/vR3Csw8+eSTDBs2rMPzvvMO9379sRa6Szuou6GHYYBCZz24V7Ajrkjw79/Q7SUGxoyBH/1I1n/7W+n1EAlaK0FRImb37t1tRZNchg8fzuzZs3nggQfa1UR4+eWX2bFjB2eccUbbtkWLFlFRUcHTTz/d7rj33XcfEydODBq06I8xhhkzZnDnnXeSlZXFp07zN2MMWVlZ7QTI3r17eeqpp2J6v+FYsWIFn332WdvfHo+HRx55hAkTJgS0IgDMmzePzMxMNm7cyOzZszs8pk+f3mGfYO/XF49HREJ3oZaEHkgfxNVQEcU+rrvB7d/Qp4/379ZWyVTsNn7xC7j3Xti7F37yE/jvf8Pvo7USFCUg559/PmPGjGHWrFkUFxezdu1abrrpJurr6/ntb3/bbuxNN93EvHnzOPfcc7nkkkvYuXMnV111FYcddhhnnXVW27j58+czZ84cLr74YsrKyhg9ejT33nsvb775ZtgL+TPPPMNf//pXFi5cyOjRo2ltbeWBBx6gtbWVL33pS4DEEtx2222cf/75XHLJJezevZvrr7+eQYMGUV0djSM1MoYMGcKXv/zltuyGv/3tb6xZs4aHH3446D6jR4/ml7/8JVdddRUbN25k7ty59OnTh127dvHWW28xadIkLrvssojery/dfb5VkdADceMSosnA9e/f0McnArKpCXxigrqeoiJxO3zzm/Dgg9II6rjjQu+jIkFRAjJ9+nQeeugh/vSnP1FbW0u/fv04/vjj+X//7/91cAuccMIJPPPMM1xzzTUsWLCA3r17s3DhQm6++WYyfa5cxhiefPJJrr76aq6++moqKiqYMmUKTzzxBKeeemrI+YwfP54+ffrwu9/9jp07d5KXl8eUKVN49NFHOeWUUwA48cQTueuuu7j55pv58pe/zMiRI7n88svZs2cP1113Xdw/o9mzZ/PVr36V6667jo0bNzJq1Cjuv//+kOmPICmQU6ZM4U9/+hP33HMPLS0tDB06lCOOOKItaySS9+uLx9O9IsHY7rRbJDnGmIqioqKiQHXI04lDgeXAz4EbI9ynqcmbIXjjjdJ3yeW449qLhm7B45FaCe++K5P5+OPQSeLr18O6dcGfHzECggQYKcqWLVsAGDlyZIJnonQ3o0aNYubMmTz55JOJngoAdXXS1ibSDPBw392+fftSWVlZaa3tG+h5jUnogbiWhIoo9snJ8QqBbunfEI6MDLjzToneWbUK/vzn0OPVkqAoShrQ3cVhVST0QNyb/mg9d24Qb8IzHFwOPhguuUTWf/UrcKKNA6IiQVGUNEBFgtLlxNIuGrwiISksCS6/+Q2UlMikfvaz4ONUJCiKEgObN29OGleDtSoSlG4glnbRkOD+DcHo10+CJADuuQfefDPwOE2BVBQlxWlt7f7XVJHQA3FFQrTuBqc2SHJZEgC+9S2YNUvWzzwTNm/uOEYtCYqipDiJaFarIqEH4sYkxGpJSJqYBJfMTPjPf6BvX4lLOOUU8G+xqu2iFUVJcdSSoHQLriWhLsr9gvVvSLglAWDyZHjqKREDa9dKX4fGRu/zGRnS6CkUCVc7iqIowVFLgtIt+IqEaL5zrkhIqpgEX449VioxArz+Olx4YftflbocFEVJYdSSoHQLviIhGiOAryUhof0bQvHVr0o1RpB20ldf7X1ORYKiKClKIjIbQEVCj8SNSagHQvRF7IDTGbWtf4NL0l1bf/IT+P73Zf2mm2DDBllXkaAoSoqSqJApFQk9ENeS4CG6WgmuSID2cQlJZUkAqcJ4xx0wZIj87eY4q0hQFCVFSYSrAVQk9Eh6+6yXR7Gfr0jwzXBwO0EmFZmZ4DaSWbJElj792wOSdGpHUbqe7du386Mf/Yijjz6awsJCjDG89tprQce7LaTz8/MZOHAg3/nOdwjU76ampoYf/vCHDBkyhPz8fGbPns0S97cY4zHThVGjRnHhhRdGtY9aEpRuI1aRkJMDvXrJun+GQ1LehJ9+uizfegtKS9WSoCgB2LBhAw8++CCFhYWceOKJIce+9tprzJ8/nxEjRvD000/z+9//niVLlrBgwQI8flexRYsW8cADD3DDDTfw7LPPMmXKFBYtWsTSpUtjPmZPJlEfhbaK7oH4NmyMpl00SCmC2tqOGQ5NTdKZLKk44QRRNbW18MwzEOYEqCJB6Ykce+yx7N27F4Ann3wy6N0+wE9/+lOmTZvGww8/TIbThnDIkCHMmzePRx99lHPOOQeApUuX8tJLL/HEE0+waNEiAObMmcPGjRu54oormD9/ftTH7Omou0HpNgp91iuDjgpMUZGzX7KmQfqSlwdf+pKsuzUUQpGUb0JJVlqAzUn0aInxfWRE2HN4x44dLF++nK9//evt9pk7dy7Dhg3j8ccfb9u2ePFiioqKON215gHGGC644ALWrl3LmjVroj5mIFpbW7nhhhuYMGEC+fn5FBcXc9BBB3H33Xe3jfnggw8455xzGDlyJPn5+YwZM4aLLrqIPX4N4a699lqMMaxYsYLTTz+d3r17M2DAAH7+85/j8Xj48MMPOe644+jVqxfjx4/n/vvvb7f/PffcgzGGl156ifPOO4+ioiL69OnDueee2ybCQrF9+3YuuugihgwZQk5ODhMmTOCPf/xj2/Pi1m3l97+/gUmTgr/feKOWhB5IFpCHZDZURLlv376yDGRJSEpOPx0efxxeeCG8FFeRoETBdmB0oifhwyZgVBcef9WqVQBMmzatw3PTp09ve94dO2XKlA4C5MADD2z3fDTHDMTNN9/Mb3/7W379619z8MEHU1dXx5o1aygv9zpSN2/ezJQpUzjvvPMoLi5m69at/OEPf+Coo45i9erV5PrFKp199tlceOGF/OAHP2DJkiX87ne/o7GxkWeeeYaf/OQn/OIXv+DOO+/kggsuYPr06cycObPd/hdddBFf/vKXeeSRR1i/fj2/+MUv+Oyzz1i+fDnZQQq67dy5k0MPPZTCwkJuvPFGRowYwYsvvsiVV15JWVkZ1113PdbC7bffzG23/Zbrrvs1s2cHfr/xRkVCD6UQEQnRdoIsKZFlSsQkACxYIEGMdXUSmxDKJ5K0SkdREk9ZWRkAJe5JwIeSkhI++uijdmMnTJgQcJzvsaI5ZiDeeust5s2bxxVXXNG2zdeVAXDmmWdy5plntv3d0tLCsccey8iRI3n++efbWTsALr30Un7wgx8AcOKJJ/LMM89w22238cYbb3D00UcDMHv2bAYOHMiDDz7YQSQcddRR/OUvfwHg5JNPZuDAgXz1q1/lscce49xzzw34Pq699lrq6ur48MMPGeJkZZ100kk0NTVxyy23cNll/0dubgnvvfcWc+bM48c/vgJXf/m/33ij7oYeihu8GK27obhYlv6Bx0l7fS0pgWOOkfXnngs9NmmVjpKMDEfu3pPlMbxr324bxpiItgcbF83YUMcAOOyww1i6dCk//elPef3116mr61hsvqqqil/+8pdtLons7GxGjhwJwNq1azuMX7BgQbvXnzRpEr17924TCCACZuDAgWzZsqXD/l/96lfb/f2Vr3yFrKwsli1bFvR9LF26lBNPPJEBAwbQ0tLS9pg/fz6NjY28++67AMyefRgvvriUq64K/n7jjVoSeiixtotOOUsCwGmnwWuvwbPPSk+HYCeepH4TSrKRRdea95ONfv36Ad67f1/Ky8vbWQP69esXdBx4LQfRHDMQP//5z8nPz+c///kPv//978nJyeHkk0/mpptuYtKkSQCce+65LFu2jGuuuYaDDz6Y3r174/F4OPzww6mvr+9wTP/XzMnJCTiPnJwcGho6lqMbPHhwu7+zsrKCfh4ue/bs4Yknngjqjti7txSA//u/n5OXl8/jj/+HW28N/H7jjVoSeii+IiGazBrnN506MQngTYXcuxc2bQo+TkWCogRl6tSpAAHjBFauXNkurmDq1Kl89tlnHVIYV65cCXhjEKI5ZiCysrK48sor+eSTTygvL+fee+/l008/5eSTT8ZaS0VFBc899xw//elP+clPfsIJJ5zAIYccQn+3730XsHv37nZ/t7S0UFZW1iaIAtG/f3/mz5/P8uXLAz7mzVvQ9n5/8IMr+eijwO+3K1CR0ENxRUI90BhqoB++loSk7d/gz5gx4J5s3nsv+DhtF60oQRk+fDizZ8/mgQceaHfxf/nll9mxYwdnnHFG27ZFixZRUVHB008/3e4Y9913HxMnTmTKlClRHzMcffv25ZxzzuGb3/wmW7dupaKigoyMDKy15PhlNv3jH/+I6r1Hw0MPPdTu78cff5yWlhaOO+64oPuccsoprFy5kgkTJjB79uwOj759OwqMQO+3K1B3Qw/Ft39DE5Af4X6uAHf7N/RxDpT0N+Gnnw6rVsHbb0OQ4CFA3ki4yoyKkmY89thjACxfvhyAZcuWUVpaSq9evTjllFPaxt10003MmzePc889l0suuYSdO3dy1VVXcdhhh3HWWWe1jZs/fz5z5szh4osvpqysjNGjR3Pvvffy5ptv8tRTT7V77UiPGYjTTjuNadOmMXv2bPr378+GDRv4+9//zmGHHUaxE0B19NFHc8sttzBgwAAOOOAAli5dyrPPPhuXzy0Qb731Fpdeeimnn34669at4xe/+AUzZsxoFzzpz/XXX88LL7zAUUcdxQ9/+EPGjx9PTU0NGzZs4Omnn+aRR14gMzOTc889jcmTp3HkkbMZODDw+403KhJ6KP4iIVJ8LWZVVSkmEn7zG9iyBXbsgGHDAo9TkaD0QPwvxtdeey0AI0eOZPPmzW3bTzjhBJ555hmuueYaFixYQO/evVm4cCE333wzmZmZbeOMMTz55JNcffXVXH311VRUVDBlyhSeeOIJTnXLpUd5zEAcd9xxPP7449x1111UV1czZMgQFi5c2DZ/gP/+97/88Ic/bMuAOPHEE3nxxRcZNWpU9B9UBNx9993861//4qyzzsLj8bBgwQJuv/32oPEGAMOGDeODDz7g17/+NTfccAO7du2iqKiI8ePHc/LJp7Slkh511HEsWfI4990X/P3GG9NVfoxUxBhTUVRUVJTONcNdrgD+AMwGlgBDItzvk0/goINk/cYbvVb8vDyYOzfes4wjHg+MGAE7d8KFF0IwM+bRR3tTOBTFwY1id6PiFcWfe+65h29+85t8/PHHHdIiO0NTk2Rw+9KnD0RYAyvsd7dv375UVlZWWmv7BnpeYxJ6KK4loQ6IptpnXl7g/g1JHZMA8otyU5tCFWhJepOIoig9iUQ3z1OR0EPxdTdE8x3MzAxcmjkpO0H645o9du0KPkZFgqIoSUSiz6sqEnoovtkN0YoENw4hJfo3+DJ2rCz37An+y0t6k4iiKMnIhRdeiLU2rq4G8J6qLNCSAQ2hwzTijoqEHkpnREKwJk9Jf30dN06WLS0QrNZ50isdRVF6Cq0eaDJQnwV12dCYCa0ZIhi6CxUJPRRXJEQbk+ArElKq6iLAqFHeaos7dwYek/RvQkkEGRkZtCba7qv0GDzIDVylB5oywRO6OnVIWltbI+70GQgVCT0UNyahGWn0FCkpbUnIzZUMBwC/qmhtqEhQApCXl0djY2OXdttTFFccVCNF7lo7WdutvLycxsZG8kI1tguD1knoofT2WY+mE2RGRgrHJIC4HLZuDR68mBJvQulu+vfvT2NjI3v27KGioiJs/r6iREur8/B1JXiCFIFtzgregqbteK2tNDY20rt3706VoVaR0EPxFQnVUeyX0pYEkODFV14JbklIiTehdDfGGIYNG0ZpaSkNDQ0dehIoSqw0A+UEtujur5QQKn9m9oesMCIhOzu7TSCE66YZChUJPZRYLQn+MQkej7eoR0rchLvBi2pJUKLEGMOAAQMSPQ0lTbDA584jkOT0eODDvRCo3uEpw6EgeAHHuKIioYfSx2c9VkuCf/+GQIo36XDTIHfvll+fv8JWkaAoShdTC3wM7A8xpqEhsEDobjRwsYeSi1ch1kSxn69IAKj2URgpcX11RUJ9fUd/CaTIm1AUJVXZBrxOaIEAUFvbDZOJABUJPRinunLUIqG3j6/CNw0ypSwJENjloO2iFUXpAlqBD4FPgEhOlfV14cd0ByoSejCFzjJad0NODuQ7vaV9RUJK3IT37u3td61pkIqidBOVQJDqLAGpq++qmUSHioQejCsSorFquZlfrjUh5SwJAKNHy1KDFxVF6SaiPT36d35MFCoSejCxiAQ3k8ENVkw5SwJ4XQ7BRIKmQSqKEmeiOT02NSXPTZeKhB5MLCIB2jd5SklLgpsGqe4GRVG6iWhuPZLFigAqEno0bvxhLdE1DPENXkxJkTBxoizV3aAoSjcRzVlFRYKSFMSjXbRvCqS1KSIUXEtCVVXgX6OKBEVR4kw0Z5X6JAlahASLBGNMoTHmDmPMLmNMvTHmA2PMaRHu+xVjzNvGmP3O4x1jzNldPed0wi2oFK1I8O3fkHKdIMErEiCwNSEl3oSiKKlENGeVZKmRAIm3JCwGzgf+H7AAWAMsNsbMD7WTMeYC4DEko+Q857EDeNgYc1GXzjiNiIclwV8kpIQloV8/6OVUiVCRoChKNxDpWcXjgcZoWvN2MQkry+wIgZOAM6y1i51trwJjgFuBpSF2/yawBTjbWutx9v0fsBH4BvDvLpx62hCrJSGUSEiJ66sx0jJ67drAwYsp8SYURUklIj2r1NdHFyPW1STSkrAIqS/xlLvBWmuBe4FJxpgpIfZtBmpcgeDs60GKBzZ2zXTTD7e6cmdEQk2NFCl0SQlLAsDIkbIMJBIa9SukKEp8iVQkJFPQIiRWJEwD1vhe6B1W+DwfjDuBycaYXxhj+htjBhhjfgFMBG4LtpMxpiLUA+91s0cQD5EAKdi/AUIXVEq2X6miKCmPioTo6Ye00fan3Of5gFhrnwJOA64E9gF7gZ8DZ1lrn4/zPNMWX5EQjQHAXySkZBpkqJbRyfYrVRQl5UlVkZDoVtGhXC9BnzPGzAX+CzwIPA5kIgGQDxpjzrTWPhvwgNb2DTWZnmZN8BUJ0RgAQjV5ShlLgisSysqkvFlOjvc5j0f6tOblJWZuiqKkFZbIb8RUJHgpI7C1oMRZBrIyYIwxSNzCK9ba7/o89bwxZjjwJyCgSFDa42MMoCroqI5kZkJWliQI1NamqCXBLahkLezZI4GMvtTVqUhQFCUuRHrv1NjYPsYrGUiku2E1ElfgP4fpznJVkP0GAUOADwI89wEw2hijZ/cI8DEGRCUS3P4NgaoupowlYfRoyM6W9UDBi8lUzURRlJQmVV0NkFiRsBjoC5zqt/0bwDpr7Zog++0HGoBDAzx3OFBmrU2iLNPkJVaR4HaCTOkmT7m5MHiwrO8M0MA1GX+tiqKkJJGeFpOpiJJLIt0NS4FXgX8ZY/oBm4ALgKOB091BxpjXgOOstQbAWttojPkbcLkx5p9IUaVMRFwcjRRmUiIgXiLBN7shZdwNAMOHw7ZtgS0JKhIURYkTKhJiwFprjTELgRudR1+k4uIZ1tqnw+x+JbAWuAQ4E/AA64GvAw900ZTTjl6AQYJqepwlAUQkgGY4KIrSpaSyuyGh2Q3W2irgMucRbMzxAba1An93HkqMGKAA6QJZHWasL6FEQkpZEkIVVErGX6uiKClJJCKhuTk5b7IS3btBSTAFzjJeIiEZv+RBGTNGlnv3dgwprq+XzAdFUZROEslpMRldDaAiocfjtDnqmZaEsWNl2dIC+/a1f85azXBQFCUuRCISktV4qSKhh+OKhGi+n2kjEsaM8eZz7tnT8flk/dUqipJSNEUwpramy6cREyoSejiuuyGa76d7XXVFQn29181gbQoJhcJCKC6W9dLSjs+rJUFRlDgQkSUhSU83KhJ6OK4lIRp3mL8lAVLUmpCbC/37y7q/uwHUkqAoSlwId0psaUne5rMqEno4hc6yM+4GSNHgxbw8GDBA1gNZElQkKIoSB8K5G5L5VKMioYfTGUtCr15gjKyrJUFRFCUw4e6bkjWzAVQk9HhcS0I07jBXJGRmilsf2lddTBlLQkaGtzSzWhIURekiwp0Sk/lUoyKhh+OWZo7FkgBpkOEwZIgsS0s71kVoaJC20YqiKJ0g3CmxJkkzG0BFQo+nM5YESIOCSm6L6Pr6wDa/ZJb4iqIkPc1I6ftgtLYmb9AiqEjo8biWhAakAUYkZGR4YxFS3pLgigTQuARFUeJOKrsaQEVCj8dNUKgHWkMN9MO/VkLKWhIGD4bsbFnXWgmKosSZsCIhiYMWQUVCj8e1JEQrEtKm6mJenmY4KIrSZYTNbEjyU4yKhB6Or7shmmt72jR58hUJmuGgKEqcUXeDktIUOUtLD23ylJvrLaiklgRFUeJMKJHg8UB9kp9iVCT0cHyKJlIVdFRH0iYmwbegkloSFEWJM6FOh3V1oTMfkgEVCT2cIp/1aERCVpYsezv+iqYmbxpPyoqEQJaEpqYUM40oipJMhBMJyY6KhB5OX5/1yij287ckgNeakFLX1JwcGDhQ1svLAxdPSoVfsqIoSUkokZDM5ZhdVCT0cAp91jsTkwBekZBSlgRjYOhQWW9pgYqKjmNUJCiKEiNqSVBSmhzA8RzEJBIKCrxWhZS0JACMGuVd1+BFRVHiSDCR4PGkxqlFRYJCgbOMRSRkZHjjElyRYK2UGk0ZBg6UlpagBZUURYkrwURCfX3HdjHJiIoEhXxnGYtIgDTIcOjVSwsqKYrSJTQF2Z4qpxUVCUqbSIimEVladYIsLPTWStA0SEVR4kiwU2Eyd370RUWCgmNoj0okZPh8c9SSoCiKEphgp8JUOa2oSFDaYhJ6rCWhV6/QloSWFqmXoCiKEgWtBO6umypBi6AiQcFrSYgmZTetYhIyMrxpkIEsCZA6v2hFUZKGVA9aBBUJCrG5GwKJhGqfyMeUsiQAHHCALCsqAiuc6mjCOhVFUVLf1QAqEhS8BZWi+d6mlSUBYPRo73pZWcfnq6IpWq0oihJcJKRK0CKoSFCIr0hwTWgpLRICuRxUJCiKEiWpnv4IKhIUwKmF1OmYhJYWb92hlHM39OsHxcWyHih4UUWCoihREuheKZWCFkFFgoJXJMRqSXArLkKK9m+A8GmQTU3Q0NC9c1IUJaUJdBpMpaBFUJGg4BUJ0RQfDlQnAbzxfSlnScjPD50GCRq8qChKVAQSCalkRQAVCQpQ5CxjtSTk50OW0yUqZS0Jvt0gg6VBqstBUZQoCHQaTKWgRVCRoACuISAaS4KvSDCmY4ZDylkSAIYNk2UwS0JlZffNRVGUlEctCUpa4FoSGpEKYZHgKxKgo0hIOUsCeFtGq7tBUZQ44H8aTLWgRVCRoOAVCQCRGtTDiYSUtCS4aZC1tYF/yTU18itXFEWJAH+RkGpBi6AiQaG9SIjUoO7GILikhSVh/HjveiBrgseTeg5FRVEShv9pMNWsCKAiQQH6+qxHakkwBrKzvX+7aZCu295aaI3Ud5EsjB7tVT8avKgoSifxFwmpeI+hIkHBp8xBxJYEgJwc73qg/g0pZ03Izw9dKwFUJCiKEjFqSVDSgl4+69FcAn1FgmtJSOkmTwCDBskyWPCiigRFUSLAQ/tA8FQMWgQVCQqQCeQ669HE7+fmetfTRiSEq5WgGQ6KokRAOgQtgooExaHAWcZqSUiLJk/gbRkdzJLQ0CAlmhVFUULgf/qrjaY5ThKhIkEBvCIhmvvkQCKhtTWFmzwBjBkjy127go9Rl4OiKGFQkaCkFZ0VCWnR5AngwANlWVoa3IGoIkFRlDCoSFDSCjd4sbOWBEjhJk8ABx3kXd++PfAYFQmKooTBVyR4PF4La6qhIkEBoNBZRpPG6ysS8vO9VRhT2pIwaBD07Svr27YFHqMiQVGUMPie/urqUjNoEVQkKA6uJSEakeCb3eDb5CmlLQngLc8czJJQXZ26v3hFUboFX5FQm4JFlFxUJChA5y0J4I1LSGlLAsC4cbIMZknweFLXwagoSrfgmwNVm4L1EVxUJCiAt+piNJe+YCLBtSSkrEiYPFmWwUQCqMtBUZSQtLMkpPA9hYoEBfBaEqL5LmdlQYbPNygtOkECTJsmyz17gtdEUJGgKEoIXJHQ2goNKRq0CCoSFAe3E2S0gjdUaeaUtSTMmiVLjwd27gw8RkWCoighcE9/dXWQyhFMKhIUwOtuiNZ1FkokpKwlYcwYKHAqRwRzOVRUdNt0FEVJPVwbZCq7GkBFguLgljnojEjwdzekrCXBGG+GQzCR0NiYmt1aFEXpFhqdpYoEJS3o6yyjvez5pkGmTQokwPjxsgyWBgmwf3/3zEVRlJTC4nU31KRw+iOoSFAcXEtCtPE1gdwNriXB45FHSjJliixDZTiUl3fPXBRFSSmaEaHQ0iJGx1RGRYICeEVCEx1rjocikLuhqcn7w0jZhokzZ8pyxw4JTw6EigRFUQLg6oJ08EiqSFAAb+AixF5QKVCTp4aGzswqgbg9HFpaJBUyENXVKe5TURSlK3DvjVLd1QAqEhSHQp/1eIgENy4hZUXC6NHeNxfM5WCtZjkoitKBdAlaBBUJikM8REKvXt7iSq4lIWX9cZmZ4TMcQIMXFUXpQLqkP4KKBMXB190QTZkg3+yGzEwRCpAGlgSAiRNlqcGLiqJEQSOSAp6yMVk+qEhQAMgHjLMejUjw79/gnwaZ0iJh6lRZahqkoihR0ER6WBFARYLikIEIBYDKKPYL1wkypUXCjBmy3L49eGvo5mavIlIURUEsCSoSlLTD8RREZUkwBrKzvX+nlSXBbfRUXw+lpcHHqTVBURQfmoA6FQlKuuF0KyDa++JQBZVSNnARpOpiZqash3I5aFyCoig+NAI1KhKUdCMWSwKE7t/Q2BjcUp/05OTAAQfIumY4KIoSIdWNKdy7xg8VCUobboZDPCwJvm76lLYmTJ4sy1AioaYmfc4IiqJ0CgtUpIkVARIsEowxhcaYO4wxu4wx9caYD4wxp0W4rzHGXGKM+dAYU2eMqTDGvGuMObKr552uuJaEaIuEBWryVOVjjkjpuITp02UZSiSAuhwURQEkHqE6DSotumQl+PUXA7OAnwKbgAuBxcaYU621S8Ps+0/gK8DNwNvINe5gvNc6JUrcgkrxtiSktEiIJA0SxOUwaFDXz0dRlKQmndIfIYEiwRgzHzgJOMNau9jZ9iowBrgVCCoSjDFfQQTF0dbad3yeerbLJtwDcJs8RSuCA4mE+nqxwGdnp7hIcLtBVlVBZSUUFQUep5YERVGABpteIiGR7oZFSEr+U+4Ga60F7gUmGWOmhNj3B8DrfgJB6SRuTEJnRILrboA0SYOcNMm7HsrlUFGRwhGaiqLEi/Ia8HgSPYv4kUiRMA1YY631/zhX+DzfAWNMNnA4sNIYc6MxZo8xpsUYs9oYc0GoF3TiFoI+gCC3iT2DeFoSwCsSUjpwsVcvb4bDpk3Bx7W2tg/EUBSlR7IvzU4DiRQJ/YBANtpyn+eD7ZcLXACcDlwGnAKsBO4xxnw7zvPsMbgKKVpLWdp2gnQ59FBZrl8felxZWdfPRVGUpKYszQqwJjoFMpR9Nthz7pzzgPnW2kettS8C5wLLgV8FPaC1fUM9iK4icdrhWhKiFQm+2Q1ZWd4mT2lRmhngSCdhZt260OP27ev6uSiKktSUpVFmAyRWJJQR2FpQ4iyDRYLtRwTEWmvtFnejE8/wPDDcGDMwnhPtKbjZDZ2xJECa9W8AOPxwWe7eLcGLwSgrSy9npKIoUdHSApX1iZ5FfEmkSFgNTDbG+M/BSUxnVaCdrLX1wIYgx3QbGeqZOgZcT0FdlPtlZUGGz3/Rv39DU1OKXzsPOsjboCKUy6G1VasvKkoPprISmkz4calEIkXCYqAvcKrf9m8A66y1a0Ls+wQiMEa5G4wxBolN2GitDdGNRwmGa0moI7QfKBCh+jdAigcv5uV5iyqpy0FRlCDs3w8tiXbix5lEvp2lwKvAv4wxFxlj5hhj7gGOBn7iDjLGvGaM8b9m3QLsAZ43xpxrjDkFeBQppnR1t8w+DXFFQivSoCQa0rqgEmhcgqIoYamoUJEQN5wYgoXAQ8CNwHPAgUhxpafD7FsGHINkNPwFsUqMBBZZax/uwmmnNT6JCXGplZA2pZkBjjhCluvXi1shGJWV2sdBUXoo5WloSUhoWWZrbRWSwnhZiDHHB9m+GTirSybWQyn0Wa8B+kexb9pbEtzgxfp6KdE8cmTgcdZCaSkMGdJ9c1MUJeE0NEBNU6JnEX/STPMoncFXJESb6uubBpl2nSABRo+Gfk4yjrocFEXxo6ICmtPwipqGb0mJFXU3hMAYrzVBRYKiKH6kYzwCqEhQfMgFMp31eJRmrq31uu9TXiRA5MGLdXXp1eFFUZSw7N8PzWmW/ggqEhQfDFDgrEdbejKQJcH6dENLC5HgWhK2bRMhEIpSzcJVlJ6CtepuaIcxJtMY8w1jzH+MMS8aYw5ythc724fFd5pKd+HGJVREuV+wTpBpU3UR4JBDxO1gLXz+eeix6nJQlB5DTY1UW1R3A2CMKQCWAfcgDZZOAIqdp6uA3wHfi9P8lG7GabvQKUuCb5MnVyQ0N6d41UWQNzbF6WAezuVQWqqtoxWlh1BRIUu1JAjXArOBRcAYvKWQsda2ItUQT47H5JTuJ1ZLgm92Q06O9++0SoOEyOMSmpu9Zw5FUdKacqfTkFoShLOAu6y1TxG4R8IGYFRnJqUkDtcIEG1LdP8mT2mZ4QBw2GGyXLcuvKVA4xIUpUfgtmxRS4IwFPg0xPN1tM+mU1II9x8XbZ0EY7w9kCBNayWAN3ixqkq6QoZC4xIUJe1pbvae59SSIJQBoQITpwI7Y5uOkmhcd0O0lgQIHLyYdu6GyZO9Ciicy2H/fi3RrChpjq9XUS0JwsvAN50AxnYYY0YDFwHPd3ZiSmIocpbR1kmA8J0g00IkZGTAoYfKejiR4PHA3r1dPydFURKGG49ggVYVCQBch2QzLEeyGCzwJWPMb4GPkAaCv43bDJVuxXU3xEskpJ0lAbzNnsKJBIBdu7p2LoqiJBQ3HiEdXQ0Qg0iw1m4ATgRagF8j2Q1XAlcB24ATrbXb4jlJpftwRUIs9QLDlWZOi5gE8GY4bNwYvrLivn1pkPupKEogrO3+oMXqffD+e93zWhBjMSVr7YfW2hlIa+dzgK8CB1trD7TWhgpqVJIcNyYhFpHgmwaZtjEJAMccA1lZcvFftSr02JYWDWBUlDSlulp+4tA9loR9G+Hui2HRqbBmTde/HnSyLLO1dpW19lFr7SPW2o/jNSklcbgiIUzR4YAE6gSZdjEJAIWF3iyHTyPQxOGyIBRFSUlcKwJ0vSVh84dwz7ehao8Ik53dlB6Qpl4UJVZcd0M9EmwSDfn53nVfS4JbTqC52dvwKeWZO1eWn3wSfuzu3Vp9UVHSkHYioQubO61+AR78ETTWQGE/+N/LcNJJXfd6vsRSltljjGkN82jpiskqXY9rSagHmqLcNy/Pu+5aEjye9m77tIlLcEXC9u3hiyY1NbU/myiKkha4mQ0ALZnBx8WKtfD2/bD4l9DaDP1HwYX/gpkHxf+1gpEVwz730fEmMwsYCxwGrAA+6dy0lERR4izrkQyH3BBj/fG1JPj2b6iuFgs9iMuhoEPybApyyCHypmpqxOVw4omhx+/aBSUloccoipIyNDW1vwGKtyXBWnj5T/DuA/L3AQfBWTdDfp/Q+8WbqEWCtfbCYM8ZY44ElqANnlKWgT7rO4F+UeyblydlBDweKCrybq+ogCFDZD1t4hKysuCEE2DJEnE5hBMJu3fD1KndMjVFUboef+NgPAMXrYVX/uwVCFNOgtN+BVnR3LXFibjGJFhr3wbuBm6O53GV7sNfJESL63LIy/NaE3yD+9NGJIDX5fDpp+FjDurq2kdxKoqS0viLhHgFLloLr/4V3rlf/p5+Ciz8dWIEAnRN4OLnwKwuOK7SDfQF3BYMscTk+7ocBgyQpW/RwbQSCW7kUEUFbN0afrxmOShK2uAbjwDxEwnL7oK375X1qSfDqb+EjC6Id4iUrhAJxyMubSUFMXhdDJ0VCQMds0TaioSJE2HoUFmPNMtBUZSUx9qOneDj4W54/Z/w5r9lfcpJcPqvEisQIIaYBGPMN4I8VQKcBJwC/LMzk1ISS39EIMTSdSCQSPB1N9TFUoAhWTEG5s2De+4Rl8Ppp4ceX1kJ9fXtPyRFUVKOqqr26dweOt+34aPF8Po/ZH3yCbDwOsiIJbUgzsQyhXuQ7IZAsZwtwL+AH3diTkqCceMSYqkTGM7dkFYiAcTlcM89Unmxubl9v+xA7NoFY8Z0y9QUReka/F0NnbUibPoAnr9F1scdBQuvTw6BALGJhDkBtlmgHNhkrY2loq+SRDjX9k6LBF93g7Vy493YKNXCspLkB9Bp3KyGhgZYvz58BsOOHSoSFCXFiWdmQ9lWePxn4GmFgeNg0fWQmUTnx1hSIJd1xUSU5GGQsyyLYd9AIqGxUWoluFUY6+q86ynP4MEwbZpYEj75JLxIqKiQ5OpevbpjdoqidAHxEgn1lfDwj6GhGnqVwDm3Qm6SnRq0LLPSgcHOMpYagb5VFwf65FOmtcvBNxUyErZv77q5KIrSpTQ0dDyHNcVwJW1tgcd+DuXbIDMHzr4FigaH36+7CWtJMMb8KobjWmvt9THspyQBTrx+TCIhO1tcCS0tUpAwP19i9fbuhXHjZEy47sopx0knwW23ibshEivB9u2SGaEoSspRFsDE2hhDBsILf4AtH8r6ab+EYdM6N6+uIhJ3w7UxHNcCKhJSFNfdUAk0462bECn5+eJeMEaCF7dubW9JSDuRcOyxoo6am2HlSm+HyGDU1Unkk5ZpVpSUwz9oEaApSpGw5iX48HFZP+ZimDqv8/PqKiIRCaO7fBZKUuF6CVqQNMhhUe7vigQQl8PWrWmcBgliMjnySFi2DD78MLxIAAlgVJGgKClHIJHQGIW7oXw7PHujrI85DI79Vnzm1VWEfWvW2i2xPLpj8krXMMhnfUcM+4crqJR2lgSA006T5XvvRdYPe+dOaXKhKErK0NzsvQHyJVJ3Q0sTLP4FNNZKy+fTrwWT5JGBST49JREM8FmPpX9DuFoJ9fXhWx2kHAsXyrKiQmITwtHU1P5DURQl6SkvD3zuitTd8MqfYddawEg/hl4pYEyMORvTGDMbaQ1dTEexoYGLKUwO0AeoovOlmQc5Zgnf66G1IhTSomW0y5gx3lTId9+FyZPD77Njh6RQKoqSEgRyNTRngI2gTfT61+H9h2T9mIth1Oz4zq2riKUscz7wBDAPqbroW33R+mxTkZDC9EdEwp4Y9g1kSaitlVgEVxjU1qaZSAA44wyvSLjwQoncDMXu3ZFVaVQUJSmINR6hpgyWOFfEA2bBMRfFd15dSSzuhl8hAuE3SPVFA1yA9Gx4A1gOTInXBJXE4LocOisSekytBPC6HHbtgm3bwo/3eGSsoihJj8fTsakTROZq+OAxaKiC/D5OT4YEN22KhlhEwpnAo9baXwGrnG07rLX/Qxo85QAXxmd6SqLoTGlm34JKRUXeG+W0D16cORNGjJD1d9+NbB8trKQoKcH+/YFjjcMFLba2wCdLZH3WV6DPwNDjk41YRMIIwC3N7IZx5wBYa1uAB4Gvdn5qSiJxMxxKY9g3IwNyc73rPSbDwRhYtEjWIxUJZWVpalZRlPQikKsBwlsS1i+DmlLJYpi1MO7T6nJiEQnVeGMZqpEumUN9nq/EW9lXSVHcf2iQ30VYAsUlpHWtBBdXJGzY0P4Nh2Lr1q6bj6IocSFQpUUIX5L5w8WyHHdkcpZdDkcsIuELYAKAtbYVWI24IDDGGOAMIAKHrJLMDHGWsTR5gvC1EtJWJBx9NBQXy/p770W2z9atWjNBUZIYazs2dXJpDBH+X7YVNi+X9YPPiP+8uoNYRMJLwFeMMa6R5e/Al4wxXwCfI3EJ/4rT/JQE4brNKmLcP5xIaGmR7pBpR1YWnHqqrEfqcmhslEwHRVGSkqoqOWcFIlR2w0eOFaFoCIyJoBBrJFTkwAMRpFzGi4hEgjEm1+fP3+HNasBa+xfgSsTNsB+4Grg5vtNUuhs3JqEWqI9h/3AFlSCNrQlnOLcMq1YFLs8WiM2bu2w6iqJ0jmDxCK0GWoNcRZsb4NNnZH3Wws5lNFRlw3uD4O4pcOdMuCQLuquscaR1EnYZYx4E/m2t/RBY5/uktfYPwB/iPTklcfgG4G4Hxke5fyBLQmWl3DS7QY21tV7LfFoxd66keDQ0wAcfwJw54fcpK4OaGukDoShKUhFMJISyInz2iqQ9ZmTBjFNje92NfeDNobC1N95qRMAAC+sNjIztsFERqbuhEvge8L4x5hNjzA+MMSlQUFKJFV+R0NnSzL61EnpE8GJBAcxz2rpF6nIA2KItTxQlGQkatBjCOuB2eZx0vPRpiIb6TFgyGv47Cbb2AQzkt8BBe+H8tbChBeZGd8iYiUgkWGtHI7EG/wXGAbcDO4wxDxlj5jkBi0oaUYS3RXQs5X58RUJJCWQ6P6a0T4N0+cpXZPnRR2JRiIRt2yJrDqUoSrdRWxs8fiqYSNi9HnY4VYQO/krkr2WB1SXwtwNhheOmHV4N566Dyz+GBZthdFUn+inEQMSBi9baV6y1X0cC378LfAKcDTwHbDbGXGeM0bbSaYIBXPEbi0jIzZUaCSACoZ9zsB6R4QASvJidLWeXSK0Jzc3SHVJRlKQhmKsBghdS+ugJWfYfBQccFNnrNGTCo+Nh8TiozYacVjhlM1zwGYythMwENcWLOrvBWlttrb3LWnsEMBm4Fbnp/CXwuTHmZWPMeXGep5IAOlOaGdpXXnRdDr7uhrS2JBQXw8kny/qrr0a+nwYwKkpSURqiolwgS0JLI6x+QdZnLQrfwgWgOhvumwzrnRit8fvhOyvh4L3tQhESQqdaRVtr11lrfwoMB04FXkQyH+6Lw9yUBOOGEsTa0DhcGmRjY5pb17/5TVl++mnwJGt/KiokwlNRlKQgWDwCBA5c3PgeNNZKhcUpEQQO7MuTrIW9BZDhgQUb4ezPoagp9jnHk06JBB8OBU4DjnD+TpK3p3QGNw0ylv4NEF4kQJpbExYsgD59pFDS669Hvp9aExQlKaitlbb2wQjkblj9kixHHhw+YHFrIdw7Bapyxb1wzno4qDTx1gNfYhYJxpjBxpifGGPWAG8B3wY2Aj+gfZlmJUVxK4jG0r8BwpdmhjSPS8jN9dZMiMblsH17mlaaUpTUIpQVwQItflfQ5gb4/A1Zn3JS6GOv6wsPTIKGLChsgq9/BmOrOjPbriEqkWCMyTLGnGGMeRrYCtyEXEv+ChxsrZ1lrf2ztbYi/lNVupuuKM1cXi7xeS5pLRIAvvUtWW7cGHmPBo8HNm3qujkpihIR4eIRrN8t/4a3oakOTCZMClEe5YsieHycFGLqVw8XroEhSXoujLTi4oHGmNuQlPlHgfnA68D5wBBr7WXW2o+7bppKInDdDRF60zsQSCR4PO3VeVq7GwCOPBKGDZP1aAMYg9WBVRSlW4g2HmGN42oYfQgUFAXeb2shPDoOPBkwoE6yF/omsYM+UkvCJ8CPkAq9NwBjrbUnWWsftNaqXTRNcQMX9yOtPqPFVyT07++N8u0xtRJA3vS558r6smWRN3JqbtbukIqSQGprQ5c48c9saKqHz9+U9WCuhl0F8PAEaMmEvg1w3jooSPJ7gUhFwmPAKcAoa+011trN7hPGmAxjzAHGmJyumKCSOFyR0EpsjZ58RUJ2trcEc4+ouujLJZfIsrQUVq+OfL+NG6X9nKIo3U4oVwN0DFr8/E1Jf8zIgonHBTheHjw4UbpG9m6Syom9mzuOSzYirbh4trX2f9YGPGMNADYBR8d1ZkrCGeSzviOG/bOyRBy4BMpwqK/vAdfB8ePhwANlPRqXQ329FldSlAQRTiT4WxJcV8PYwyG/T/vn6jPhgYlQlw35zSIQipPYxeBLvFIgkyljQ4kT/X3WYxEJAL16edcDiQSPJ3SKUdpw/vmyfPvt6DIXNmzomvkoihKSUPEI0D4mobFGghYBJp/Ycey6YqjOhexWcTH0j7BSezIQL5GgpCE5SA8HiK00M7QXCcFaRtfUxHjwVOKii6Q+dV0dLF8e+X5VVR3zRhVF6VKqq8NreV93w/o3oLUJMnNg4rEdx+5yzoMHVCdvFkMwVCQoIXFLM++OcX/fzsdDneoZO/zMEtXVMR48lejfH445RtZffDG6fb/4Iv7zURQlKOGsCADNPiJhzcuyHHcE5Abo9u6KhCEpGKgdbZ2EAcaYw4wxY3021wP3EltHYSXJ6Wz/Bl9LwogRsiwvb289qErCAiJdghvA+PHH0cUa7NunpZoVpRsJF4/QnAEex8neUA1fvCPrgVwNrQb2FMh62ooEJ4Phb4jV+W1gvTHmTWPMAGttlbX2m9batV06UyUhuMGL8bAkuCIBpKigS4+wJACcfbY3MOP556Pbd926+M9HUZSARBOPsP4N8LRAVi5MOKbj2H35UjQJ0lgkAJcBlyDXiieAlcCRwN+7aF5KkuCWZo7VK+4rEnr1gpISWd+2zbu9pqYHZDiAxCS4NRNefjm6AMY9e6T5k6IoXUpVFTSFyTzwzWzY8JYsxxwGOQUdx+50rKmFTamR8uhPpCLhG8BnwGRr7VnW2pnAv4BTjTF9u2huShLglmaOtX9DZmb7ltHDh8vS15LQ2tpD6iUA/OAHkhtaXQ1vvhndvmpNUJQuJ5J4BFckeFph4/uyPvaIwGN94xFSMQ0wUpEwEbjHWutrGP4TkAlMiPuslKTBLagUa/8GaG9NcEWCryUBepDLYexYOM6ptPLcc9Htu3dv5C2nFUWJiXDxCODNbNi5BhqcmKqxhwcem8pBixC5SOhFx8DEnT7PKWmKb2nmWAkUvOhrSYAeJBLAG8C4fn30dRDUmqAoXYa1EVoSnCvnF+/Kst8o6Bug93GLgb1O5dl0FwkgnTED/Z2KFhQlQtzAxTog1iSEQJaEPXvau+R7TIYDwMKFcMABsh6tNWHfPkkPURQl7lRWtu9SGwzXkrDRyWoIZkXYWyCNnCD16iO4ZEUxdr4xZrDP3wWIUDjLGDPTb6y11t7W2ckpiWegz/pWYFoMxwiU4WCtZAGOHi1/9yhLQk6OBDDedJM0ffrmN9t/SOFYu1a6SyqKElcirVvWmAV1lbBjjfwdLh6hdyMUpmDQIkQnEs5zHv58J8A2C6hISAN8RcJ2YhMJvu6G4mL5u7ZW4hJckVBbKyWaM3pKea9vfxtuv13azL3yCpx2WuT7lpWJ47R///BjFUWJmEhEQnOG1D7Y9B5gJfXxgJmBx7qZDUNT1NUAkbsb5kT5OCGSgxpjCo0xdxhjdhlj6o0xHxhjojhbghFeMcZYY8wfo9lXCU8fpDwzxF4tq6DAe/E3JnCGg8fTA9pG+zJmDJzk9JN97rnoc0DXalkSRYknLS2RxQXXO64GNx5h5CzIzgs8NtWDFiFCS4K1dlkXvf5iYBbwU6ST5IXAYmPMqdbapREe49vApK6ZnmKQRk87ib1/gzEiFNwqi8OHS/ydf4ZDVRX07h37XFMKY6SfwzPPSJ3qjz6Cgw+OfP/9+8VfMzRAtJSiKFFTViY3K+FozALr8VZZDOZqaM6QQkqQ2iIhYcZdY8x84CTgW9baf1lrXwEuAN4Bbo3wGMOAm4EfdNlElU73b4DAcQk9OsMBxJIwY4asP/549PuvWRPZWU1RlLBEGo9Qnwl7NkCtEz8cTCTsLgDrhPWnatAiJLbB0yKgEnjK3WCttUgfiEnGmCkRHOOvwOvW2hjOsEqkuPeqnREJgdIgd+yQQkouPU4k9O4N3/iGrK9aFX16Y329Nn9SlDjh3502GA1ZXitC36FQMiLwONfV0LcBClo6P79EkUiRMA1YY631vxVa4fN8UIwx5yLxD5dG+oLGmIpQD7ydkRUfRjnLHaEGhSFQGmRLi6RCuvQ4kQCwaJHEJ0Bs1oQNG6Ir76woSgfq6yOPiarP9MYjjD1CPIeBSId4BEisSOgHBEr4Lvd5PiDGmP7A7cAvrLXbgo1T4oOTgMBuOhbLiBRfkTBwIGRny7pvXEJdXXvLQo9g+HA46yxZf++9jj6YcLS0aBCjonSSSF0NFqhugO2fyt/B6iOAioR4EeqaE+q5O5BAxzujejFr+4Z6IO4PxY+RznIv0BDjMXzdDZmZMGyYrPteE63tgdaE7Gw480wYPFg+gCeeiP4Y27ZpK2lF6QQR10fIhE0fSs+GjCwYGSTWuDEDSp2MBxUJsVNGYGuB0ycwoJUBY8xc4BwkI6KPMaavT5OpXOfvaOo/KGEY5SxrgT0hxoUiN9drPQBvXEKP7eHgy7hxcMYZsv7aa5HVhfXFWli9Ou7TUpSegLXRBS268QgjZkBukKYEu3vRVos4lYMWIbEiYTUw2RjjP4fpznJVkP2mIvN+DWkp4D4AvuusnxTXmfZwRvqsf96J4/haEwLVSoAeKhL69pXYhL59xX2wZEn0xygrg12xJqkqSs8l0lLM0DEeIRiuq6GkAfJS3IWaSJGwGOgLnOq3/RvAOmvtmiD7PUbgAk4Ajzvr78d7sj2ZgUCus76xE8cJlAa5bVv7OkI9UiQATJgApzo/heef9xaViIZVqyI/2ymKAkRuRQDYvgcqHS0+5rDg49IlHgESKxKWAq8C/zLGXGSMmWOMuQc4GviJO8gY85oxpu0yYq3dbq19zf/hPO0+px1w4ogBnBACNnfiOIEyHOrr2/cr6lGNnnwZNkxKM+fny4eyNNJaYj40NMBnn8V/boqSxkSa+giwxglYzC+CQeOCj9tVIEsVCZ3AqYmwEHgIuBF4DjgQOMNa+3Si5qUExk0F7kwqia+7Ydgwb6lm37iEhoYeejOcmQmTJ8Mpp8jfTz4ZW53qLVu0S6SiREhLC1RURD5+/SeyHDkLOjjK3WMa2O8ELQ5M8XgESHB2g7W2ylp7mbV2sLU2z1o7y1r7pN+Y4621QTJR240z1trLu2quPR03DTLKBL12+FoSsrNhkNOHWuMSHEaNktiE/HxxNzz5ZGzHWbFCKzEqSgREWooZoAXJbAAYFaKCenmet9Ji//pOTS8pSHQKpJIiOOV+Ym7yBO0tCaAZDh3o1UsyHdyOkEuWxJbaWF0tRZYURQlJNK6GDTu9pZhHzQ4+zu3XkNMKvdPAKqoiQYmIsc5yDxBrsG5mptwku2iGQwBGjYKFC8XsUl8Pjz0W23E+/zy24EdF6UFEIxJWOPl2hf2g36jg40qdc9yA+rYsyJRGRYISEW4aZBVS4CJWAvVwCNQNsscyaBD07w9f+Yr8vXQplJZGfxyPBz79NPoW1IrSQ6iuliqvkbLKCVoceXDwUswAZU48Qr80cDWAigQlQuJVKyFQhkNFRXvrQWVlD762GSPWhAULoLhYojgfeSS2Y5WXawMoRQlCNFYEjwfW+4iEUOzzsSSkAyoSlIgYArhlLDtz2QkkEqC9NaGlpYdbykeOlA/K7enw4ouwM8ZokHXrtGSzogRgTxTlYzdvhjrHwhkqHsGDBC4C9I+1hn2SoSJBiYhMvC2jN3XiOL17e9d79RLLOsiP0Jdo0pLSjuxsOOAAOPlk6YbV2goPPhjbsTwe+OijHtg5S1GC09wcXabwypWy7DMIiocFH7c/D1qdq6q6G5QexwHOcksnjtGnT/u/xzoRkf5W8R4tEkDaR+fkwFe/Kn+//jpsilGe1dRobwdF8WHfvuhcmp+skGW4eAS3qVOWB/qmSQd3FQlKxIxylp2plZCTA3l53r9dkeCfsdfjRUJ+PgwdCnPmSISntfCPf8QerLFlC+zeHd85KkqKEo2robUV1jgaO5SrAbyZDf3q0+fimi7vQ+kG3FoJOzp5nKIi7/o4p7Tp1q3Q1OTdXlWl9YAYN07yRi++WP5etQreeiv24336KTSmye2NosSItdEFLX7xBdQ7WRChiiiBVySkSzwCqEhQosAVCZ29H/V1ObiWhNZWudl18Xh6eCokyAc1YADMmgWHHirb7r479gt9UxN8+GEPTh1RFLFS+t6QhMONRygeDkWDQ4913Q3pUGnRRUWCEjFuGmQ50JnkA19LQnEx9Osn65/75Vb2eJcDeFXURRdBVpY4U594IvbjlZVpfILSo4nG1QBS5RzCpz5afCwJKhKUnsgon/XO1EqINHhx//5OvEi6MGCAfGBDh8Lpp8u2xx+Prr+tP5s2daxgpSg9hGhEQnMzrFkj6+FcDVU50Jwp6yoSlB7JMLxfmM50BujVS26KXdy4BA1eDIKros46C0pKxFZ6992dO+aKFVo/QelxNDRE58b8/HOvdy+cJcG1IhgLJWkU+qMiQYmYbMB1yW3s5LECxSX4By/W1kphpR7PsGGS7VBQAN/4hmx7800JZIwVjweWL4/OOasoKU60roZPnSqL/UZB7/6hx7rxCCUNkJlGYT8qEpSocNotsLmTxwmU4eAfvGitWhMAScweP17Wjz8eJkyQ9b//XeyhsVJfDx98oGkkSo8hWpHw3nuyHHtY+LHpGI8AKhKUKBnlLDvr0fa1JPgGL6rLIQgjRoglISMDvvMdWW7ZIvEJnaGszHu7pChpjMcTXa+03btho2MynTQn/Ph9aZj+CCoSlChxW0Z3pqAStLckgFZeDEtGhteaMH48nHaarD/yiPhpOsP27bB2beeOoShJTnl5dNXJ331XloXFMPzA0GPTNbMBVCQoUTLaWe7q5HF695brnosGL0aAa00AOP98GDxYgjbuuKPzvRk+/7xjAw1FSSOi7bj+zjuynHQsZGSGHlubBQ1OMLaKBKVHM8pZlgKdCXnLyGjfEdK1JGzZ0j6Wrr5eiwS24RubkJsLl10m6+vXwzPPdP74q1Zp6WYlbYlGJJSXe41rEyJwNbhWBKy6G5QejltQyUPnaiVA+7iEYMGLoPUS2jFihOSQAhx4oHSKBPjPfzp/gbdWKjJG0x5PUVKAlpborJLvvSc/h4JeMDJMvwbwioSiJshOszhgFQlKVBzgs76uk8fyr7xYUiLr6nIIga81AeDCCyXqs7ER7ryz8yWXPR54/3390JW0oqwsup+G62o48HDIzA4/3hUJA9LM1QAqEpQoyQUGOuudKagEHSsvutYEDV4Mw/DhXmtCr17w/e/L+ooV8NxznT9+c7NEbWmxJSVNiMbVUF3t7dcw7fgIj5+GPRtcVCQoUdMVtRJA20ZHjDHeWgkAhxwi9RMA/v3vjv6aWGhultupHt9lS0kHohEJ778vbs/cXDjg8AiP79MiOt1QkaBEzShn2cnEO7KzpZCgi2/baN8aQc3NUn1R8WHYsPYq67vfhUGDJOrzllviE+2pQkFJA5qbI/wKWwuNjbzzppR5PXh6I60t5eKrKC2Vfin79sG+vbIsK4OK/TTUVVGTI4cYUNfJLKMkJCv8EEVpj9syekccjlVUJBkM4LUktLRINp6v633/fq+FXUGsCVOmeJ2nBQVwxRXws5+Jyrr7bhEOnaWpSV7jiCM6+ocUJQVoZ0VwhAD19d5HY6N8z5ubqG/M4ONPZgEwe+QOWkvD14Uv7Z8HyG+j/+pNYA1kZUNuDuTlQ14e5OTIbzYFUZGgRI0rEnYjaZA5nThWnz7eoPySEnmUl0tcgq9IKCsTV7ziQ//+Yj1wa81OmiT1E+6/H5YuhZkz4fAI7aWhaGqCt98Wt4ZbGlNRkh1robqa0pW1sKlBzJH19SEjGD/cUERzawZZGR4mT69mB/lBx7rsK5IzYGFdC3nNTmpDS6t0k6p0TBjGiFjIz4deBSIeUkQ0qEhQosZNgywFqoAwfU9C4h+XMG6c+AT94xLKyjrxIunMlCmwd6/3xHfGGfDJJxJ59ac/yQfavzP/IQc3mPHgg6WIk6IkGx6PmBzLyuROY/9+aGmhdEU/b6WjEBTu28jGZwqA8Zzk+R9fv/Ub1PbpS12vIup6F1Pbpx+1fUqo7V1CTVF/qosHUtV3IHtnzQRgYEUIF5+1XstFebkUiinIlxzLwsL2bXGTjOSdmZK0uFUXW4D1dE4k+Fuwx44VkfC5XxEG9yYgP7yw71kUFsLIkd5qiZmZ8OMfww9/KGHat94K118fn5OQxyMNoQ48EA44IPx4RelKrJUMHDdWYP/+Ds3KGpoyqIlAIJRs/ZjpD/8//tckqVVf4XF6VZfSqzp8xONDx7wH9Oe0R+/la/c8SkW/oVT0H0pF/2HsHzic8oEHUF/Yt/1OHg/U1Mpj317IzZMytIWFEqyVRKhIUKJmDPLFaQFWAUd24lgFBfKbcAMV3aD9LVugrs5bhRjU5RCUiROl/4LbV7tfPxEJv/kNrF4t8Qnf/nZ8XstaaQjV0NA+w0JRuoOmJnGv7d0rwQZhWp2XVoV3hg757BUOevIanmz9MtX0IdN4GLbwUBb3n0h2YzUF1RUU1OynV1UZvarKKKwqp7BiHwW1lTRlZ/PpjBkAHP/K/5j4yWsBX6O+oA/lA0dQPmgkpUNGy2PwKEqHjKYpv1B+Tw0NInby8sTE2rswfD3obkBFghI1OUiGwwZgTRyOV1TkDS6aPFkscR6PlEWdNcs7TkVCEHJyxK3g26TpsMPgzDPhscfg6adhzBg48cT4vea6dWKpmDlTrBeK0lVUVUng0t69kg8dRVWkcCJh1PJHmfa/WzFY7sm+BJrhoLFVNE6fyUfj+4bcN6upkf259TTl5gJQPexQ3plXRN/SnRSV7aJ433by6yQmIb+uimGbVzNs8+oOx6ksGczeYePYN3QM+4aOY+/wcewZPoHGXn3EslBU1P5uqZtRkaDExCREJHS2NDNIsKIrEgoK5Hq2YYPcBPuKhGgbtPQoxo4V80u9T6L2+eeLG+KDD+Avf5GSzvG8+9+5E2pq4NBD1Q+kxJf9+2HXLnnU1cV8mGAiIbOpjikv/YlRHz0BwIbBR/H83rkAHD+9lLrc8MK3JSeX9eOktFzvuhbWHXkW6/zMqnm1lZTs2UrJ3m2U7N1Kv91b6L9rE/13b6KgpgKAovLdFJXvZvzKN9vtW9FvKLtHTGTPiAnsHjuNnTOOZP+E6dis7nVHqEhQYmIK8AywCWmT2pk4Xbccs8vUqSISVq1qv72uTuMSgpKRIR/cBx94t7nxCT/5CezYATfeCH/4Q8cPvDNUVcHrr8Ps2Zr5oHSOykr5nu7YIab3TlLXmEl9U8eLfcnWj5m55Hp6VUgS9+7xx/DH0f+i5YUM8nNaOWxCBRW5kV0ad/aTUotDygLPt6FXETvHTGfnmOkdniuoLqf/zo0M2LmRgTs2MGDnFwzcsYGickn36lu2k75lO5n0yave4+X3YveYaWQfdwj86Afd4vJTkaDEhNtefStQCxSGGBuO4mLJBnKtiFOnwlNPSfBiY6NUPnMpLZUbYiUAQ4bAwIFilnUpLISrr4Yrr5So6t/9TmIV4hkc5dZSmDJFzECKEin19RJPs2OHuK/iiL8VIaO5gUmv/Y0x7z2EwdKamc26477DF4efxyv3ScbOEZPKyc32RGRJANjliIShQURCKOp6l7B1YglbJ7bvIJVXW8XA7esZtG09g7etY9C2dQzeuo7cxjry6msZtfo9WP0efPOCqF8zFlQkKDExzVnWAhvxioZYyMqSwF63KtqUKbJsaZEuyNN9RHhZmYqEkEyfDq++2j7Ke8QIKbT0m99I3MIdd8D//Z9YH+KFteIfKi2VOIWczlTPUNKalhZxI2zb1qW5za5IyGhpYtiq5xn31r0U7t8OQMWQSXx82jXUDBjD7v25fLa9NwDHT5P51EcgEpoyTVuNhGCWhFho6NWHrRNntxMPxtNKvz1bGLL5M4ZsWcORDVvInDYtxFHih4oEJSYmIDW9PcCndE4kgFjAXZHQp49k9W3ZIi4HX5GgcQlhKCiQKlTr/Hp0HnoofO1rUmhp2TIx31x0Ufxff88eOf7BB8fXraGkNtbKj3fbNglCbO3a8sXWQvnuJsYuf5Qx7z9EXo2cODwZmaw/5mI2HHkBNlMuf6+tEjdZSe8mpo+Sk1AkImFPSS42Qxyt8RQJgbAZmZQOGUPpkDGsPGIBB58xmoK87olNUJGgxEQ+MBxxN8Qjw6GkxJvqD+Jy2LJFbk59qa/vmBqp+DFunJhw/RtenHmm3LktXQpPPilCYdGi+L9+Q4NUaJwwQQRLilSWU7qA6mr5Lm7fHpc4g7BYC198QcNzr3LcspfJbpKgR09GJjumzmPDkd+gZsCYdsOXrRSRcNzUMjIzoCE7g9aM8N9ZNx6hb3UTBU2eMKPjR3aLp1ubLqlIUGJmIiIS1oYbGAH+N53Tpsm1bO1aqaHg60IvK1OREJKMDDG/vPtu++3GSL2Eigq5iN99N/TtC3PmxH8O1oo1Y88ecT/07h3/11CSk6YmiTHYvr37WrhWVMBrr8HLL8OWLW3FlFuy89kyayGbDv0q9UUdK4V+vrMXO8pl9PHTxdoQaTzCzk7EI8SCsZZB+xsZVtZAdyYdq0hQYmYq8CLwRRyOle/0QXFvNqZOlWVTk/RxmDTJO1aDFyNgwAAYOlTSFH1xMx6qqsSXc8cdkoftm2saTyoqJPthwgSxcKhVIT3xeMSNsH17+zLhXUlZmQjht98Wk6NPHE7NgNFsOfDLbJt5Gs35wRuTua6GkQPqGDVQ0ofr8qINWoxDx9UwFNU2c8DeevK70WLhoiJBiZkZznIr0Ax01kNWUuK9phUXSzfkHTvkWuYrErSPQ4RMnSoV3Hz7boMEFV59Nfz85+LT+e1v4Ve/ah/8EU/cyli7d8OMGdpNMl1w4wx27JBARLfiZ1e+3rZtsHw5vPde++JhIG1ijzuOmiPn8Wr94WEFaUur4Y3VIhKOn17aNjySeISG7AzK+8Q/aNEfY2FqeTUDqhvxYPBkGzye7tXaKhKUmHFu9qkEtgDjOnk8X5EAco3bsUNuEs4807td4xIiJC9P/DYff9zxucJCuPZaaS29Zw/8+tfwy19KX4auwrUqjBolpaSTrEa9EiHl5fJD3blTcpS7kro6uUv44AP48EMRvb706iXVRY88si2rZsf2XrAz/FX0k019qKzLxmA5dmq59yUjEAm7+jl52dYyuDx+IsEYS0FuK73zW+iT18JRTeWM6VvfcWA3XrlVJCgx43NzzyfERyT4MnUqvPACrFkjwdC+1X9LS7XHUEQMHy53eW4/bl/69ZMCS1df3V4ozJjRcWy8sBY2bZILzOTJ6jdKFSoqvMKgPsBFK160tkre86efSjfTdes6ZkL07y/Fu444Qqxffs3LdlfkRfRSr6yQ1nTTRlYzoEh6QDRnGhqzw4cFuvEI/SubyG3pvGvFGEu/3s0MLWkgL0dcCgdWVTGypQs/6whRkaDETG9gCLALafR0ZujhYenTR37vrtXSTQOur5fryjgfFVJWpiIhYg48UD4wf7cDSOzCjTfCL34hQuL667teKIDcgX7yibg7pkzRdMlkpKrKKwz8M2W6gpoa+R5u2tR+e0aG+Btnz5bHyJFB7e31jRlU1YW/rFXWZvHu2mIATjjQm1ddE3U8QuesCMZYBvRpYkhJA7nZXrExtbqakV0pxqJARYLSKSYiIiEeGQ7GSLC9WwthwABvAcHVq9uLBK2XEAW5uXLH9dFHgZ8fMEAKLfkKhauv7rpgRl/274e33pJ/9OTJGq+QaGpqRBTs2CHr3UVLi1QDdQXCiBEiVGfMkO9uhL7F3ftzww9CrAgtngx65bZw9BSvq6E2P8JyzCWdFwl9CloYPai2nTgAmFhTw5hO9KuIN92ZbqmkIW5cwoY4HS+QywE61ktoaPAWX1IiYNgwGNwxBawN16IwZIiklFx/vVRu7C727pUiTB9+2D13rYqXmhox8b/2mvzP163rXoFgLfz1r7Bihfz94x/Dn/8Ml1wi8QZRBB9F4mqwFl74eAAAx08vIzfbJysiApFQm5tJVaHE0wyJIbPBGMuI/vVMGl7TQSAMa2hgQpJ9/1UkKJ3CDXPbjDR66iyhRILHL/snkJtdCcGBB4Yul9y/vwiFkSPFD3zbbfDEE92Tzuayc6dcqJYvFyuD0jVUVYkY8BUGce6dEDGLF8OLL8r6uefC8cfHdJjmFkNZdfhg2NVbe7fVRjh5lrfPiQVqI3A37OwvQiTDI3ULoiE/p5WpB9QwpKTjfvmtrUxPwjsfFQlKp3Crh5chbofO4jZ7aju+8wLV1ZL95MuePXF4wZ5Ebm747IV+/SQl0v3g77kH/vnPjgqtK7FWFOCbb4orYvfu7hUq6Yi1kpWwZg288opYbdavT5wwcHn3Xbj3Xlk/7jj46ldjPtTeylysDZ/V8L+PxIowcVhNW20EgPqc6CotDtzfSJYn8u9l/z5NTD2gmoLcwCWpZ1ZVkZ2E33ONSVA6xWSf9U+AoZ08nn+zpyFDRDjs3w8rV8pNrktFRccukUoYhgyRFETfGtj+uOmRt90mF+mnn5Z/wI9+1P0fdnm5PPLzxU99wAHaKzxSWlokZXD3bnHnNDUlekbt+fxzuPVWETCTJsEPftCpAgCRxCNU1WXx1loxV847aG+75yKNR3DTH6OJRxha0sDw/sHHj62tpX+y/X8c1JKgdIpiYICzviJOx/R1ORgj6c8g7mp/1JoQA1Onhg8QzMmBn/wETj1V/n7zTamp4J+n3l3U18ud78svy93nzp1d3iQoJamokIvv22/D//4n9QW2b08+gbBpkwjRxkYJWr366k51DvV4xJIQjldX9qOlNYP8nFaO8QlYBKjJD+9qsHgtCZEUUTLGMnJgXUiB0KelhUndGQMSJSoSlE4zwVnGo9ETdIxLmO10TF25smPtFhUJMZCRIV0aM8OcFDMy4FvfgosvlvUvvpCgslWrumeegbBWhMqHH8pFcPlyuQgGSu/sCVRXi1XI/TzeeEMqEZaVda+LKBq2bZMKn9XVUhL82mslrakTlFbl0NIa2gohAYsDAamw6NYjcKnJC29JKOuTQ50zbnhpaJFgjGXckDoG9Q0u0DKs5aDKyqS+EKu7Qek0U4G3gPVxOl7//u3/PugguUY1NUkA9CGHeJ/bt0/OhRnJ/CtLRgoLJbXsk09CjzMGTj9d/Dy33AKVlVJH4eKLYcGCxPZiaG0VU/ru3fIFKCmRL0///nLRSbc+ER6PfP7794sLpqws+SwE4di5U74/lZXiV7z+ein41Ul2lIXPavhsWyHbSsVVNe+g9haxlgwTUTnmTUMk06KwvoX+lSEu/sYyYVgNfQpCW7sm1tTQp6vLWXcSFQlKp3FD4TYBrdDpDmW5uWINd+MSCgslhX71arlx9BUJra1SM2HgwE6+aE9kxAj58LZvDz925kzxH//mN1IA6a67JCL+e99LjvrYHo+8F7eARlaWBGEWF4tg6Ns3tcpAezyShlhZKY+KClkmq3UgEvbsgf/3/0Tg9OolFT5Hjer0YVtbI0t9/J9jRRg3pIaxg9vXIYgkqwFg02D5ro/aXUcwCWqMZcKw2rACobClhbFJVA8hGCoSlE7jZjjsBXYC8Si0O3Bg+zoIs2eLSPjgAzEb+t4k7tmjIiFmpk+Xi08kUe6DB4s14Y47JEZh2TIxbV9xRfsOXMlAS4t8MXz9Ub16iVgoLJS72MJC2ZZIM5THI3Uhamq8j+pqeaSyIPDn88/hpptExOXnwzXXwNixcTn0norcsK6GmvpM3vpM/JgnH9QxriaS+ggeA1sGiSVi1K7AF3djLOOH1NKnILx1YFp1dVChkUyoSFA6jW+Gw8fERyQMGAAbfCo0HXKIZEqVlooLdvRo73N79nRdA8O0JytLPtw33ojMr5+XJwGNU6fCv/8tH/7Pfib57WeeGT7OIZHU1nYs1GSMvKf8fHkUFMjfOTli0srJkUdWVuTvzeMRkdLaKu6ApiYJpmlqkipg9fXeR0PkEfIpiccDTz0F998vn0lurrgb4igqd5SHtyK8+MkAmlqcgMWpHdvIRhK0uKskj8YcGTd6d0eRYIxlzKA6+haGFwiDGxoYkCKuIhUJSqcZAPQFKpAMh9PicMySkvZ9HEaM8JZo/uCD9iKhvl6sDlrRN0Z69ZJAxvfei6wegTESjzBtGvz+9+J+eOABiW/44Q8lzTJVsNZ7wY6EzEx5+Fof3M/MFQdJmOueECoq4I9/9JYDHz5cBKbvj7eTNLcY9laEzmpo9cCzHwwC4KQZ+yjI7WihiSRo0XU1FFc1UVTXUQiMGlhPvz7hhXaGtUxN4mwGfzTcS+k0BunhAPBZnI6ZkSEu5bbXMN4shw8+6Dhesxw6yYAB0d/djRwpIuHLX5a/V6+WXPfFi9M3PdG1DjQ0eB+NjfJoblaB4PL++1JXwxUIc+fCH/4QV4EAUhvBE6aA0nvritlbmYvBsuCQjieK+pwMWjPDG/43OyIhkBVheP/6tk6S4RhbV0dBCv0+VCQoccGNS1iHBC/GA/84A1ckrFvXsW+DlmiOA+PGSY+HaMjNlRr711wjWQVNTXD33XLH6N/NT0l/du6UgMQbbpAsjIIC+S784AfixokzkWQ1LHlfepYcMr6CoQHKIUdiRWjONGwbKK/lLxIGFDUFPG4g8lpbGZ9CVgRQkaDEicOd5eeI2yEe+IuE6dPFPezxwMcft3/Orb6odJIZMyR3PVoOPhjuvBPmz5e/N2yQmgr33hu5KV9JXRoa4D//gcsu85r6Zs4Ud8Mxx3TJSzY2Z1BaHboA04ZdBazZ1huAUw8NbG6MJB5h+4A8WjMzwFpG+oiEPgXNjBoYeYbClJqaTmd/dTcqEpS44IqEKiBepXYKCsRd7uLbemD58o7j1eUQBzIz4dBDYyt9XFAA3/2u9H4YNkxM848/LmmSr7ySXtH6itDcDM8/D9//PjzyiMRkDBgAP/85XHdd6M6jnWRnWfheDU87VoSRA+o4cFTg5kmRlGPeNFhORIP3N1LQJN/j/JxWxg2pjbgcR3FzM8NSMFBVRYISFyYDbrb8O3E87oAB7f92XQ4ffdTR7b1zZxxfuCeTlyctemOtKzB1Ktx+uzTrycmRvPg//hF++lPxFSmpT0uLdG783vfgL3+RtKPsbDjnHPn7iCO6vJiV28kxGPtrsnljtaQ9nnronoDTac2A+pzw9/Zt8QhO6mN2locJw2rJisIsMDnRzbRiREWCEhcy8cYlBGixEDP+Lge3kFJNTcfrTWmpuhziRu/e8mHHWkMgJwfOOw/++levuXn9evFP/+53sHVr/OaqdB+NjVL++fvfhz/9SdKNMjLgxBPhz3+G88/vliZgdY2Z7K8JLWKf+3AgLZ4Meuc3c9y00oBjavOyCNc4siE7g10l8p5G7a5rq4WQmx25ZWxgYyP9UrR0uKZAKnHjUOB9YDXxqbwIEguXkeG1VA8YIEH1W7aIy2HKFO9Ya2HHDhgzJg4vrEh6ycyZ3gj1WBgwQITB/PlSpXHTJmk+9M47cOyxUl9haGd7hypdTlkZPPecPNw74owMae98zjnd/j/cWRZaiDS1GJ77SO4wvjRrH7nZgbNOaiKotLhlUD42w5DRahmxt55RA+sozI8uPHtyigUr+qIiQYkbxwB3Al8AZUA8iiBmZkrNhFKfG4HZs0UkfPABXHBB+/EqEuLMsGESlLamk+27pk6VFLg334QHHxTf0LJlUsRpzhxYtEjaQCvJg7WS1vq//8n/zfXvZWWJdeiss+LSdyEWtpeFdjW8sboflbXZZGZ4mH9w8GClqoII4hGGSDzC8NJ6RvRuYEBRdBaBoQ0NSd+fIRQqEpS4caSzbALeA06N03EHDmwvEg45ROLhtmwRUeCbtVdRIUX1fAMelU4ydqykNvqWwIyFzEy58zz6aHj1VXjoITFXv/yyPGbPFrEwbVr6NWdKJcrLJdD0pZfaB/oUFcEpp8ijuDhh0yutyqG6Pvily2PhyfckYPGoyfuDFjjymMjKMW8aLIJkYlkNBwyILlPHWJvUbaAjQUWCEjeGAf2BUuBd4icS/IMXJ00SN0RpKbz+ulisfdm+HSZORIknkyeLz2fjxs4fKzMTTjpJBMPLL8OTT8rF6IMP5DFunFR0PProbvFvK4iyfvddsRh8/HH7TJQJE+Dkk+X/lRM65bA72LQntBVh+ed92bJXAg0XHr4r6Lia/Cw8GaHFaFV+FmVF8h08vrU0au16QH09vVKocFIgVCQoccMAs4AXkB4O8aJPHwm4d7OHMjLE2rl4sYiEr361/Y3njh0qErqEqVPF5LxlS3yOl50NX/qSVON7/335h65dKxaL22+Hf/4Tjj8e5s2Le6U+BREGH3wgwuDDD7010EECV+fMkf/NyJGJm6MfdY2Z7AlRhtlaePRNiY+YNbaCcUOC1zCIxNWw2bEi5LW0MrmhNszo9mRYywT/XiEpiIoEJa4cjoiEVcQveBHE5eAbEH/ssXJN2bFDbm59G8rV1orboW/fOL244uXAA+Uuc9u2+B0zM1NS5o44QmIfnn1WAhtra2X92Wdh/Hj5px99dPt63Up07NkjEb/vvQerVrXPI87JEZfPsceKTy8JW2tv2pMfsjbCis19WL+zEICzjgqdE13ZK/zlb8Mw8VtOr64iK8qS26Pr6shLg9ogCRUJxphC4EbgLKRH0Grg19baJWH2+xbSR2gGEh+3HXgOuN5a27EPqNJtuLXVtjuPeN2DDB3aXiSMGSMxU9u3S/ybf9fZ7dtVJHQZM2bILdv27fE/9pQp8qisFL/4Cy+IEvz8c3n8+99i0Tj2WKnlkEDfeErQ2CjBhx9/LA24/K1A2dlw0EFimou1iFY30dJq2LYv9PwecawIU0ZUMfWA4LEALRmGutzQl7+WDMNGRyQcWlER1VyzrGVcGlgRIPGWhMWIhfqnwCbgQmCxMeZUa+3SEPtdB7wK/BzYAUwBrgFOM8bMtNZWdOWkleAcgrgdLPA28RMJ/fvLjY7bXdUYuU7897/icrjggvadfHfulGuJxr91AcZIamRGRtfVOygqkiDGhQvlIrdsmaROVlfLHfCqVVK0Z9w4ufs95BBRirHWdUgXmpqkHsXq1fIZrV7d3o0A4r875BARBTNnJrUw8GXbvjyaW4P/f9duL2TlFmkFe/bRwWMRQFwN4eoj7D0gh4bsTIy1UYuE0XV15KRJs6+EiQRjzHzgJOAMa+1iZ9urwBjgViCUSDjIWrvX5+9lxpg1wGvA14E/dcmklbAUAaOBjUjlxXNDD48YY6QDse+NkCsSysvFSj19uve5xkYJbPQPelTihDFiUcjOhi++6NrXmTZNHt/5jtwNv/GGBNnV10v8woYNkilRVCTK0B1/wAHpLxrKysTCsn69/AjWr+8oCjIyREwddJA8Jk5sr6hThE17CkI+71oRxg2p5aAxlSHHVoVxNWRnedg+zslqqKmhOIpCSFnWMjZNrAiQWEvCIqASeMrdYK21xph7gbuMMVOstQGTs/0EgotbzT8xibtKG7MRkfBJnI87dGh7kTB0qLiqP/9crAm+IgHEGq4ioYuZMkXy5ruj3HJWllgNZs+WngFr1ngzInbsEBfF22/LAyT4buJEuUCOHy/LVHVPeDzS6nTzZvkRbNwoX/zy8sDjR4wQwTRzpsSRFBZ252zjzt6KHGobg1+uNu4u4IMNfQE486idYS2IlSGCFo2xjB1Sy+0lUnDl8P37o5rrmNpastPEigCJFQnTgDXWWv/IjhW+z0dxvBOcZbz6CykxchTwCPLPi2fwYr9+khHnW3r52GPlXPnWW9Kx2DfWavduictKwZum1GLCBPngV3XjTy87WywZM2bAxReLf2nFCli5Ukzs5eXimnBFhEtJiVgYRoyQoJYRI8REVVyceKuDtTLnPXvk/biPHTskUDRYzfHsbAnSmThRhMGUKbF18kxiNu4ObUV47O0hAIzoX8fhE0Nf1BuzDI0h+jUcMKCenf3zKHfSPaMRCdkeD2PqIu8KmQokUiT0A9YH2F7u83xEGGNKgDuQTsWPhBhXEeZQ6fXLShBHOcsyRChMDzE2GlyXw+bN3m3HHCOxbDU1Ept16KHe51paxJqQRBlc6cvo0RI08sknien2OHSoPL70JbnY7tolomXDBlGRmzeLYiwvl8cnn7TfPytLAl8GDJBH375yoe3bVx6FheK7dx95eaFFhbXyeg0N4hapr4e6OsnYqKxs/ygtlce+fd6gm2Dk5MgXetQosYxMmCCiJwkzEeJFTX0m+6qCpz1uL8vjrTXSyOnMo3YRpvQBVQXBP6t+vZsY1LeJ54ulXuwBdXUMjaIhzJi6urSyIkDiAxdDfZoRfdLGmALgSaAEONZaqy1+EsyBQA5SefE14icSQK4DviKhpESsqZ9+Ki4HX5EA0ipARUI3MWyYXECXLw9/setKjPGKhnnzZFtTk9dMv3273Jlv3y4VH0EU5e7d8oiUjAwxU2VmegVDS4uIg84W0OndWxTxsGGyHDFChNigQT3ONOamNAbjv8uGYTEM7tvAsVPLwh4vWDxCQW4rowaJFeBdxy3V060IkFiRUEZga0GJswzibPNijMkHlgAHASdba1eEGm+t7RvmeBWoNaHTZANTkYJK7wE/iOOxS0oCuxw+/VRSv+vr2wdrV1dLbJem1ncTJSVSy+C99+SuOVnIyZG4hPHj229vaBChsG+fLPfulbt63zv9iorA1hGPRx7RdPfLypLsgqIi76NfP68Vw1326dOpt5suVNVlsaMsL+jzX+wq4M018uM+97gdZEbgMQpURCkzw8P4obVkZsD2vDx2OCeRw6LIahhbVxd1LYVUIJEiYTXwFWNMhl9cgnvjGdLBaYzJQ4IejwDmW2vf7pppKrFwGCISVgItxO+L5t4kbtrk3XbEEdKRuLFRrk3HH99+n82bVSR0K716iVBYvjx4YF2ykJcn5vpQzaU8nvZuA/fR2uoVCq7lIDNThIC7zM0V1VpQIMucHM3LjYI1W0NbEe57VeLURw6oi8iKUJebQXNWRyUxdnBdW+tn14rQv7Ex4loH2R4Po9PQigCJFQmLgYuREv9P+Wz/BrAuWGYDgDEmF3ExHAOcaq1d1oXzVGLgaOBvSJDIPmBIHI/tLxIKCyXg/d134cUXO4qE3bvlHJ8X/IZEiTc5OaLeVq2KXxnnRJGRIRf5gtDBc0p8Ka3KCRmLsHJzbz7e2BeAr83ZHqEVoWM8wtCSBvoWetNGXZFwWEUFkcq5dLUiACQynHcpUhDpX8aYi4wxc4wx9yDXl5+4g4wxrxlj/D/9x4CTgZuBGmPM4T4Pv9p7SiI43FnWIy6HeFJS0vGCf/LJsly5smN9H4+n62r+KCHIyJCAkRkzEp85oKQcn20LbkWwFu57dQQAk4ZXc+j4ioiO6V+KuU9BM8P6NbT9XZadzXonXTTSeIScNLYiQAJFgrXWAguBh5DSzM8hMW9nWGufDrP7l53lr5CaPb6PX3bFfJXoGIPUywZ4uQuOP8TPNHHQQd5tSwOU4dqyRU4sSgI44AA46qiUqeynJJ6dZblU1AbPQnj/876s2yEX82/M2R6RB8e/NXRutoexg2vb7fueY0UobGlhanV1RHMdW1ubtlYESKwlAWttlbX2MmvtYGttnrV2lrX2Sb8xx1u/jh7WWhPicWF3vgclMAY4zll/B4gitCsihg5t/3dGhrS5B3j1Vck286WhQbLilATRt69EmGp1KyUM1kqJ5WC0euB+JxZh1tgKpo2M7GJenZ9Fq5MfmWEs44bUku3ncHdFwiEVFRFd+HPT3IoACRYJSnrjXLNZiTTYiCclJR2LyJ10krjC6+vhtdc67uObOqkkgJwcaco0ebK6H5SgbNmbH7K64uur+rF1n8SHfH1O5E3G9vf2WiZGDaqjV177NNWazExW9O4NwGERuhrG1tbGrVhcsqK/VKXLcH1CTcBLXXB8//oHhYVwnGO+ePbZju6FsjJJiVQSiDFSBOiooyQLQlF8aGk1IesiNDYbHlgmVoSjp5QxdnDkd/H7C0UkDCxqpH+fjrbNN0pKaM3IIK+1lVmVoXs/gFgRRqW5FQFUJChdyABgkrPeFXEJI0Z0vCGdP1+W27YFrhK8cWMXTESJHtf9MFxbrShe1u/oRWNz8MvS4neGsLcyl6wMD187PnIrQnV+Js1ZGRTmtXDAgPqAY17t3x+AI8vLyYugaui4HmBFABUJShdzorN8D4h3Kczs7I6xCWPHwiRHmQQKYNy+XdwRShKQlSURp7NnSz0BpUdTXZfJxhCdHvdV5rT1aDjtsN0MLYn8jLK/MJvsLA/jhtYG9HTtyMtjreNqOKG0NOzx8lpbe4QVAVQkKF3Mac5yE/BZFxw/UMll15rw7rviYvDF45Fy/koSMWSIFLcYNizRM1ESyKqtffCLUW/H3S+PoKklk+LCJs4+emdUx67ok834IbXkZAUORnzVqbY2oLGRaRH4JMfV1vaYi2dPeZ9KgjgOcBPfAtzYd5qSEilz78tRR0m129ZW+N//Ou6zdatkOyhJRE4OzJoFhxyiVoUeyM6yXEqrcoI+v3Jz77byyxeesI2C3MibiNXlZjBkWCOF+YH7aXjwuhrmlJaGvSjmt7YysgeZI1UkKF1KLuD2XHqti17D35qQnQ1z58r6Cy90LK2v1oQkZvBgmDMndJlkJa1obYU123oHf94Dd70gP/JJw6s5bnr48su+5I9sZUBR8IZjq3v3Zp8jTI/3Nz0GYEIPsiKAigSlG3CKIfIB0BVevOHDOzbGO+UUCWosL4dXXum4z5Ytak1IWrKzpUrjEUdoKeQewOe7CqlvCh4C+L+PBrJlbwEGy7fnbQ3bCtqXfr2bKBwduiPnK44VYWJNDcPDnBR6tbQwogdZEUBFgtINLHSW+4E3u+D4gQIYBwyQG1KARx+VDr6+eDzwxRddMBklfvTvL7EKY8ZoU6Q0pbYhky92BReCVXVZ/Oc1yYA5aeY+xg+NvLNofk4rkydWU5sTvOZCQ0YGb5dI4+E5EQQsTqytjbifQ7qgIkHpciYBg5z157roNQIFMJ51llgT9u4Nbk1ojHfKhRJfMjNh6lQ45hhJm1TSihWb++AJFaz40ghqGrIoyG2JqnBSdqaHQydUUFYYPM4B4J3iYuozM8nyeDgmjKuhT0sLw3qg+VFFgtLlGMC5qWcZEigUb4qLoU+f9tuGDvUWVwpkTWhtVWtCylBUJO2np02T1Ekl5dmyNz9ksOJHXxTx8gop4/31Odvp26sl6FhfsjIth0/cT5+CFnaFaf3qBiweWlFB79bQbomJNTURvX66oSJB6Rbc6ourgG1d9BpjxnTcdvbZYk3Ysyd4qWa1JqQIxsDo0eJH8vcvKSlFfWNGyGDFusYM/vzsKACmjKjilIP3RnTczAzLYRP207ewhfqMDCqygzeJKs3O5lPnziJcbYTi5mYG99AThYoEpVs4BbEoNNM1qZAgafb+jQaHDRNLNcAjj4j1wJfWVli7tosmpHQNeXlw8MFw5JEdzUdKSvDppj60tAZ3M9z36gj2VeWSk+XhB1/eHFGwYoaxHDK+gpLeks60O0wq7Wv9+2ONoai5OWwZ5kk91IoAKhKUbqIEmOasv0TXuBwyMqQtgD/nnCM3obt3B7YmbNsGEZRqV5KNfv2ktPOMGVJnQUkJtu7LZ19V8Av46q2FLP1AopjOPXY7w/qFjwPIMJbZ4yrapTruCNGavBV4fqA0sz+2rCxkx8f+TU30bwqeQpnuqEhQug2ndAHvAOHjiGPjgAPkRtOX4cNDWxOsDdznQUkBjJF/+gkniEL0z4VVkoqGpgzWbA3dwOnOZ0YDMG5ILQsP3x32mMZYZo2tZFCx90JenZnJ/hCuhveLi9nrWBoW7NkT8vhTenhXOBUJSrfxdWe5C3ixi14jIyNwbIJrTdi1C15/vePz5eWwI979rJXuIztbWlCfcIKIBk2ZTEo+3dSH5tbgl52H3hjGjvJ8MjM8/ODLG8kMc4UyxnLQmCqG+PVx2BrCigDw9CCxVMyuqGBoiFiD4fX1FPlHPPcwVCQo3cYMwL1+Pw4EN/B1jlGjOlqfR4yQ4HiA//wncLDimjUdrQxKipGXJ+6H44+XnhBK0rCzLJe9laHdDIvfkf/ZmUfuYvSg0EWLjLHMHF3VwR3hAbaHEAkbCwpY5cSynLY7uKUi01om9+BYBBcVCUq3YYCvOOuvAaGNfLGTmRnYmnD++ZI9t28fPP54x+cbGrRcc9pQWCjdJY87Tko9KwklXOnl6vpMbn1yLB5rGD2oNqIGTgeOqmZ4/47xCrtzc2kK1OrRwbUiHFBXx4yqqqDjxtTVRdQyOt1RkaB0Kxc7y/3AU134OqNGiQXal6FDYdEiWX/8cQlk9GfDBm0lnVb06SNNo1QsJJQNu3oFLb1sLfzpmdGUVuWSm93KT874guwg3Rpdpo+s4oABgX+ooVwN+7OyWOZ0fDx1z56g1RNzPR7G1UZe3TGdUZGgdCsTgQOd9SfoOpdDdrYIBX/OPFOC4pub4d//7vi8x6NBjGmJr1gYNkxjFrqRusZMNuzqFfT55z8awLvrpDTyd07ewvAw2QwHjqpiVBBXRF1mZluzpkD8b+BAWjIy6N3SErKZ08SampAZDz0JFQlKt3OOs3wT6MpYwTFjOhbny8+Hb35T1t99Fz7+uON+u3drEGPa0qePtKQ+4QQpzKTZEF3O6q2FQUsvb9mbz79elJrqx04t48QZofOeZoyuYuTA4Ka+bSEqLDYbw1In7XHe3r3kBnEl9G5p4QA1J7ahIkHpdi5Cvnh1wCNd+Do5OTB+fMftxxwj7QAA/vGPjuWaAVau1C6RaU1BgZR4PukkmDSpY96sEhf2Veawe3/gz7ax2XDL4rE0tWQwqG8D3ztlc1ADjwQpVgZ1MYBYJUO5Gt4sKaEiJ4cMa0OmPU6pru5xTZxCoSJB6XYGA0c4613pcgCxJvTys3QaA5dcIumS27fDM8903K+5GT79tAsnpiQHrpI88USxMGgTqbjh8cCqLYGDFa2Fvz03iq37CsjM8HDloi/olRc4tchNcxwxILRq35eTQ0MQy5AFljgxKUeVl9O/uTnguEGNjQzswYWTAqEiQUkI5zvL94Gu7LGUkQFTpnTcPno0fOlLsv7ggxDIPbl3r3SKVHoAGRneGt5HHy05s+qK6BSb9hRQ0xC4GdeS9we1NW/62vHbmTgscJBghrEcPLYyoqqLW0JYEVb07s0Xzt3CqUHSHjOtZVoPL5wUCBUJSkL4GpCL9HK4r4tfa/BgcJq9teP888VFXV8Pd9whdzf+rFkDdXVdPEEluSguhpkzYe5c8UsVBq8QqASmqi6LtdsDf24fb+zD3S8dAMAxU8o444jAF+2sTMuhEyo6FEoKRGNGBnuCBCxa4IHhwwGYUlXFpCBZC+NqaynQQikdUJGgJITewAnO+hIkPqErmTatY0B7797w/e/L+scfw9IAnadaWuQ5DXTugWRni79qzhw46iip5KhtqsPi8Uib50DBijvLc7nliXF4rGHs4Fp+eOqmgHEI2ZkeDp+4v10vhlBsKijABglo+LCoiLW9xe3xtSARyb1aWjTlMQgqEpSE4SQZsAJxO3QlvXvDyJEdtx95pFwDAO6+W2IU/Ckvh88/79r5KUlOSYlUcpw3Dw46SExTmkYZkDXbelNd31FM1TVm8JtHJlDTkEXfXk1cfdbn5GZ3zDDIy27lqMnlFBcGjhvwp8UYNgdxNVjgP44VYWZlZVB3wvTqar0YBkE/FyVhnA70QX7I/0I6s3UlkyZ1LLAEEsQ4cCA0NcEf/hA422HdusDFl5QeRmamdAw74gjJjJgyRdtV+7C3IodNewo6bG/1wK1PjmVbaT5ZGR5+duaGgFaCwrwWjpqyn94FkZ8NNhUU0BykwuI7xcVsdGIRvhboDgAY2tDAAA1WDIqKBCVh5OANYHyarg1gBG8PIH969YLLL5cbww0b4OGHA+//8cegpdyVNvLyYOxYKdA0Zw5MmNCjBUNjcwafbCrqsN1a+Otzo1j+eTEA3z1lM1NGdPwh9evdxNFTyinIjVwgtCK9GII998Cw/9/em4dXUZ6N/587GwkJJCRh30UUBVREKy5tUV+12lKptu6tWn/WLtpN22qtFa0v1lq7qG3fam2xLrU/61LX4opawRURBRRFWYMEErJwsuc83z/umZzJyZyThCwnCffnup5rZp55zpzJkzkz99zrWAA+tXMn+4SYEzKcY7o5KybFhAQjpfwEyAAqgT/3wvdNnAjDh7ftnzED5s/X9fvvh/feazumqQlee03DIw2jFXl5sO++KjAcc4xqGAoL21YaG8Cs+Ggo9Y1tHyl3PT+Op97SJEanHF7C8bPaJkwaV1TLnH13tpuOOZ6NOTkJ6zS8VFTEJk+AODuBFmHfXbusPkM7mJBgpJSJwIne+n1A8nxr3cNBB4WbHc45R1M5R6Nw441QUdF2TCRijoxGO+TmqobhyCPhhBPgxBNVeDj0UI2W2GsvrVBZUABJUgj3Jz4oyQ2t8PjQK6P419IxABx3UCnnHtP2Yb3PmF3MmlJFkppMoUSBD+OToHg0ifAPT4twVFkZk0MyKBY1NLCXhS61i7nqGinnp6i5oQS4E7i0h78vOxtmzoTly1v3Z2bCpZfCj36klSKvvx6uu66tQLFtm/ooTJvWwydqDAwyMtQMkcgUEY1qes+6Oo3HravTWuZ+X329tj6qwtpSlh0a7vjs28UtoY5z9i3n2ye1zqiYJo4DJrWfJCkRm3NyEiZPeq64mK3Z2aQ5x1khEQ0ZznFQkgqQRgwTEoyUMwfNwLgM+CvwHaCnk+SOHauOiCVxFWknToQf/EAFhDVr4E9/gksuaevI/sEHKmyEFZEyjE6RlqZpohPY1luIRmMCQ12detrW18eWtbWa1KMX84mXV2ey4qO2ws+y94Zxy2OTAa3YeNmX1pEe0BRkZzZzyNTKDkcwxOOADxPMVyQ9vcUXYe6OHYwLmY/9q6stJ0IHMSHB6BP8CDgFWI2WkD49+fBu4YADNLwx/h5y+OFqerj7bnjmGRUcTj657effeUe1DN79yDB6lrQ0rVCWJLMgoMJETY3axiIR9bb1W337iYk6Sk19Oq9/UNAmH8JLqwq56eEpLbkQrjxtLVkBX4NheY0cOrUiNPyxo5RkZxNJkLPi7nHj2JmVRXZzM2eHaBGG19cz0Qo4dRgTEow+wXxgKvABcCtwKj1/cWZmqn/CK6+03feVr2hK5pde0vwJ48drav943npLo+K8tPCGkXrS0tSRMixTZGNjTHAILiOR8NjfBDQ2Ca++X0BDU2tHgmdWFHPr45OJOmHyyAgLznyfwYNiwsCE4bXMnNh5/4MgDvgggS/CB7m5LZUez9yypU1oY2Y0amaGTmJCgtEnEOD7qKlhKfAccHwvfO/w4VrfJz5Zkgh897uwdauGRd54o5og4s0LzsGbb8Jhh4WnfjaMPkVmpjpMhhWyqqtrrX3w1yMR1U54RKPwxocFbeoyPP7GCP78n0kA7DN2FwvOeJ+8HFXpp6c5ZkysTlrFsaOsz8mhOkSL0Az8YdIknAiTamqYF1LpcUZ1tUUzdBJx5qbdgohU5Ofn51eEubUbPU4jMA4oBb4A3E/P+yb4vP56eLKksjJ1Ziwvh/x8WLhQtQrxpKfDnDka9WYYA47aWohEiFZHeO2VKNu3NkKd5x8RjfLgslEseladFKdPqOKq09e2aBDysps4ZO+KTiVISkSDCM8VF4cmT3p05Ehu99Kq/mr1aqbFJTUZW1fHwZWVXT6HPsHnPhceorUbFBQUUFlZWemcKwjbbyGQRp8hE7jIW/8P8HQvfvesWeHO50VFcPXVmta5shJ+9jMIS//e3Kxmi9LSnj9Xw+h1cnKIFhbz2raJbM+bDFP3gZkzaZ51CLcvn90iIMzar44F397O4GHZkJ7O+OJaPjO9rFsEBIA1Q4aECghlmZkt6ZdPKC1tIyAMaWriwIEiIPQypkkIYJqE1LML2AvYDhwGPAP0Vg2+2lp48UV1Fo9n3ToVECIRFRwWLtRQ93hE1M/Bu18ZxoAgGlVtW1AIrqlRM9ybb+r2nDkaPpyZqVGfM2fCuBENOtB3pAwu6+o6lXCkMiODlwoLQws53TBlCi8XFZHf2MgfV65kSCByIcM5Pl1WRt5AimboRU2CCQkBTEjoG/wBuNhb/z3w3V787vJyWLaslQm2hQ8+gKuu0vvb8OHqo+D5SLVh//01n45h9HeiUXjjDc0P4rNtm+YQ2bBBt085Bb72NfWZLC5WQbm9IIw2URh+84WKuGfTfwsL2RnyYFw2bBjXT50KwA/WrePosrJW+2dXVDCmG6M6+gQmJKQGExL6Bs3AbOBtYCzwBtCbwQObNsGKFeH71qyBBQtU61BcrKaIsOqSoELC/vv31FkaRs9TU6NJx3bujPWtWaOatMpK9cX51re0OGZ6uiYY22uvbvjiOAFiU309K0C1D4GkUtuysvj+jBlEMjI4sLKSa99/n6CeYa9IhOkDseCKCQmpwYSEvsMS4Fg09ep30LDI3mTDBli5MnzfqlVwzTV6vxo8GC6/XN+cwhg5Uv0duun3bBi9RkmJ/gb8Z3I0Cg89pPlDmps1wvKKK9SsMGyY/gbCoi67ShMa7dSiC2hqgro6GuvquGLoUNZmZZHf2MjvV62iMGArLGxo4PCdOwem450JCanBhIS+xWlohEMOGhZ5UC9///r1mjApjHXr4Be/UPNEejp85ztaOTiMwYM1bf8eXCDQ6Ec0N8O778LGjbG+ykr47W9jqcwnTFABYdIkrayaSJvWHbwNbAzpvwNNvCbAAmCWcy2prAfX1HDUjh0MqqrScM5O5IDoF5iQkBpMSOhblADTgGo0Z8IjQG+Xw0kmKOzYAddeq2MATj8dzjqrbQpnUFvtAQeEh08aRl+hvBzefrt1SfR33oGbbtJ9oKaFCy9Us8L06T1bo6oEeDOk/zXgOm/9NOCcwL4s4CigVbql2lqortY/rLo61vqr8GBCQmowIaHv8Qvg59767cD/l4Jz+PhjfbMKo6YGbrhBMy+Cagy+973EWoPx47UsdYKMsoaREurrYfVqCFZUrquDe+6BRx5RH8KcHNWYnXSSXsNhJde7kxrgRTR/SpDtaOK1amB/4H8Bv8xTOloHZlhHv8QXHqqqWgsPfT3hkgkJqcGEhL5HE6pNWAeMABbT+2YHUGfGlSvD7x1NTfDnP8PixbpdVKQJmGbMCD9WTo5qFRJFRhhGb+Gc+t+8917rIpNvvw233hqLaJgyBa68Eo4+Wk0LYdqy7iSKmhh3xvXXA1cCa4GhaPRTkbdPgEOBkV39cudU+vcFB38ZifSdGvEmJKQGExL6Ji8DxwAN9H7uhCBlZRoKFpZHAeD557VqZF2dmhfOOENrQCSoZsv48aquNadGIxWUlmqkQrCUwa5dWqvkaS+TWUYGnHkm/PCHvXutrkZfDII0AQvRaCdBNYyzA/sPBCb05ElFo62FhqoqbakIrzQhITWYkNB3uQ64ylv/Nhrt0MMvM6FEIvDaa61ttkG2bNEEMx99pNv77w8XX5w4uVJ2tt58x4zpmfM1jHh27lThIJhOoLkZnnoK7r1XnRRBwxmvvVbNCwnqKfUI24H4mmsO1Ro8521/EzgpsH86moQtJTQ0tBUcqqt1UnsKExJSgwkJfZcoMA94As0lfjdwZorOpbFRs8xt3554/6JF8Oijup2RAaeeqlqFrKzwzxQWqrAQVnfHMLqDqipYu1aLlgV56y34619jiZGys+Gii9S80NN+B/HUAP8lEO7osQh40Fs/AzgrsO8AoAeDK3afSKSt5qG7TBYmJKQGExL6NuWoenE9UIzmUpieonNxTjMwrl2b+De/fLmaH3y77pgxmnjmwAMTH3fcOA0py+6tylbGgKe8XK/V+LoiH32kOQ/eeEO3ReC44zSTaFhZ9J6mHjUtRuL6Hwb+6q2fgGoSxWsHoUXh+g1hJovqarVRdgYTElKDiFQMGTokf+WGBFl0gOGDh5Obpbq35mgzm6o2JT3mqLxRZGfoHb+xuZEt1SHVgQKMGTKGrHR93axrquOTXSGlCQOMGzqOjDR1la9prKE0krzC0MT8iYjndbSrYRc7anYkHCsIEwtiMnplXSU76+JdiWJkpGUwbmjsJ7uzdieV9YmLqmSlZzFmSEzPvqNmB7saEmdHy87IZn3eKI4G6oCZkVLuaKwh0ctObmYuw3Njez/Z9Ql1TYl/jEOyhlA0uKhle0vVFhqj8b7VMQqyC6CugOXL9QVhe8Mmoq61irGhAR57TJ0ao5FCqB/KnDlwzjkwaOT60OOmpalAMXu/Yobnq/dF1EXZWBkWLR5jZO5IcjI1F25TtInNVZuTjh+dN5pBGRq/Vt9Uz9ZdW5OOD15rtY21bIu0LcUbZEL+BNJEU9m0d60BTCqY1LJeVV9FeW15wrHpks74/Fg8aUVdBRV1FQnHZ6ZlMnbo2JbtspoyqhuqE47PzshmVF4sz+f2yHYijfGPrxiDMwczIjfmidretZaXlUfx4Fht8ZLqEhqaEzi7APmD8hmWE/PZ31y1maZo4vC9gkHDqK/K58MPVUgord+AQ+/1GzboNRnMKrrfxGJ+cVUe8+dDWppjQ+WGhMcGGJE7gsGZg4GOXWvB+2BDcwMl1SWt9jeioY7+r79oyFgy0jN5Avi/pjrY9QkHAd9CNYlpwAzUmRlg/NDxpKep80+kIcL2mgRqPo/gtVZdX01ZbVnCsWmSxoT8mLdDe9da/H2wvLacqvqqhOMHpQ9i9KCiFqFhx/YN7KrcrjbNEJNFTloWI+ed2SIkbNu1jdqmxCW446+1rdVbqW+O6WoOmHgA1VXVJiR0BBGpYBD5XJF4zL++8i9O3f9UQG80xTcWJx4MPH/u88ydNBeAtWVr2ffWfZOOX/nNlcwcOROApZuWcuRfj0w6fssPt7Q8aB99/1G+eN8Xk46v/1l9ixCyaMUizv/3+QnH5mXlUX1F7EZ609KbuOzpyxKOn5g/kfXfX9+y/dNnf8r1/70+4fiDRx/Mm9+IRUF/49FvcPvy2xOOP26v43jqq0/xW+CHAP//qbDmwYTjz5xxJveeem/L9txFc3lhwwsJx1986MXcctItLdsz/zSTd0sTxD4CV3/2ahbMXUBzs2ZhPPqxMZQ3Jn7Qjlx+M9seuQRQQcD9LAuXllgIuWzyPZxz4FnsvTdEM6oZ+svk2ZgWn7OY46ccD8D6ivVM/v3kpOPfuPANZo9R1683S97kkNsPSTr+4+993HJzfWrdU5xw9wlJx1ddXsWQQUMAuPedezn7wbMTjs1My6ThqthD8pZXb+G7/0lctWN03mhKLo09aBYsWcA1L1yTcPyMETN451uxhBeXPHEJt76eOI/nZyd+liXnLWnZPuuBs/jHu/9IOP6U/U7hgdMeaNk+/q7jefqjxHVMLzz4Qm6bd1vL9uzbZrN86/KE46846goWHruwZXvS7yYlfZBfNOnXfL7w0pbt01cMoTaaWAD/0wl/45tzzgP0IT7ouuTJDx454xHm7TsPUAFn7G/GJh3/8tdf5ojxRwDwzrZ3OOD/Dkg6/o8Xv88LRfvwT4D1S+DOo5OO3/GjHS0C/gOrH+DL93856Xh3dey5d9ubt3HRYxclHFuYU0jZj2NCxMKXFnLlc1cmHD+1cCprL1nbsn3p4kv5zSu/STj+8HGHs/SCpS3b5z18Hne+fWfC8V/IP5RHv/Nyi5Aw7x/zeGztYwnHn3vguSyav6hl+4g7jmDZ5mWxAdcD9SQUEixa2+h3/AD4EPhjqk/EIz1dQxozF9M2qDvAvHlQOE1VvCUlQDvyuXOa9W7TJhjay7Zho3/T4F2HjY2wdCnUZaO12BPQ18xb96CmB4B90JBHw2PEiF4NiTJNQgAzN7SmL5obfBVwFDg7Usp9jTWAZlj7C60zMvaGuaEgu6Ble1PlJhqbm9m0SRMwxSdzG5JRyOD0oTQ1wbPPwj2Pr8d3fxHRGg/HHx+rHjk0o5ic9Ji5YXvDRnJz1W9h1Ki29wkzN1QkHD/QzA2bKjdTuqOJbdvUgbYx7jKtrxzG0ufyefJJrzhT/gYQx/jxMH8+nHYajB0by3dQPLiYvCy91pzrHXNDFA11DN7hGoDbgLeHjIX0TI4FLmyqo3rXJxShJoawx2O/NzcMidWdb+8+mJORw8i8WDYIMzf0Iua42L9oBr4O/N3bPhF4AK31kGrq6zXMbPPmxI6N9fXw5JOa0W5H4Pk5bZqGnR1+eOKUt+npWjxq7Fh9sUgbkFVsjCANDep86Lc2gkE9vPIKPPec+hv4111aGsyZo8LBvHkwdWri3B29RSPwOhB8NJcCvyKmNfgy8FXUQXFvNKlaKsKeBzrmuNgJTEjofzQDXwN8z4OjgH8CfSXtwK5dGgFRUpJYWGhqgpdfhocf1sJRPrm58OlPa+GoqVMTZ7nLzITRo1VgKCw0gWGgEI1CRYUKkKWluh5/DTU2aibQl19Ws0JNTWzf0KEarTB/Phx2mBZj6guJu2qAV4k5KYJmV7wFjWwQ4ELgC2gdhgPp3VLxexomJHQCExL6J1G0wIvvVjYeuA84ImVn1JZIRMPQkmkWnNMaEY89Bq+/3tpcMW4cHHmkahcmT04sMGRkqGZh5EhdJsrLYPQ9fKGgvFwFg/Ly8Hw8dXWqKVi6VK+TSMAKkpEBhxwCxxyjAua0aVqxsa8IjhVocSZf2V2PVnP8j7edj9ZlmA2MRnMg2CXcs5iQ0AlMSOi/RIGrgV+i6Vtz0AxtF6bypEKordUQtI0bk2dzrayEJUvUd8GvMukzapQKC5/6FOy7b+JiUSL6NllcrPUkioqssFRfIhLR//POndoqK8NrgzinzqvLl2tbtaq1qUFEc2scdRR85jN6TUyc2PuJkNpjI/Auqv0DdT7+PeB7PxyIRi2NBGbSd7SBAx0TEjqBCQn9n0dQPwXf1nkecDMwJFUnlIBoFD75RAWAssQ+UzinSW9eeknfHD+J82P1i0XNmgUHHaRmh0RaBhHIz4dhwzSz47BhvZtud0+luTlWobiqSrUFVVVtfQp8nFON06pV2t59t+01kpYGM2fCEUeov8G4cVoLZMKEni3dvDvUAW+jPgcAlcBdwNNogE86qgk8Ba29sB+9XxJ+T8aEhE5gQsLA4CP0hvO2tz0GuJHWqVz7EjU16rNQUhLLmx+GcypULFumbUOIA3pBgb5V7ref1o2YPDm5HTozUwWHoUO15edDXl7fUU/3J+rqVDsQiahQ4GflralJnom3ujqWvfPDD7UiY1WIM3xREcyerQLhgQeqOWnMGPVFSVSaPNVsAd5BHRWbgSfR8EbfQjIRuBj1Jdofrexo9C4mJHQCExIGDvXAJWg6V1+9eQwaXjUlVSfVASIRFRa2bQt3VAtSVqa2ab+FCRgZGap6njJF21576dtmTpIQEBEYPFiFBb8NHqwtJ6fnywT3RZxT81BNjZqMamt1PbjdXj2f5mb9v65f37rFa4d88vO1nseMGao1mDBBhcARI9Tk1JfrfNSg4Y1bUfPfS8C/AD9gPBc4GzgNNS1Y1fTUYUJCJzAhYeDxKprr3c9lNwg4H60o2ddtng0NGgNfWqqObMnSu0ejardes0bb6tWxmhFhDB+uD53x41VVPXq0PniKipJrEUQ08c7gwboMtkGDtGVlqYaiPwgTzuk819dr89dra3W+gy3MXyDseDt36tx/8olWBd28WZclJYlNDGlp+v/YZx+NZJk+XTUEgwbp/2TECG19LelRPPXAB6ifQS1a1v0hYqYGAY5HBfjZWNRCX8CEhE5gQsLAxKHZGX+OFokCTcjyFdTZcZ8UnVdniUTU4728XLUIQa/2MMrLNaRy3TpVY3/0Uet8DGFkZqqwMGKEOjwOH66tqEh9GHw/hvYEABE9VnzLyNCWnh5bpqfrQzItLbYu0rpBW61KNKp9wWVzszZ/vampbWto0Id1Y2PbhFfJ8Gvz+BEIZWU6n/6ytFSFg4bEOZEAffBPnBhre++tGp7sbNXUDBsWczQd0tecaRLQBKxDTX0b0JLOT6H+B6C1Fo4EvoGWeC5MwTka4ZiQ0AlMSBjY7ASuAf4G+CbfNOA44CLg8/SvcKvGRjUxVFbqg6uysn37d1WVahz8dM8bN+obbnvCQ5CsLFV1FxTEfBmGDtUHWm6utrw8XQY1Djk5qY/T980Gvomgrk7nzPch8NerqmLNFwwqKjqmTfDJz4/5DIwbp8vx4zU8NT1d52PIkNhcFhT0PafD9qhGq7KuBZ4HngXeC+zPQH9f3wU+jZoZjL6FCQmdwISEPYNdaOjVrbROCVsAfAm4AM2x0A+05W2IRmOe9NXVMUe6SCT5W3NDg74Fb92qbccONXUEE/l0B+npMZNEVpauBzUMmZmtNQvBFsTXHMRrEZqaYhoCX2vgmxD89e645aWlaeIqP7y0uFjbqFEqBIwcqUJAVpYKSr7AlJurgkFeXv8NR21GzQfLgMVo5sR3UG2Cz3A0GdJ30dDG/vhb2lMwIaETmJCwZ9EI3I06M75K63pLxaij4xeA/0ETu/R34h3vgm/Tvk0+0ZtyU5NqKsrLY+r2+LftqqrW3v2dUeWnmpycmBYkN7e1dsRfLyyMhY4OGdLWHyMnp23rr4JAPPXAKjRscRmwglh+A59BwLHAucDJWBhjf6FPCwkikgcsRM3DBeh1eK1z7pEOfHYKcBNwNKo1fgm4zDm3ugvnY0LCHsoW4E40PCvsAtoX1S7MAT4FTCdpUb1+S0ODCg3+W3ew+Xb8oD3fb2G3kaADYFAgiX+zjz9WY2NMSxDUFsTj+zCIxNaDWomMjJjGwtdaZGXFHuC+A+bQobovqM0ItrBjZGUN7DDRMuC/aHbEt4CV6G8knnxgLjAPOBW9iRv9i74uJDwNHAz8GPgYzX1zNjDPOfdEks+NQIXZUmABqun6GRrdNss5l7wkWeLjmpBgsBaN534CvVHWhIzJRpO+zEDju/fz2kT2zDcoX9XvOw4Gm/+g99fjnQ2dizVoLRD4677zYnDpN9/RMcxEEXSG9J0k/ZaR0T8iMHqKJqAEjUZ4F31DW+ttlyT4TBaaKvko1DR3JJoMyei/9FkhQUROAh4HTnHOPeT1CaoRKHLO7Zfks79Co2imOOdKvL4iVNC4xzn3rd08JxMSjFY0oOrVl9AiNG8AyYvQaljXZFRgGO9tj/aWo1BTxjDUqcswupsaNIqnDNiG+t1s89pG1NFwi9ffnh/mBFQQPgLVGBzCnikED2T6spBwO2pmKHTORQP9F6Jm4umJTAci8gGwxjn3xbj+e4D/cc6NDPtcB87JhAQjKQ7YjDprrQq0D9H0s52hAChCBYahqOo231vPQz3B/WUuWo8i21vmoDfr+JaFmkEyURuc0XdwqNNfIyp8+sv6QKvzlrVxLeK1XYFlFRpiWOW1nahw0NnrUFBhdipajnka6mx4AHo9GgOb9oSEVL7MzABWBwUEj5XB/fEfEpEc1Kxwf8gxVwJnicgI51xpyH7D6BL+DXU8mvrZpxnNJrcBfVPzWwmadW4rEB9lWOG1niIdFRYyvOavp4cs0+KW/nqwSdy6xK0nayTYDi6DBPvCXmMS9bkOrjv0LTpsOxqyHkX/x8H1YPP7muKWjV5r8pa9TTqazXAkMY3WBPT69ZeTUOHTMMJIpZBQhJrA4ikP7A9jGHoPKQ/ZF/xsGyFBRCraOScTnI3dIh292U4CPptgTCNqqiiLazuJvRX6Lf7NMYK+IdbSOtQsGf4DzOh/ZBLTGOUAg2mtVcojpnXytVAF6I2v0Gu+lso0SkZXSLVZNJmtoz07SFc+axi9TiaaCrqr6aCbUGGhPqT5b66+OrspsPTXfeHB7wu+Gce/MQffnINv3FESv5HHNxJsB5dBwvra0zYE++I1F2Hr8RqQtJBlUGsSr20JalyCmhdfa+P3ZQaar83JorVZKMxslOobs2H4pPJaLCNcW+Bn7AzTFIC+eLnd+Wwim4uPp2kwbYLRp8lAS1/3k4y9hmH0Y1KpiVoF7Cci8ecw01u+G/Yh51wtmiJ8RsjumcB280cwDMMwjK6TSiHhIdSMNi+u/2vA++0kRXoIOE5EWoqIiUihd6wHu/k8DcMwDGOPJJVCwhNoTZA7ROTrInK0iCxC83T8yB8kIktEJN5M+WvUv+sJETlZRD6P5lxoQjM4GoZhGIbRRVImJDhN0DAfuA99sD+Jhuae4px7tJ3PbkOLim0C7gL+iUaTfcY5t7HnztowDMMw9hyswFMAS6ZkGIZh7Em0l0zJQmgNwzAMwwjFhATDMAzDMEIxIcEwDMMwjFBMSDAMwzAMIxQTEgzDMAzDCMWEBMMwDMMwQjEhwTAMwzCMUExIMAzDMAwjFBMSDMMwDMMIxYQEwzAMwzBCMSHBMAzDMIxQrHZDABGJApKfn5/qUzEMwzCMHqeyshK05mKo0sCEhAAi0oRqV6q66ZC+tFHZTcczEmNz3bvYfPceNte9x54410OBqHMuI2ynCQk9iIhUACSqrmV0HzbXvYvNd+9hc9172Fy3xXwSDMMwDMMIxYQEwzAMwzBCMSHBMAzDMIxQTEgwDMMwDCMUExIMwzAMwwjFhATDMAzDMEIxIcEwDMMwjFAsT4JhGIZhGKGYJsEwDMMwjFBMSDAMwzAMIxQTEgzDMAzDCMWEBMMwDMMwQjEhoQcQkTwRuVlEtopIrYi8ISJfTPV59WdE5FgRWSQi74tIjYhsFpEHRWRmyNjjROQVb+5LReTPIlKQgtMeMIjIAhFxIrIiZJ/NdxcRkbki8pSIVHjX92oR+UbcGJvnbkBEZonIwyJSIiIRb64vF5FBceNsvjEhoad4CDgb+BnweWA18JCInJTSs+rffBOYAPwWOBH4obf9uojM8QeJyFzgCWATMA+4DPgi8LiI2PW+G4jIdOAnwLaQfXOx+e4SInIu8AywDjgDncc/AFmBMXOxee4yIjINWApMAr6PzuWDwP8CtwfGzcXmG7AQyG7HEwQeB05xzj3k9QnwElDknNsvlefXXxGREc650ri+AuBj4Dnn3Kle32tAJjDbORf1+o4DngLOcM79s1dPvJ/j3RCXAq8DM4EC59xBgf02311ARMYD7wMLnHO/SjLO5rkbEJEFwNXA3s65dYH+u1ABbbBzrtHmO8YeJRH1El8CKoF/+x1OJbE7gWkisn+qTqw/Ey8geH0VwAfAOAARGQscCtzl/7C9cU8DW4BTe+VkBxY/QOf3yvgdNt/dwgXe8pZEA2yeu5VGb1kZ11/p7Wu2+W6NCQndzwxgdfDi8lgZ2G90AyIyHJ3Pd70uf27fDRn+Djb3nUJE9gKuBS52zlWFDLH57jqfAdYAp3j+Ns2ev80vRcQ3N9g8dx93AeXAn0RksogMFZGTgXOBm7z7ts13ABMSup8i9CKMpzyw3+gingnnNvQa/rXX7c9tovm3ue8g3vzeDix2zj2cYJjNd9cZA0xFNQk3A8cCfwUuBf7mjbF57iaccxuBOcD+wEeoBuFh4Gbn3FXeMJvvABmpPoEBSjJHD3MC6R5uBOYD5zvn1sTtSzTHNvcd50LgEPRm2h4237tPGjAEONM5d5/Xt0REcoDLROTqwFib5y4iIhOBR4FPUNNwBfBZ4AoRiQYEBbD5BkxI6AnKCJc0C71lmHRqdAIR+V/0Tet7zrlFgV1l3jLR/NvcdwARKQZ+BVwPRAJhXxlAurddh813d1CGahIWx/U/iXrUH4zNc3fyS1Qom+Wcq/X6lqjijJ+LyB3YfLfCzA3dzypgv5AwGT+eP8zOZXQQEbkW+CnwY+fczXG7V3nLMJvhTGzuO8o4IB8VEnYG2pHo3O4EFmDz3R28k6BfvGUUm+fuZBbqM1Yb1/8G+jychs13K0xI6H4eAgrQ2NogXwPed86t7vUzGiB4qtergKucczfG73fObUZ/7GcHhTQRORYYi8ZDG+3zIXB0SHsbjeU/GrjN5rtb8OcoPofKSaha+3Wb526lBJghIoPj+g/3lltsvltjeRK6Gc/h61ngAODHaBz/uaiQcLJz7tEUnl6/RUQuRR0UH0MTnwSpd8695Y07Bo1lfgB1bBwD3ABsBI50zjX32kkPMERkCW3zJNh8dxEReQI4Ao3fXwUcg947bnPOfdsbY/PcDYjIfPRF7r/A71DHxbnofL/gnDvOG2fz7eOcs9bNDRgK3Io6x9QBy4H5qT6v/tyAJeibVVhbHzf2c8Cr3txvR730h6X6b+jvzfsfrAjpt/nu2rzmogLwFqAB1eRcDqTZPPfIfP8PmuFyGxBBBbOrgFyb77bNNAmGYRiGYYRiPgmGYRiGYYRiQoJhGIZhGKGYkGAYhmEYRigmJBiGYRiGEYoJCYZhGIZhhGJCgmEYhmEYoZiQYBgDHBGZJCJORBak+DyKReTvIlLinc+SVJ5PTyIic72/8bxUn4thdAUTEgyjhxGRYSJS5z00zkn1+aSQm4DTgf8DvkrbzJktBASbYKsVkVUick1IWt0O4z3AFwQKV+3ucQ7yjjOpK8cxjL6MVYE0jJ7nbCALTdF9AXB3ak8nZRwHLHbOXduJzzwN/N1bHw6cCvwczbV//G6ex1w0BfIitFTw7nKQd5wlwPq4fS8COUBjF45vGCnHhATD6HkuAJ4H/g38TkSmOOfWpficUsEoOl9md61zrkWoEpGbgVeA40RktnPuze48we7CORdF0/kaRr/GzA2G0YOIyMHoG+edwD3om+X5CcY6EVkkIoeLyAsiEhGRHSLyFxHJCxn/WRFZ5qnhPxGR34vI9M74H4jI6SLyXxGpFpEaEXlVRL7cib8vV0SuF5F1IlLvncffRWRiYMwCEXFo+eNzA+aD8zr6PT5OC+ss8Tanxp3LJBG5S0S2eeeyTkQWBk0TIrIIffsH+DhwLgu8/WNE5CYRWSEiOz0z0WoR+YmIpAf/JuBv3ubzgeMs8vaH+iR0ZL7iPy8i53tmlnoR2SAiP+7svBnG7mKaBMPoWS5Ai8g84JyLiMjj6IPy597bZjwHoZUu/wbci6rGLwCiwDf8QSJyFFqlbifwS1RtfhpwZEdPTESuA64E/oMWuIkCXwLuF5GLnXN/aOfzGcBi7zv/hfocTAW+BRwvIoc4Lbv7IFq06C7gJbSqHsDSjp5rHFO8ZYtWwnvIvgbkA38C1qJzdwVwpIgc65xrAv6MFmD7EvADYId3iJXe8gDgFLRS4DogEzgRneO9gIu8cQ8Co9H/yUJgjdefUEPUifkK8k1gJHAH+j8+B7hBRDY75+5NPEWG0U2kusKUNWsDtQHZ6INsUaDvZLRy5Ykh4x36oJ4T1/84qoHIC/S9hqqz9wr0ZQIve8dZEOifFNJ3sNe3MOQ8HgaqgCHt/H0Xesf4VVz/573+u0L+vkXJjhlyzn8Bir02DfVHcMAmYFBg/D1e/0lxx7nR678g0LfA65sU8r05oIXv4vrvApqB0YG+87zjzA0ZP9fbd97uzFfg8yVoeW6/fzBakXBZqq9va3tGM3ODYfQcpwDDUFODz+NAKfD1BJ9Z5px7Ja7vOVTrNwlAREYChwL/ds595A9yzjUCv+/guZ2NPoTu9EITWxrwCDAEdQ5MxpdQoeb6YKdz7nFgBXCyiHT1HnMB+lDcjr6tX4P6dxzrnKsH8L7ji8Bbzrkn4j5/PTENSbs452qdc847bpaIFHpzshg1zx7Shb9ld+brb865isDYGtQnYyqG0QuYucEweg7/AbdZRPYO9D8NfEVEip1zO+I+8xFtKfOWRd5ysrd8P2RsWF8Y+6E+Au8lGTOynWNMBkqccztD9q1CTSfFqFC0u/wbuBVIRx+MPwbGA/WBMcOBPO87W+GcKxeRraipoF08k8DlwNeAvdE5CjKsk+cfZHfmK9H1UBTSbxjdjgkJhtEDiMhk4Gj0IbM2wbBzgN/F9TUnO2zcsisIntkjyXe2eegmOJ+eZLNz7hlvfbGIPIn6D9wnIkd4b/3deR6/AS4B/onmcShFTT0HAzfQNWfv3TnPZNeDYfQ4JiQYRs9wPvpQuJDwWPzrUE3D73bj2P7b5b4h+8L6wvgA+Byw0Tm3pr3BCVgHfE5ECoIqcY/9Ub+GeE1Jl3DOrRORX6O+CWeizp2lQDUwPX68iAxDHQxXBA+T5Cu+CrzonDsj7jh7h4xNdpwwen2+DKOrmE+CYXQznl35POAd59xfnHP/im/AP4AZInJoZ4/vnNsGvIHasFvU6CKSCXyvg4e5y1suDIb2BY41ogPHeBi9h1we99kTgVnAIy48gqOr/BaoBK4WkXTvOx4FZonI5+LGXu6d40OBvl3esjDk2M3EvfGLSC4aCRFPsuOE8TCpmS/D2G1Mk2AY3c/xqN38jiRjHkC97C8AXt+N77gM9W1YKiJ/RB+ap6GZHaGdt1zn3OsicjXqCLhCRO5HPelHA7OBkwLHSsQi4FzgJ6KpiV9E7fjfBrYBP+30X9UBnHMVInIrGr55Firw/BTN6PiwNx8fAp9B00C/SGvnUd8x9AYRuQeNEnnXOfcuGpp4kYj8E3gG9cv4OjG/kCCvo46IV3oaiwjwsXPu1QSnvogUzJdhdAXTJBhG93OBt3ww0QDvgbQWOENEcjr7Bc65F1BzwXr04fJTVLtwsTektgPHuBb4AiocfB/4Axr3P4gOaCS8aIoT0BwCn0JNJ+cA9wOHOec2dfwv6jS/Rd/kf+5pEzYAh3nf7ft6fAqNJDjRaY4E/7xfBn6C5lu4HdXq+Amkfgj8GpgD3II+1G8j7u3fO85GVIDIQXMz/APNeRBKiufLMHYL8aJ9DMMYAIjIqejb8JnOuftSfT6GYfRvTJNgGP0QUbLj+jLRN+EmYqmLDcMwdhvzSTCM/skgYINnU38fjZs/HU0rfINz7pNUnpxhGAMDExIMo3/SiGZvPBl1NhRUWPiOc+6PqTwxwzAGDuaTYBiGYRhGKOaTYBiGYRhGKCYkGIZhGIYRigkJhmEYhmGEYkKCYRiGYRihmJBgGIZhGEYo/w+fSaTz4fR/RQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# sets plotting params\n", + "sns.set_context(\"talk\")\n", + "# plots the mean p-values of the mc_rep experiments with error bars\n", + "# dotted green line at p-value = 0.05\n", + "plt.figure(figsize=(8,8))\n", + "fn.plot_pval_vs_angle(pvals_100, pvals_500, pvals_1000, angle_sweep)" + ] + }, + { + "cell_type": "markdown", + "id": "ce4de803", + "metadata": {}, + "source": [ + "## Task aware BTE and generalization error (XOR)\n", + "Next, we'll run the progressive learner to see how different angles of rxor affect backward transfer efficiency and multitask generalization error of xor (task1). We start by defining the following hyperparameters." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f4629a24", + "metadata": {}, + "outputs": [], + "source": [ + "# number of times to run the experiment, decrease for shorter run times\n", + "mc_rep = 100\n", + "# samples to use for task1 (xor)\n", + "task1_sample = 100\n", + "# samples to use for task2 (rxor)\n", + "task2_sample = 100\n", + "# we will use the same angle_sweep as before\n", + "angle_sweep = range(0, 90, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "7bb50558", + "metadata": {}, + "outputs": [], + "source": [ + "# call the function to run the experiment\n", + "# give us arrays with mean_te and mean_error\n", + "mean_te, mean_error = fn.bte_ge_v_angle(\n", + " angle_sweep, task1_sample, task2_sample, mc_rep\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "15d27126", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAHyCAYAAABGcdxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB3Y0lEQVR4nO3dd5xkZZX/8c+ZoScxeYY0wDAzBMmCgEiQIOgSJAdxQUQxrOnnrquuAV0Mi2HVNaw5ERQUkAzikjMIKGmGPMAMMDA55+nz++Op8t66favq3gpdob/v16tffevWreqne3qqTp9znucxd0dERESk0Qa1egAiIiLSnRRkiIiISFMoyBAREZGmUJAhIiIiTaEgo4HM7CUze6nV4xAREWkHG7V6AF1mzJgxY8YA7TNl57zz4ItfjG7/5jfwvve1bjwiItKNLO2kMhnd7sUXS2+vWNGSYYiIyMCjIKPbvZSo3ijIEBGRfqIgo9slMxnLl7dkGCIiMvAoyOhm7jBrVuk5ZTJERKSfKMjoZq+/DqtXl55TkCEi0nl+/3s4/ni4++5WjyQXzS7pZsl+DFC5RESk0yxdCh/8IKxaFbLTf/tbq0eUmTIZ3SwtyFAmQ0Sks7z+eggwoG+fXZtTkNHN0n4ZFWSIiHSW+Ot2MdjoEAoyupnKJSIinS/+ur16NfT2tm4sOSnI6GbKZIiIdL7k63ayob+NKcjoZurJEBHpfMkMdAeVTBRkdCt3lUtERLpB8o/DlStbM44aKMjoVgsXRgHFRrGZyspkiIh0FmUypO3EsxjbbRcdr1zZUU1DIiIDXvKPQwUZ0nLxps9tt4Vhw8Kxe0f9goqIDHjJTIbKJdJy8UzGNtvAxhtHt1UyERHpHMpkSNtJBhkjR0a31fwpItI51JMhbSdeLpkyRZkMEZFOpdkl0nZULhER6Q7KZEjbSWYyVC4REelMWTMZL78MF10UljBoE9rqvRstXQqLF4fjYcNg002VyRAR6VRZMhkbNsDBB8PMmXDUUXD99f0ztiraMpNhZiPN7IdmNsfMVpnZQ2Z2bIbHHWhmvzGzR8xsnZl5hWs3N7Mfm9nMwtd4wcx+ZmaTGvvdtEC8VDJ5MpgpyBAR6VRZZpe89loIMADuuKP5Y8qoLYMM4ErgdOAc4GhgBnClmR1V5XGHAYcAzwGPlLvIzIYAdwCnAv8NHAl8GzgJuMPMhtY3/BZLlkpA5RIRkU6VZZ2MeCCyYgWsWdPcMWXUduWSQiBxOHCiu19ZOHcbMA34LnBDhYd/zd2/UnjM94G9y1y3P7AD8AF3/3Xh3O1mthb4FbAfcHt930kLJZs+QZkMEZFOlSWTkbxm0SLYfPPmjSmjdsxknAAsAa4unnB3By4AdjSzncs90N2zrpe9rvB5SeJ88XZ7hIC1imcyikFGPJOhIENEpHNk6clIvq63SfNn22UygF2BGSkBw2Px++v8GvcDfwXONbMXgaeAHYFzgTuBB9IeZGaLqzzvmDrH1RjxTEaxXBLPZKhcIiLSGXp7+5ZH0solyXNtEmS0YyZjApD201kYu78u7r6B0L/xLPAgsKzweTZwdI6MSHtKy2SoXCIi0nlWrQp7TiXPJSmTkUvZWSFV7svEzHqAiwlZkfcTGkV3Av4TuNrMjnD3dcnHufvYKs+7mHbIZqT1ZKhcIiLSedJer7MEGQsWNGc8ObVjkLGA9GzF+MLnRoRn7weOAfZw90cL5+4ys6cJDZ/vBi5swNfpfytXwrx54XijjWBSYUauyiUiIp0n7fVa5ZK6TAd2MrPk2HYrfH6iAV9jT2BdLMAoeqjwuWxzaUutXw//7//BKafA66+nXxPPYmy9NQweHI5VLhER6Ty1ZjIUZJR1JTCWkGmIOxN42t3rbfoEeBXoMbM9E+f3K3x+pQFfo/FuuAF+9CO4/HL41KfSr0nrxwCtkyEi0omyZjLaNMhox3LJDcBtwK/NbALwAvBe4EDguOJFZnY7cLC7W+zcJsDBhZvbFc6dXLj9orsXMxXnA58iLPD1deB5QvbiS8DrhH6N9vPMM9HxFVeE5cNHjy695s9/jo633z46ViZDRKTzpAUZaZkMlUuyKayJcTzwB+A84M/A7oTFua6t8vBdgMsKH0cXzhVvfzz2NWYBbwbuIawqegPw78D1wJvdvT06ZpLiJZLVq+Gyy0rvX70afve76Papp0bHCjJERDpPh5dL2jGTgbsvJQQFH69wzSEp524HrM/F6Y9/hrB0eedI9mFceCGcfXZ0++qrwypvENbHeNvbovtULhER6TwdXi5pu0yGVDB3buntO++EF16Ibv/619Hx+94Hg2L/vMpkiIh0ng7PZCjI6CRpM0ouuih8fukluPnmcGwGZ51Vep3WyRAR6TzlejKSC3SpJ0PqlhZkXHhh+GX77W+jX7q3vz1s8R43dGiU2Vi7Ftb1WWtMRETaTdofhb294XW80nVLl7bF67yCjE7R21taLhk1Knx+/nm4554QZBTF+zSKzFQyERHpNOV66JIlk7TX9GKPXgspyOgUixbBhg3heMwYOO206L5/+ReYNSscjx8Pxx3X9/GgkomISKcp91qdZdO0NiiZKMjoFPFSyWabwXvfG92ePj06PuOMUBpJo6XFRUQ6Sz2ZDAUZklkyyNh/f5g2re91aaWSIpVLREQ6S7nXagUZ0lDxIGPTTUOPxZlnll6z996w++7ln0PlEhGRzlIuk6FyiTRUvOlzs83C5/e8p/SaSlkMULlERKTTxP8gtNhak/FMhrsyGVKnZLkEQrnkmGOic/Fm0DQql4iIdJb4H4Tjx0fH8SBj7dpoYkCcggzJLC3IgLBXycUXw333wdixlZ9DS4uLiHSW+B+Em2wSHcfLI+X+aFSQIZklezKKRo+Gd78bpk6t/hzKZIiIdJb4H4TxICOeyUjrxwAFGZJDWk9GXmr8FBHpLPVkMha0fkNxBRmdoly5JA81foqIdA73bJkMlUukLu6NDzKUyRARaW9r1oQtJQCGDIm2k4Dy5ZKJE6NjBRmSybJlsHp1OB4+vDRYyEPlEhGRzhHPYowcCSNGRLfLlUvim2MqyJBMkv0Y8bnSeahcIiLSOeLBw8Ybhz8yi8qVS7bcMjpevDh9ams/UpDRCRpRKgGVS0REOkkyk1EuyIhnNUaNKl3OYPHiZo0uEwUZnaBRQYbKJSIinSOZychSLtl449JFu1pcMlGQ0QnKrZGRl8olIiKdI2smQ0GG1EXlEhGRgaeWngwFGZJbIxbiApVLREQ6SdbZJfHjESNKg4wWL8ilIKMTNCOToXKJiEh7UyZD+kWjejKUyRAR6Ry1rJOhIENya1ZPhnvtzyUiIs0VDzIqZTKS5ZIJE6LbCjKkqkb1ZAweDEOHhmP30l9SERFpjSuvhPe9Dx59tPR8PEPRobNLNmrpV5fqVq+GpUvD8UYbwbhx9T3fyJFhPXwIv5jx9JuIiPSvWbPgXe+CdevgySfh/vuj+5KZjKzlksGDo9udlskws3Fm9gYz28HM6nzHk6qS/Ri1LilepOZPEZH2ccklIcAAePzx0jJ21kxGpdkl7Z7JMLNBwHHAKcDBwOaJ+18DbgcuA65x997GD3MAa1Q/RpHWyhARaR8XXxwdr1wZNsQcPTrcztqTkcxkFMvi0L5BhpkNBj4CfB7YAlgBPAjcACwADBgPbAccC7wbmGNm5wE/c/fW7srSLRrVj1GkGSYiIu3hiSfgscdKz736ahRkJDMZQ4eGbLZ7yH6sXx/K6Mkgo/h4aN8gA5gObA38AbgIuLNclqKQ7TgUOAP4NvBxYKfGDnWAamYmQ+USEZHWiWcxiubMgR13DMfJTIZZyGYUyyOrVoUN0ZJBRrx3b9Ei6O2FQa2Z51Hpq/4ZmObuZ7v77ZXKIO7e6+63uPv7gG2BGxs90AGrUWtkFKlcIiLSeu7pQcarr0bHyUwGpDd/JnsyenpC8AEhwFiypDFjrkHZIMPd/83dXy93f4XHvebu/1bfsOQfGp3JULlERKT17r0XXnqp7/k5c6LjZCYD+vZluPfNZEDbNH82NH9iZqMa+XxC43syVC4REWm9eBZjyJDouFomIxlkrFkTshXF59mo0AXRJgtyNSTIMLORZnYO8EIjnk9iGl0uUSZDRKS11q2DSy+Nbp95ZnQcDzLSMhnJckmyVFLUKZkMM9vIzE4ws8+a2QfMbGLsvqFm9jngReCrgP40bjRNYRUR6S433QTz54fjrbaCU0+N7ouXS7JkMtJKJdA2QUbFdTLMbDxhDYxdCFNWHfiOmR0OrAP+BEwDZgL/AVzQzMEOSK2cXfKTn8DTT8MXvtCYry0iIqWlkne/OwQaRcVMxtq10SJdgwdHJZVuCjKALwG7AlcBNxPWxPgo8FNgK2AD8H7gIq2L0QTr18OCBeHYDCZOrHx9FlnLJQ88AB/7WPS1v//9+r+2iMhAt2IFXHVVdPuf/xm22CK6PWdO32bOkSOj1Z47rFxSLch4J3Ctu59YPGFmzwM/IqyjcZC7L2ri+Aa2efOi4wkTooaeemTNZDz8cHT89NP1f10REYFrrokCiJ12gje+MRwPHx5lJpYtS+/HKF5X1AGZjGo9GVsD/5c4V1wD43sKMJqs0aUSyN6TMXt2dLxsWWO+tojIQHfzzdHxu98dMhRmfbMZaf0Y0DeT0eFBxhAgGUgsLnye1fDRSKlmBBlZyyWzYv+8xV1gRUSkPosXR8c7xRbGnjQpOn711cZmMopl9xaoJ/+ujdCardFrZED2ckk8yFAmQ0SkMcoFD8lMRnwZ8Pgfh8kgo1xPRpusk5ElyPh3MzstdruHMMvkv8xsfuJad/fjGja6ga7Ra2RA9nKJggwRkcYrl3lIZjLGjEm/rsPKJVmCjD0LH0lvSTnn9Q1HSrSqXLJ+PbzySnRb5RIRkcYo12sRz2S8+ipMnpx+XYc1flYMMty9Ndu2SdDsxs9y5ZI5c2BDbEbyunVh6dqhQxszBhGRgapcuSSeyZgzJ3tPRrlySXwn1oULw7TY4jTYfqQgop01oycjSyZjVkpPr0omIiL1y1ouqXd2ydCh0e0NG1r2Gp4ryDCzHjPb2cz2K3zuadbAhNb1ZMSnrxYpyBARqV+WckmeTEa5IAPaomSSKcgws53M7FLC9NXHgbsLn5eY2aVmtnPzhjiANaNcMmxYlDJbsyb0XySlZTLUlyEiUh/3bOWSrJmMSuUS6Iwgw8yOAR4ETgYWANcDFwPXAfML5x8sXCeN4g6jR0e/XI3KZJhVL5moXCIi0njxbdl7esJH0Zgx4Y9ACK/L8Y3SymUyKpVLoC2CjGobpE0F/kAILk5x9z+nXHME8HPgEjPbzd213XsjmMFTT4XjlSujX75G2HjjKGhYsaJ0qhQoyBARaYZy2QkIr/mTJsHMmeH2s8+mX5sslwweHN1OBhnxtTJatCBXtUzGZ4D1hD1K+gQYAO5+I3AwYbO0Tzd2eAL0TYHVq9oMEwUZIiKNV65UUhTvyygXZFRq/GzDckm1dTLeDpzv7i9WusjdXzSz84GjGzQuaaZayiXqyRARqU+l0gaU9mW89lr6tclMRnxaaqeVSwjbuT+a8bkeBT5Y33CkX1TKZCxfDotS9r1TJkNEpD6VyiVQmsmIq1Qu8dgamMkg44wz4MADQ7AxbVr+8TZAtSBjNZDyk0i1MbCmvuFIv6g0jTVt+iooyBARqVe1ckk8kxFXaVnx+MKJyefcZZfw0ULVejJmAEdlfK6jgCfrG470i0rlkrRSCSjIEBGpV7VySS2ZjEpTWNtAtSDjj8DbzezsSheZ2fuAdxBmoki7q1QuiQcZ8VqfejJEROpTrVySJZORZzGuNlAtyPgZodfiF2Z2sZm9zczGWjC2cPti4FeF637W7AFLA2TNZEydGh0rkyEiUp9ayyXlMhmrV1eeXdIGqm2QtrawDsblwGnAu1IuM+Aewjoaaxs/RGm4Sj0Z8SBjl12iOdsKMkRE6lNruSR+7aBBYV+SNYUWyGLj55AhsFGWjdX7V9UVP919rrsfBBwHXAT8HXi+8Pki4Hh3f6u7v1bhaaSdZC2X7BxbLV7lEhGR+lQrl4wd23fhRbPS7AWkZyzasFQC1Vf83NTd5wK4+7XAtVWuf6e7X9fA8UkzVCqXxGeX7LprdKxMhohIfaqVS8xCNuOFF0qvS27RPnx436UG2jTIqJbJmG5mp1R7EjMbY2YXAlc3ZljSVOXKJb29pUFGfOqTggwRkfpkadJM9mWkZTySmQ1oy34MqB5kLAT+YGZ/MLMJaReY2dHAdOAM4JcNHp80Q/yXOx48zJ0LawttNePHw+abp18nIiL5VSuXQN++jLRgpIPKJdWCjDcC/wucAjxuZscV7yhkLy4AriHsb/IOd/+Xpo1UGiceKT/wQNQ4FO/HmDwZRo2KbqsnQ0SkPs3MZHRikOHuq939k8BhhNU8rzCzC83sXYTsxXsI01d3dfebmz5aaYy3vjX6hXzuOZgxIxwng4x4LXDVKli/vn/HKSLSTar1ZEC2TEa3BBlF7n47sBtwCXA6cDFR9uLD7p6ylae0rWHD4Mgjo9tXXRU+x4OMrbcOAUY8m5G2Y6uIiGSTpVySJZORVi7p0J6MuP2AgwjrYjhhr5LUPg3pACecEB0Xg4x40+fkyeFzPMhQX4aISO1qKZd0eybDzDY2s58BNxICjKOAA4AFwMVmdpmZTWzuMKXhjjoqWrjloYdCgJEsl4D6MkREGqWWcknWTEYnBhlmdijwOPAh4HeE3osb3f0BQlPoD4ATCFNdT2r2YKWBxo6FQw+Nbl99dXqQMXp0dE6ZDBGR2tVSLsmayejQcsnNwDDgOHd/r7svKd7h7mvc/VPAocAy4FIzu6R5Q5WGS5ZMqmUyFGSIiNQuS7lk7NiwbHhRN88uIeyqukthtc9U7n4XsDthc7SqC3dJGzn22Oj49tvDOhkAgwdHKTsFGSIijZGlXGJWms3o5nUy3P10d19U6ZrCdSvd/WPA2xs2Mmm+LbeEffcNxxs2ROe32ioEGlBaLlFPhohIbXp7w1IARZXKG/G+jC5f8TMXd7+tkc8n/eD44/ue23rr6FiZDBGR+q1cGR2PGBF2Uy2nWiajG8olZrZDrU9qZm+o9bHSz9KCjGI/BijIEBFphCylkqLDD4+ODzig7/1dUi6Zbma/MbNdK1xTwsz2NLOLgCfqH5r0ix13DB9x5YIMlUtERGqTZWZJ0dlnwzXXwP33w+67972/gzIZlbZ6Pwb4LvComT0GXA88CDxP2DjNgPHA9sBbgCOBnYEZwDubOGZptOOPh29+M7odDzI0hVVEpH5ZZpYUbbQRHHNM+fs7aMXPskGGu99oZjcBpwIfBb5AWOkzqbjR/e3AacCf3L23weOUZqoUZKhcIiJSvzzlkmq6JJOBu28g7FdyiZltBhxMyFZsQgg45hFKI3e4+/wmj1WaZZ99QqPRq6+G29tuG92nIENEpH55yiXVdEuQEefurwOXNnEs0iqDBsEPfwj/+q9w9NGlPRrqyRARqV+eckk13VAukQHmpJPCR5J6MkRE6jdAyyUNXSdDupDKJSIi9Rug5RIFGVKZggwRkfoN0HKJggypTD0ZIiL1a2a5ZOjQaCuINqMgQyqLBxnLl4OnzWIWEZGKmlkuadNSCSjIkGoGD47ScO6l/1FERCSbRpZLujHIMLPTzWxo9Sul69Tbl7F+PczXMioiMoA1slzS0xNWBS1q034MyJfJuAiYY2Y/MrM9mzUgaUP19GUsXgxveANsvjlcfHFDhyUi0jEaWS6B0sCiGzIZhCXD/wp8BHjIzB42s38xs9FVHiedrp61Mi65BGbOhA0b4He/a+y4REQ6RSPLJVBaMumGIMPdL3X3I4ApwFeAccBPCNmNC8zsoOYMUVqunnLJ1VdHx/F0oYhIp7v0Unj/+2H69OrXNrJcAqVBRhuXS3Kv+OnuLwNfBb5qZocDZxM2UTvDzJ4Dfg2c7+5zGzpSaZ1ayyVLl8Ktt0a3V61q3JhERFrp6afh3e+G3l548cXS17o0Kpfk5+43A98DriXsxro98E1glpn92Mwa8JOUlquUyXjiCbjqqlAOSfrLX2Dduui2ggwR6Ra//W0IMCAEHNWoXJKdmY03s/9nZo8C9wPvBH4HHATsS9hI7V+AXzZqoNJC5XoyXnwR9twTTjgBvvjFvo+Ll0pAQYaIdIcNG+Cii6LbCxdWf8wALZfkCjLM7O1m9gfgFeD7hOzFvwKT3P1Md7/b3R909zOB84CjGjxeaYVymYzbbw/TUyHs4rpgQXTfunVw/fWlz6MgQ0S6wU03wauvRrdXr67++qZySWVm9iJwIyFr8QfgAHff3d1/5O6LUx7yBDAq5bx0mnI9GTNnRserVsFPfhLdvvvuMH01TkGGiHSD88/ve65aNkPlkqqWAP+PkLV4n7vfV+X6a4GpNY9M2ke5ckk8yAD40Y9CRA99SyWgIENEOt+iRaEPLalSkLF2bdSfttFGMGRI/ePotkyGu7/R3X/s7pmmF7j7Snd/qfahSdsoVy5JBhnz5oU6pTtcc03f51mzJmqUEhHpRH/8Y3gtS1q0qPxjklkMs/rH0W09GWa2p5l9rML9HzOzPRoyKmkv5YKM55/ve+13vwuPPQYvvBA9Nh61FzMdIiKdKF4qGRR7C62UyWh0qQTgsMOi47e9rTHP2QR5yiX/CRxd4f4jgS/XNxxpS2k9GcuXw9zCUig9PVFJ5emn4WOxWPTII0v/U61c2dyxiog0y5NPwgMPhOOeHjgqNrehUpARn1nSiKZPCGt03H03zJgBu+zSmOdsgjxBxj7AHRXuvwN4c33DkbaU1pNRzFQATJkCH/5wdPuee6Lj444rTeupL0NEOtUFF0THxxwD228f3e7vTIYZHHAA7LRTY56vSfIEGROBSu2ziwvXSLdJK5fE+zGmTYP/9/9KdwWEsE38kUcqyBCRzpdcG+Oss2D8+Oh2fwcZHSJPkDEXqJST2ZXKQYh0qixBxlZbwT//c+njDj4Yxo1TkCEinS++NsZmm8ERR2QPMppRLukQeYKMm4EPmFmfQMPMdibsYXJzowYmbSStJyPe9DltWvj87/9e+rhjjw2fFWSISKf705+i4zPOCD0ZymRUlSfI+DqwAXjQzP7XzD5gZmeb2f8CDwHrga81Y5DSYslMhntpJmPbbcPn3XcPdUoIgcVJJ0XHRQoyRKQTxVf4PKiw6Xg8yMgzhXUAybwLq7s/b2aHAecDH03cPR14n7s/28CxSbsYOjRMQ127NiwjvmZN33JJ0YUXhrrlvvuGEgooyBCRzhefvl9shle5pKpcW727+0PAroX1MLYn7F3ytLs/2oSxSTsZNSram2Tx4tLZJVNjC7uOHQuf+ETpYxVkiEiniwcZxezuuHHROZVLUuUKMorc/RHgkYaORNpbPMh4+umQ1QCYOLF0imsaBRki0unSggz1ZFRVU5BhZiOACYRMRgl3n1XvoKQNxQOJR2OJq3ippBwFGSLS6dKCjDFjwnoV7qEpft260BCapHJJdWY2CPgs8Alg8wqXDq53UNKG4s2fjzwSHRebPitRkCEinS4tyBg0KJRMilmMxYthk036PlaZjEy+CXya0OT5J2BBU0Yk7alckKFMhoh0u/Xro9cus9JAYfz4KMhYtEhBRkKeIOMM4EZ3P6rqldJ94kHG9OnRsYIMEel2yXJHfBfVLH0ZA7hckmedjHHA1c0aiLS5eE9GsekTFGSISPdLK5UUZQkyBnAmI0+Q8TiwRbMGIm0u+R+rKEuQMWJEdKwgQ0Q6TaUgI8s0VgUZmXwF+Bcz27pZg5E2lhZkDBkCW25Z/bHKZIhIJ6s3kzGAyyV5ejL2Al4CZpjZlcALhGXG49zdtbR4N0oLMqZMCTutVqMgQ0Q6mcolNcsTZJwbOz6jzDWO9i/pTmkLbmUplYCCDBHpbAoyapYnyJha/RLpWmmZDAUZIjIQZA0yym2SpnJJde7+UjMHIm1OQYaIDFRpm6MVVctkuMPKldHteCP8AJCn8fMfzGw7MzvAzMY0ekDSplQuEZGBaunS6Djv7JJVq0KgATBsWLY+ti6SK8gws3ea2fPA08CdhGZQzGxTM3vOzE5uwhilHaRlMrIsKQ4KMkSks9XTkzGASyWQI8gws0OAK4GFhOms/1jyzN3nAs8DpzV2eJnGNdLMfmhmc8xslZk9ZGbHZnjcgWb2GzN7xMzWmZn3x3g7VlqQMTVjm46CDBHpZPUEGQO46RPyZTK+DDwK7Av8OOX++4A3NWJQOV0JnA6cAxwNzACuNLNqy58fBhwCPIe2ra8u+R9rk03KL9CVFA8y4rVJEZFOkGcxrt7e0vsVZGS2N/B7d+8tc//LVN6dteEKgcThwAfc/dfufivwXkLA890qD/+au09z95OBe5o81M6X7MnI2o8BymSISGerFGQMGRKVQXp7S68FlUtyXDsYWFPh/onA2gr3N8MJwBJie6q4uwMXADua2c7lHlghWJI0w4eHbY2LFGSIyEBRKciAytNYlcnI7EngrRXufyehnNKfdgVmpAQMj8Xul0YwK/3PlbXpE/oGGa72FxHpIHmCjGRfhoKMzH4NnGxmZ8ce52Y2wsx+COwH/KLRA6xiAqERNWlh7P6GMbPFlT6A7p7SG//PlSeTMXgw9PREt9dUSoiJiLSZakFGpWmsA7xckmcxrp+a2QHALwn9Dg5cQngjHwz81t1/35RRVhlajfdJXvG+jDxBBoRsxrp14XjVqjBfXESkEyiTUbNc62S4+xnAScAtwFOEjMENwCnufnbjh1fVAtKzFcV/8TILydfG3cdW+iD0h3SvowoTdrbaCt785nyPVV+GiHQqBRk1y7N3CQDufiVh2mg7mA6cZGaDEn0ZuxU+P9GCMXWvb30Ljj8edt65NGjIQkGGiHQi9/qCjAFeLqlpWfE2ciUwFjgmcf5M4Gl3n9HvI+pmgwbBAQeU1h+zUpAhIp1ozRpYvz4c9/TA0KF9r1Emo6yymQwzO7NweJG7e+x2Re5+YUNGls0NwG3Ar81sAvACYZ2MA4HjiheZ2e3Awe5usXObAAcXbm5XOFdcFv1Fd3+o6aMfSBRkiEgnqpbFAE1hraBSueR8QuPkHwjrXxRvW/mH4EC/BRmF4Od44LzCx1jCip8nuvu1VR6+C3BZ4lzx9gXAWQ0bqCjIEJHOlCXI0OySsioFGYcCuPva+O124+5LgY8XPspdc0jKudupHDBJIynIEJFOlDeToXJJibJBhrvfUem2SC4KMkSkEynIqEunN35Kp1CQISLtJLmRWTn1BhkDvFySZ6v3r5hZ2SmhZva4mZ3TmGFJ1xkxIjpWkCEireIOJ5wAY8fCJZdUv16ZjLrkyWScANxU4f7/A06ucL8MZMpkiEg7mD4drroqBA9f+EL167MEGSNGhN1YAVavLn2NU5CR2VTCKp/lPF24RqQvBRki0g4WLIiOX3wRZs6sfH2WIMOs/DRWlUtyGVvhvnGEPUxE+lKQISLtIJ5ZALjllsrXZwkyoPw0VmUyMptObIGrODMz4FgqZzpkIFOQISLtIJ5ZALj11srXZw0yyvVlKMjI7NfAW8zs/MJqmcA/Vs78DfCWwjUifSnIEJF2kMxk3HpraAYtp54gY/36sCw5hG0ZBuDu05mDDHf/JXAxYV+Q18zsZTObDbxGWMr7Unf/aXOGKR1PQYaItINkJmPuXHiiwl6a9QQZySyGDbz1H2vZ6v004DrCtubLgGuAU9393Y0fnnQNBRki0g6SQQZU7stoZJAxANWy1fulwKVNGIt0MwUZItIOkuUSCEHGv/5r+vW1BBnF2SWPPJJ+/wCiFT+lf8SDjJUrWzcOERnY0jIZd9wRbeeeVM/skgsuiM4dfXT2MXaRTt/qXTqFMhki0g7SMhnLlsGDD8J++6XfV5SnXLJoUVj0q+i978091G7Q0Vu9SwdRkCEi7SC5OFbx9q23NjbI+MMfYG1hE/O994Zddql9zB0sz1bvbyMEESL5KcgQkXYQz2QccQRcfnk4vuUW+OIX+15fa5Bx/vnR7bPOqmWkXaFSkLENcGfxhrvf3vTRSPdSkCEi7SCeyTj22CjIuPfe8NoUf61yz74seDzIePLJ6HVuyBA47bT6x92hKjV+/hbYv3jDzDaY2T83f0jSlRRkiEg7iAcN228PO+0UjtesgXvuKb12xYpooa7hw2GjCn+Xx4OM+GvcMcfAhAn1jbmDVQoyVgCx/bkr9mKIVKYgQ0TaQbxcMnIkHHZYdDu5XkbWUgnAmDHpi20N4FIJVC6XTAc+YWbzgOKWcjua2UGVntDd76x0vwxQCjJEpB3EMxkbbxyCjP/933C7niBj0CAYO7Z0B9bNNoN/+qe6htvpKgUZXwD+BFxRuO3AFwsfaaxwjXZilb4UZIhIO0hmMg45JAQIvb3w8MOweHEIFgCWLo2uHT26+nOPH18aZJx+OvT0NGDQnatskOHut5nZNGAfYAvCFNZfAPf1z9Ckq/T0RP+RN2yAdesG/H8+EWmBZCZjxAjYa6+wTkZvb2gAPeqocH+eTAaEIOP556PbA3RtjLhKi3FNBua5+02F218BbnD3a/prcNJFzEI2o/hXxKpVCjJEpH/Fd0UtviYB7LFHCDIAZs6Mrq8lyCh605tg993rGm43qNT4+QJwQuz2i4RmUJHaqGQiIq2ULJUUGzW32SY6P2tWdJw3yNhqq+hYWQygck/GOiD+p+bBwC+bOxzpagoyRKSVkqWSosmTo+OXXoqO8wYZ//qvYVO0KVPgQx+qcZDdpVKQ8QJwrJld5e5LCue04qfUTkGGiLRSMpNRFM9k1BNk7LorPPRQ7ePrQpXKJT8ilEsWmtkGQoDxu8KiXOU+ymxjJ0JosCpSkCEi/a1cJqNR5RLpo9Lskp+Y2Qzg7YTZJe8F7gZmlnuMSEXKZIhIK5XLZEyaFM1+mzMnNIcOHaogowEqlUuK+5XcDmBmZwE/d/eLmz4q6U4KMkSklcplMnp6YMstYfbscHv2bNhuOwUZDVCpXJI0FbiqSeOQgUBBhoi0UrlMBpQ2fxZLJgoy6lYxyDCz/c1sAoC7v+TuKytcO83M3t/oAUoXUZAhIq1UaUfVtOZPBRl1q5bJuAv4x8LrZjbezJaW2b9kPzTFVSpRkCEirVSuXAIKMpqkWpCR3FLOgJFU6eUQSaUgQ0RaSeWSfpenJ0OkPgoyRKSVlMnodwoypP80OshwD6vrLV5c/3OJSPerlMlQkNEUCjKk/8SDjJVle4iz+853YM89+041ExFJU6nxM14umT07rJmhIKNutQYZWl5c8mt0JuOPfwyfFyyAO++s//lEpLtVKpeMHBntorp2LbzyCqxeHW4PGlS6YrFklqWB89/N7LTCcQ8hwPgvM5ufuG7Lho5Muk8jgwx3ePbZ6Pa8efU9n4h0v0rlEgglk4ULw/H06aXXWnIehGSRJcjYs/AR95Yy1yrDIeU1MsiYPx+WLo1uz51b3/OJSPerlMmAUDL5+9/DcTzIUKmkZtWWFVfPhjROI4OMeBYDFGSISHVZMhlFTzwRHSvIqJmCCOk/jQwynnuu9LaCDBGpJksmo0hBRkMoyJD+oyBDRFopTyZjxozoWEFGzRRkSP9RuUREWqnSFFYoDTLi0+wVZNRMQYb0H2UyRKSV8pRL4hRk1ExBhvSfRgUZyemrEIIM1+QmESljw4Zo3Quz0tejok03hWHD+p5XkFEzBRnSfxoVZCxYAEuWlJ5bt67vORGRong/xogRYYGtJLP0bIaCjJplCjLMbLiZnWlm+zZ7QNLFGhVkJEslRSqZiEg51Zo+ixRkNFTWTMYa4Jf0XZRLJLtGBRnJUkmRggwRKadaP0ZRvPmzSEFGzTIFGe7eC8wGRjd3ONLVlMkQkVbJmslQkNFQeXoyLgDeY2ZDmzUY6XLxhqq1a0MjVi3imYz4cyrIEJFyqk1fLVK5pKGy7F1SdC9wIvCImf0EeBbos1+3u2s7TElX7OguZjFWr66ctiwnnsnYZx+4665wrCBDRMpRuaQl8gQZN8WOf0DfzdCscG5wvYOSLhYPMlatqj/I2H9/BRkiUp0aP1siT5DxvqaNQgaOevsyFiyARYvC8YgR8MY3RvcpyBCRcrJmMrbaKmRd4+vuKMioWeYgw90vaOZAZICoN8iIZzG22w422yy6rSBDRMrJmskYMgQmTYJXXonOKciomRbjkv7V6CBj002j2woyRKScrJkM6FsyUZBRs1xBhpltbWa/MbOXzWytmb2tcH6Twvl9mjNM6Rr1BhnxmSXbb68gQ0SyyZrJgL7NnwoyapY5yDCzqcBDwEnAdGINnu4+D9gb+ECjByhdptGZjAkTQv0UQr/G+vX1jU9EulPWKaxQGmQMGQJDtXJDrfJkMv4L6AV2BU4nzCaJuwE4sEHjkm4VDzJW9pkBXV08k7HddjB4MEycGJ2bP7/2sYlI96q1XKIsRl3yBBmHAz9x99n0nb4K8BKwVUNGJd2rkZmM7bcPn+Mlk9dfr21cItLdai2XKMioS54gYzQwp8L9Q8g3JVYGonqCjIULw0fxebbYIhyrL0NEqsmTydhxx+h4K/3tXI88QcZsYJcK978FKLOphEhBPUFGsh+juFWzggwRqSZPJmPbbeFrXwuL/f3XfzV3XF0uT5BxBfB+M9s1ds4BzOwk4BTg0gaOTbpRI4OMIgUZIlJNnsZPgHPOgXvugYMOat6YBoC8jZ8vAw8AvyMEGJ8zs/sIwcWjwHcbPkLpLvUEGcmmzyIFGSJSTTyTUct2BlKTzEGGuy8F9gN+RZiuasDbgTcAPwEOdffVzRikdJFGZTKKTZ+gIENEqsubyZCGKNuoaWYHAU8W1sAA/hFofBL4pJltQgg05rl72mwTkb5ULhGRVsjT+CkNUymTcRshUwGAmc00s2OLt919nrvPVYAhuahcIiKtkKfxUxqmUpCxBogvczYF0L+M1KfWIGPRorCiJ8CwYbDlltF9CjJEpJLe3tLF/0aMaN1YBphK61o8A7zXzP4GFPbWZoKZTa7wGNx9VqMGJ12o1iDjkUei4223jaavgoIMEaksGWAM0t6g/aVSkPF14GLgb4XbDny/8FHJ4Cr3y0BWa5Dxne9Ex/vuW3rfqFFhb4E1a8KLyYoVqrmKSERNny1TNshw98vN7FHgEGAL4D+Bq4DH+mVk0p1qCTIefBBuuCEcm8GnP116v1nIZsyeHW7PnQtTp9Y/VhHpDpq+2jIVlwF392eBZwHM7FzgT+5+cT+MS7pVWpDR2wsf/Sj87W8hY5Fc/OarX42O3/Uu2Gmnvs+rIENEylEmo2Uy7zXi7ipiSf3SgowrroCf/zwcv/OdcP/9sPPO4fbDD8N114VjM/jSl9KfV30ZIlKOpq+2TObAwcwmmNlOiXNTzexHZvZ7M/unxg9Puk5akHHhhdG5ZcvgmGOimSRf+1p03ymnRMFHkoIMESlH01dbJk924gfABcUbZjYSuAv4GPBu4PrCAl4i5cWnjq1aBfPmwZ//XHrNzJlw8smhF+Pqq6Pz55xT/nkVZIhIOcpktEyeIGM/IP5u8C5gEnBU4fOTwGcbNzTpSslMxqWXwvr14fakSdF9t98Ohx0W3T7pJNhtt/LPqyBDRMpRJqNl8gQZmwHxNTCOBB5y9xvd/TXgfGDPBo5NulEyyLjoouj2OeeUbqu8bFl0/OUvV35eBRkiAvDd74aS66OPRufU+NkymRs/gXVA7B2CgwmBRdFiYEL9Q5KuFg8yFi2CBx4Ixz09cOqpMH48PPEEXHJJdN0JJ8Duu1d+XgUZIvLMM9EU91Wr4Oabw7HKJS2TJ5PxDHCSBccC44FbYvdvDSxs5OCkC8WDjPi2N0cfDRMmhBkkv/417LNPON/TUz2LAQoyRASefDI6fuih6DVG5ZKWyZPJ+DEhc7EIGAHMpDTIOAh4vGEjk+40aBAMGQJr15aef897ouPhw+GWW+D882GPPcJHNQoyROSVV6LjJUvg1VfDPkfKZLRMnnUyLjSzXuAEYAlwnruvgzC9FRgD/KQpo5TuMnx4aZAxdmzIZMSNGgWf+ET259xkk+h43rywwJf2JxAZWOJBBsCMGSHIUCajZXK9Crv779z9JHd/v7s/Fzu/wN33cvdfN36I0nXiJRMIvRhDh6Zfm9XQoTBmTDjesCH0e4hId7nnHvj+92Fhmcp8WpABavxsoTzlEpHGSAYZ8VJJPTbbLKRIIZRMJqgPWaRrvP46vO1tIQs6fTr88pd9rykXZGjvkpbJFWQUtnn/MLA9YSaJJS5xdz+szwNF4uJBxtSpcMABjXneTTcN3eUQgoy0PU5EpDM99lhUZr3rrvRrlMloO5mDDDM7ErgSGAIsQzNJpFbxIOOMM8KMkkZQ86dI94qXQGfNCjNHkq8dySBj+vRwnRo/WyZPJuMbwHzgeHd/qEnjkYFgr73CxmfDh8NZZzXueRVkiHSvxYuj4+KWBPH/88uXw9KlpY9ZtCi8Fqjxs2XyBBk7AucowJC6fe97IdDYc0+YNq1xz6sgQ6R7xYMMgJdeKv0/n8xiFM2YoUxGC+WZXTIPWFv1KpFqNt4YPvShaMGtRlGQIdK9kjPGXnqp9HalIEOZjJbJE2RcBJzUrIGI1E1Bhkj3SmYyZs0qvZ01k6Ego1/lCTLOB4aY2dVm9jYzm2pmk5MfTRqnSHXxIOO558pfJyKdJ61cEhcPMrbfPjp+4glYuTK6PWJEw4cm5eXpyXgKcMK01XdWuG5wXSMSqdWee0ZLlj/2GMyc2dieDxFpnTzlkre/HZ59Nhz//e/RHibDh8NgvUX1pzxBxlcJQYZIexo9Ory4XH99uP2nP8FnPtPaMYlIY+TJZBxwAPz2t2EWyrJl0Xk1ffa7PHuXnNvEcYg0xsknK8gQ6UZ5Mhlbbw077hiyGHHqx+h32kFKusuxx8JGhdj5gQdg9uzWjkdEGiOZyVi0qDRLEQ8yttwSdt6573Mok9HvcgcZZjbYzHYxswPN7KDkRzMGKZLZ+PFhf4OiK65o3VhEpDHc+wYZEM0w2bABXnstOj9pUnqQoUxGv8sVZJjZfxBW/XwMuAO4LeVDpLVOis20vvzy1o1DRBpj1apo35K4Ysnk9ddDoAEwcSIMG6Ygo01kDjLM7AOEpcUfAc4hzDL5PvDfhH1MHgLe3/ARiuR1/PEwqPCrfc89MGdOS4cjInVKy2JAFGQkSyWgckmbyJPJ+Bfgfnc/FPhF4dz17v45YHdgCpq+Ku1g003h4IPDsTtceWVrxyMi9aklyJg2LUxpj1Mmo9/lCTJ2Ai4rHBensm4E4O5zCIHHJxs3NJE6qGQi0j2SM0uKKgUZG20Eb3hD6fXKZPS7PEHGBqC4AHzx8/jY/S8C2yPSDk44IdoG+o47wo6NItKZ4pmM+IqdxcbPtCAD+pZMlMnod3mCjFnAVAB3XwPMBt4au38fQm+GSOtNmgT77x+Oe3vhqqtaOhwRqUM8yNhtt+i4UiYD+gYZymT0uzxBxp3A0bHblwEfNrPfmNn5wAeAGxo4NpH6nHxydKySiUjnipdLdt01ylK++mqYdfLqq9H9ymS0lTxBxg+AH5vZ8MLt/yQEFe8F3gPcBHyuscMTqcOJJ0bHt94KC5VoE+lI8UzGppvCFluEY3d4+WWVS9pY5iDD3Z9295+7+6rC7RXufiyhL2OMux/p7noVl/YxeTLsvXc4Xr8e/vrX1o5HRGoTz2SMGwfbbBPdfuml8kHGdttFKwCDyiUtkCnIMLORhbLIKcn73H2Juy9v/NBEGiC+5bOaP0U6UzyTMXZsaZAxYwYsXRqOhw4Nq/4WDRlS+hqgTEa/yxRkFIKI04DRzR2OSINNnBgdz5/funGISO3iQca4cSFLWXTffdHxlltG/RpFb43NT9hxx6YMT8rLs9X7DMKCWyKdIx5kLFjQunGISO3i5ZJkJuPee6PjeKmk6GtfgzFjQn/Grrs2bYiSLk+Q8W3gJ2Z2kbs/06wBiTSUMhkina9SueSFF6LjtCBj003h299u1sikijxBxo6EtTEeN7PrgGeBlYlr3N2/1qjBidRNQYZI50uWS4YNS78uLciQlqoYZJjZTOCT7n4tcG7srhPKPMQBBRnSPiZMiI4VZIh0pmS5ZJNN0q9TkNF2qmUypgCjCsdTmzsUkSZQJkOks/X2wpIl0e0xY8K01LFj+26cpiCj7WQul7j7S80ciEhTqPFTpLMtXRoW3QIYNSpa92KbbRRkdIA8K36KdJ5kuaT4YiUinSHZ9FkUb/4sUpDRdrJkMiaY2eTqlwXuPquO8Yg01rBhYQGe5cvDqp9Ll4Z0q4h0hjxBxqRJzR6N5JQlyPh+4SMLz/icIv1nwoQQZEDIZijIEOkcySXFiyYn/vbdZJOwwqe0lSwBwd3AzGYPRKRpJk6MtoSePx+23ba14xGR7LJmMlQqaUtZgoyfu/vFTR+JSLOo+VOkcyXXyChSkNER1Pgp3U/TWEU6V3KNjCIFGR1BQYZ0PwUZIp2rXLlkk03CrqtFCjLakoIM6X5a9VOkc5UrlwwaVNr8qSCjLVULMg4Fbu6PgYg0jTIZIp2rXLkEYIcdouNp0/plOJJPxSDD3e9w97n9NZhamNlIM/uhmc0xs1Vm9pCZHZvxsdua2VVmtsTMlpnZDWa2c7PHLP1MjZ8inatcuQTgi18MW7iffjocfHB/jkoy6oY1La4E3gR8FngBOAu40syOcfcbyj3IzDYF7gLmAu8F1gPnAHeY2Z7u/nKzBy79RJkMkc5Vbp0MgP32g+nT+3c8kktHBxlmdhRwOHCiu19ZOHcbMA34LlA2yAA+DYwD9nb3VwuPvY8QqHwR+EgThy79SUGGSOeqlMmQttfpjZ8nAEuAq4sn3N2BC4Adq5Q+TgBuKgYYhccuAK4FTmzOcKUl1Pgp0rkUZHS0js5kALsCM9y9N3H+sfj9yQeZ2XBgW+CylOd8DPhnM9s02Y9iZourjKcp61Wff/75fc7tsssu7LPPPqxbt47f//73fe7fY4892GOPPVi5ciWXXnppn/v33ntvdt11V5YsWcKVV17Z5/799tuPN7zhDcyfP5/rrruuz/0HHXQQ06ZN47XXXuPGG2/sc/9hhx3G1ltvzezZs7nlllv63H/EEUew+eabM3PmTO68884+97/zne9k4sSJPP3009x333197j/hhBMYM2YMTzzxBA899FCf+0899VRGjBjBI488wmMPPsiZhfO98+dz4W9+w+nveQ89PT08+OCDTE9Jt5511lkA3HvvvTzzzDMl9/X09HD66acDcMcdd/DCCy+U3D9ixAhOPfVUAG6++WZefrm08jZ69GhOPDHEsTfeeCOvvfZayf0TJkzgmGOOAeDaa69lQaKPZPPNN+eII44A4IorrmDp0qUl92+11VYcfvjhAFx66aWsXLmy5P6pU6dycKF+/fvf/55169aV3L/DDjuw//77A/rdq/d375FHHulz/+mnn67fPbL/7p0+bx49hfsfnjmTvSZP1u9enb97/anTMxkTgIUp5xfG7k8zDrAaHysdprenh7XDhgEwqLeXIatWtXhEIpLFoPXr6Vm7FoDeQYPoHTGixSOSvMzLbH1tZmem3lGFu19Y14hyMLNngKfd/ZjE+e2BZ4CPuPvPUh43CXgF+LS7fzdx3weBXwA7uftTOcezeMyYMWMWx9N70h6mTYPiX33PPgvbbdfa8YhIdfPmwaabhuMJE1TubG+WdrJSueR8wq6q8QfGIxJLOQfQb0EGsID0jMP4wue0TAXAIsK4a3msdKKJE6MgY/58BRkinaDSGhnSESoFGYcmbvcA3yK8Mf+M0OtgwM7Ah4H5wH80YYyVTAdOMrNBib6M3Qqfn0h7kLuvMrOZhJ6NpN2Aee2+PojkpOZPkc6jps+OVzbIcPc74rfN7CvAMGA3d18Wu+tqM/sxcD/wVqBvt0vzXAmcDRxDbIYJcCahjNKn6TPx2I+b2ebu/hqAmY0vPNclTRqvtIqmsYp0nnJLikvHyNP4+T7gt4kAAwB3Xwr8tnBNf7oBuA34tZm938wONbPzgQOBzxQvMrPbzSxZ1vkOYfrrDWZ2nJkdDVxPWJTrvH4ZvfQfBRkinUflko6XJ8jYBBhc4f7BwKb1DSefwpoYxwN/IAQGfwZ2JyzOdW2Vx75OyLzMBi4C/ggsBg5y91nNG7W0hJYWF+k8Kpd0vDzrZDwFfNDMfuHui+J3FMoMHwSebOTgsihkUT5e+Ch3zSFlzj8LHNeckUlbUSZDpPNUWlJcOkKeIONc4ArgaTP7DfA0YYbGToQyyXjg5EYPUKQh+qPxc+FC+N73wnTZ97+/OV9DZCBRJqPjZQ4y3P1qMzsZ+AFhM7K4l4F3uftVDRybSOP0RybjvPPgu4VlV974Rthrr+Z8HZGBQkFGx8u1rLi7X2lmVwN7ETYhM+B54OGUpb1F2kd/BBn33hsdz5ihIEOkXiqXdLxMQYaZjQQeBX7k7t8HHix8iHSG/mj8fP756DixZ4OI1ECZjI6XaXaJuy8nLMK1vLnDEWmSeE/GggXQ2+DE27JlMDe2ftuKFY19fpGBSOtkdLw8U1jvB/Zu1kBEmqqnB0aPDse9vaUvXo0Qz2KAggyRRtA6GR0vT5DxOeBUM3ufmaVuhCLS1prZl6EgQ6TxVC7peHkaP79H2FjsV8C3zex5IFl4dnc/rFGDE2moiRNh5sxwPH8+7LBD4547GWSoJ0OkPu7KZHSBPEHGNMK6GMXVMDdr/HBEmqiZzZ/PPVd6W5kMkfqsXAnr14fjYcPCh3ScPOtkTGniOESaT+USkc6hUklXyNOTIdLZmrnqp8olIo2lNTK6goIMGTialclYswZmzy49p0yGSH2UyegKuVb8NLNtgX8D9gXG0TdIcXfftkFjE2msZgUZL77Yd90NBRki9VGQ0RUyZzLMbDfgb8AHgCGERtAVwDBgCrCBqClUpP00K8hIlkpAQYZIvVQu6Qp5yiVfBdYCbwSK01Q/6e6TgA8DY4GPNXR0Io3UrNklaUGGejJE6qNMRlfIE2QcCPzC3YtbvEPYIA13/yXwZ+CbjR2eSAM1q/FTmQyR+q1eDXPmRLe1pHhXyBNkjCLsuAohowGwcez+ewiBiEh7ala5JLlGBijIEMlj1SrYdVeYNAkOOgj+8hctxNUl8jR+vg5sDuDuy8xsBRBfMnEcMLiBYxNprPHjo+OFC2HDBhjcgF/ZcpkMd9AK/CLV3XVX9P/orrvgiCNgyJDofgUZHStPJuMRYJ/Y7TuAT5rZQWZ2CPBxwnbwIu2ppyd6sUouWVyr3l544YXodjGocA9TW0Wkuldf7Xtu7droWOWSjpUnyLgYmGBmwwu3vwSMAW4DbiE0fn6hoaMTabRGN3++8koUTGyyCYwZE92nkolINvFejO2267uE+GbaxaJTZQ4y3P2P7n6Qu68q3P47sAth3Yz/B+zu7nc3Z5giDdLo5s94qWTbbWHjWJuSggyRbOJBxkc+ErKDn/kMTJ4Mxx8P++3XsqFJfXItxpXk7rOBHzZoLCLN1+jmz3jT57bbhl6PIgUZItnEg4wttoDNN4dvfzt8SEfLsxjXp81sz2YORqTpGh1kVMpkaK0MkeDJJ+Gqq0r7LOKSQYZ0jTw9Gd8GHjKzBWZ2hZl93Mx2btbARJqimUHGdtvBiBHRbWUyRODll2HvveGEE+Dcc9OvUZDRtfIEGTsTei9uB95KKJM8bmZzzOxiM/uAmU1rwhhFGqfRjZ/qyRCp7LrroqzezTf3vd9dQUYXy9yT4e5PAU8BPwYwsz2AQwsfRwHvIqwEWlefh0hTNbLx071vT4aCDJFS99wTHc9K2d5q6dKwGBeETOCoUf0zLukX9Wz1/jowD1gILCMsMb6hEYMSaZpGlksWLAgvkBCCi003VU+GSFI8yHj99b7rxySzGFrArqtkzjqY2VhC1uKwwscOhMzF3wlraNwK3NX4IYo0UDzIeO21+p4r2Y9hpp4Mkbg5c0oXq4Owtsy0aaXXFKlU0nXylDbmETIfTwI3AZ8Hbnf3xU0Yl0hz7BBbCf+xx0K3e3z54jyS/Rigcon0v7Vr4e67Yc89229lzHgWo2jWLAUZA0iecslgQuZiFbCy8KF1k6WzbLYZTJ0ajtesgUfrWAk/2Y8BCjKk/33iE3DYYbDHHrBuXatHUyotyJg9u/S2goyulifImAS8F3gMOBW4EVhkZneY2X+a2VvNTE2f0v7iqwfed1/tz1Mtk6GeDGk2d/jDH8LxrFlhPYp2oiBjwMuzrPhr7v57dz/b3acB2wIfA14BPkyY2tqAHadEmuwtb4mO77+/9udJ9mSAejKkf73wQtR8DI3Z9K9RVq6Ev/+97/nkDBMFGV2tntklQxIfBoyo+AiRdtCMIEPlEmmFRx4pvd1OQcZf/wrr1/c9r0zGgJJndsk2wNsKH4cCWxACiyXAnYTZJbc0YYwijfXGN4ZdHlevDn8Jvv56/l0ely+PZqf09MDWW4djBRnSn5JBRnzvnFaLl0re9Cb429/CsYKMASVPJuMF4FfACcB0wrbu+wIT3P04d/+Buz/RhDGKNNaQIbDXXtHtWrIZzz4bHU+ZAoMHh2P1ZEh/audMxr33RsennRYdK8gYUPIEGV8BDgHGufs/ufu33P1Bd+9tztBEmqjekkl8Vsquu0bH6smQ/pTseWiXTEZvb2mQcdxxMHRoOF68GJYtC8erVsGSJeG4p6d0RV7pCnmCjO+7+13uXnaOlJntWu4+kbZS7wyT+F+Qe8Y2J1a5RPrL/Plh87G4dslkPPlkCCYANtkEtt8+KilClM2IZzE231yrfXahPEHGNWZWdtWiwo6sKbvfiLSheCbjwQfTG9QqiQcZe+wRHSvIkP6StsZLuwQZ8X6MAw4IwUO1IEOlkq6UJ8jYE/h92h1m9gZC06eK0NIZttwSttoqHK9cCU/kaCdyzxZkqCdDminZjwHtUy5JBhkAkydH54rTWBVkdL08QcYpwHFm9qP4STPbjjCzZB1h5olIZ6i1ZPLii1Edefz4KFgB9WRI/0lbg6LRmYzly+HVV/M/Li3IUCZjQMqzGNdfgA8CHzOzzwOY2VRCgAFwqLu/2PARijRLrc2fyX6MeB1Z5RLpL2mZjEYGGYsXh71+ttwSfvWr7I97/fVoDZmhQ8P0VVCQMUDlWozL3S8gTF39upl9jhBg9ABvc/fnKz5YpN3EMxm1BhnxUgmUZjJWrgylFZE0K1bApZf2XQEzi1Wr4Kmn+p5vZLnkttuiIOCzn42yd9XEsxj77BPNKlGQMSDlXvHT3b8J/BQ4j7DC59vc/elGD0yk6fbcM0ybA3jmGViwINvjKgUZgweHhb6KVq2qZ4TSzc48E971LnjrW/P37zzxBGzYEI6LG/5ByD70NmhVgXnzouNFi+CHP8z2uLRSCagnY4Aqu+KnmX25wuPmA8sIK32eYlG62N39a40bnkgTDRsWAo2//jXcfuABOOqo6o+L18KTQQaEbMbq1eF4xYrS7IZIUfHNeNaskDU4+ujsj40HuvvsEwKC5ctDgLFsGYwZU//45s8vvf3d74YdX8eOrfy44v8nKA0ykpkMdwUZA0ClZcXPzfD4kwofRQ4oyJDOsd9+0YviffdVDzIWLIhSvUOHwo479r1m442jtPWKFWGdAJGkeM/OjTfWHmTssUf43V2+PNxeuLAxQUYys7dkCfzP/8BXvlL5cU/HEttvfGN0PHp0+Fi6NAThCxYoyBgAKpVLptbwMa2ZgxVpuLzNn/G1CXbbDTZKidMrTWOdMwfOPhu+/GVNcR3I3Ev//f/853yPTzYfjxsX3W5U82da+fD736/c97FkSVRmGTasdOYVlGYznn8+utYMNt20ruFKeyqbyXD3l/pzICItEQ8yHngg1LmL+5CkqdSPUVRphsm3vw2/+U04vuEGuPrq0L3fDdavDz87rdpY3Zo1pb0Tzz8Pzz0H221X/bEbNpQGu3vsEaZSF2Vt/nztNXjllTD7I+3fLB5kDBoUxrt0KXzve/D1r6c/Z3xPn223DY+LmzwZpk8Pxw8/HJ3fdNP0gF06XubGTzMbb2a7V7h/dzMbV+5+kba0zTZhOWMItewnn6x8fbV+DKi8VkY8lfzww6Ge/tBDmYfbtmbMCD/LqVNrW1dhoEnLYt14Y7bHPv989Hu12Wbh9zdvJuO112DaNNh7b/j5z9OviQcZH/lIdPyDH5Rvko4HGdtv3/f+eCbjgQeiY5VKulae2SXfBs6vcP9vgW/UNRqR/mYG++4b3Y7/dZWm3J4lcZUyGcm/MufMgYMOgssuqzrUtva734Xg4qWXyr9pSSRtDZWsQUZaNi2eycgSZNx6azTz6eqr06+JN35+5COw887hePly+M530h+TJ8iIN4gqyOhaeYKMQ4FrK9x/DXB4fcMRaYF4RuKxx8pft3p1lOkwCz0ZaSr1ZMT/AiyuH7BqFZx6Knzxi7Cu7P6D7S3+xtYNmZlmSwsybrstmpVUSVqQEc9kZCmXxAOI+FTVuPjv6qabwrnnRrd/9KNoA7S4eJCRVvqJT2ONr/OhIKNr5QkyJgGVVo15uXCNSGeJd8CnbTpVNH16tDbBdtvBqFHp11Uql8TfAG6+ufSvvfPOg4MPDsuWd5r49/nww1qErJq0csnKlXDXXdUfGy/ZFbNpecsl8SBj7ty+92/YUPo848bBSSfBTjuF2ytWpC/FnyeTEacgo2vlCTJWANtUuH8bYE19wxFpgd1jrUaPPlr+DTJLPwaUL5f09pa+cL/lLWFGy+GxBOB994Wg549/zDT0thH/Pl9/XX0Z1ZRbcj5LyaQR5ZJkkJH8nV+8ODo3dmxoyhw0CA45JLomLSBXkCEJeYKMB4D3mlmfP98K584E/trnUSLtbupUGDkyHM+fH5ri0mTpx4DyQUb8hXv06PDCPX58eGM577xoVsvSpXDaafChD0WZk3aXfNNUyaSy+M+rWDaD6kHGa69Fv58jRkQliXrKJWvWRGtspN0/YUJ0XCnrt3Bh9LWHD4dJKYnt5JTWIgUZXStPkPEdYCvgXjM72cy2M7Ntzexk4N7Cff/djEGKNNWgQX2zGWmyTF+F8j0Z8Rf/+Av34MHw+c+HFSDjS0T/8pdhmmsnSKb/qzXQDnTxn9fBB0eBxowZlfcyif9u7r57FJjWUy6BviWTeD9GuSAj2b/03HPR8Xbb9Z2+CmHtjLT1MBRkdK08u7DeBnwU2B74I/A08EzheHvg4+5+czMGKdJ08SAjrfmzt7fv2gTllOvJiL9wx9PbRfvuGwKZAw+Mzr38cvmv006SmQwFGZXFf14TJ4ZAo+gvfyn/uPjvww47RMf1lEugcpAxcWJ0vOuu0ZoaTz9d2qharVRSlFYyUZDRtfLuwvpzYFvg08DPgJ8DnwK2dfefNX54Iv2kWvPnzJlRSnnTTaO1NdKUK5eUy2TEjR5dujvs0qXlv047SQsy1PxZXjyTsfHGcMQR0e1KJZP470N8D5G85ZLkOhdZMxkjR4ZFtiCU8ooLa0F9QUal/0/S0WrZhfUVd/8fd/+Yu3/U3X/g7q80Y3Ai/aZakJHs6K+0qmW5IKNaJqMovu9EpwYZav6sLP7zGjGiNMi4+ebyU5njvw+jR0fHecol7n0zGclprOWCDChfMskaZMSnsUIYe3znYukquYMMka60667R8VNPhWa4uKz9GJC/JyMp/ubRqUEGqGRSSfzntfHGYaO9bQqT95YuTZ8eCmFvkKJ4MDpmTBT4Ll0alngvZ/lyWLu29Fwyk1Gu8RPK9y/VmslQqaSr5QoyzGycmX3azC4zs5vN7NbExy3NGqhIU40aVZoGnjGj9P67746OqwUZtfZkFHVikJG27oOCjPKS5RKz0mxGub6McpmMwYNLg460hbKKklkMyF4ugfSsn7uCDEmVZ++SbYDHCcuLH05YAXQ34CDgEGBXtAurdLJyzZ/z50dBhhkcemjl56mnJwNK3zzif7m2qw0b+mZ+QEFGJclyCcD++0fnZs5Mf1y5IAOyl0zSgoxK5ZJ44yf0LZe4h+uLgc3GG1fusVCQMaDkyWR8HRgLHEaYTWLAu4DRhD1LlgFvbfD4RPpPub6M666Ldszcf/+wKVUlWYKMbspklFtYSkFGeclMBpT+TpQLLisFGVl3Yq03k7HNNtHXXrgw7OSaXE68Us9SsidDQUZXyxNkHAb8sjCVtdg2bu6+0t2/SMhyfKvRAxTpN+WCjKuuio6PP77685TryejWcklyOmbx+3/tNTV/lpOWyYiXO2oJMrJmMtJ2UM3Tk2HWty8ja6kEQlBRXN+jeFu6Vp4gYwLwROG42Po8PHb/TcDbGzEokZZIW1585Ur4v/+Lzh93XPXnKdeT0a2Nn/FAatSo0tVQtfJnumTjJ2QLMso1fkLzyiVpv6vJ0mKeIGPw4NLVQBVkdLU8QcY8oPjn1zJgNTAldv8QSoMOkc4yZUq06dmCBWEb9ptuirbE3nnn6i+gUP8U1k4LMpJvmHvtFd1WySRdWrmk3kxGPeWSefOikmCxx6IoLchIZv3yBBlQukNrcVaNdKU8QcZ04I0A7u6EfUo+amaTzWwK8CHgqfIPF2lzyeXFH3ssf6kE6m/87LR1MpKp/733jm4ryEiXVi6JL65VbnZIsxo/16+Pvuby5dE6HSNGhH1IkuoNMr7whRBcnHZa2ChQutZGOa69Gvh3Mxvu7quArwJ/AV4o3O/AiQ0en0j/2n33sIcIwN/+BtdeG92XNciIvyivXh3+QuztjV7EzUrfUNIeP3hwmLWxalV4we/pyfFN9DNlMvJLy2SMGhV+N9zDG/2GDaW9C729sGxZdLuYdSvKurR4WpABIZsxfnz1LAZEy4u7wzPPlP7OZwkyDj8cXnyx+nXS8fLsXfITd9+2EGDg7rcC+wE/AL4HHOTu1zRnmCL9JP4X2i9+Eb3gTppU+uZZyaBBpS+6K1eW/mU6dmzpm0eSWWeVTJJBxg47qPmzmrSejEGDSgOH5L/7ihXRUu0jRoRdfOOyLi1eLsgoNn9WavqMj7lY8ujtjb6fUaPSN0CTAauuFT/d/SF3/5S7f8bd723UoERaJh5kvPRSdHzccem7SpaTLJlk7cco6qQgI/lX+eDBpc2fymb0lVYugcp9GZWaPqG22SXxfohikJElkwGl/1eKtt++8vRVGXC0rLhIXHyXybispZKi5DTWrP0YRZ0UZKT9Va6SSWVp5RKoHGRU6seA2solO+8cHRdnmFRaiCsu3r9UlKVUIgNK1SDDzLY2s0+a2UfMbNPYuYvN7DUzW2Fmd5iZFuKSzhffZbJo9Gg45JB8z5PMZGRdiCv+NYs6Kcgo/lWuIKM899oyGdWCjCzlkuTmaDvtFB03KpMhElMxyDCzHQmLbH0P+DHwmJntANwOnAYMBXoJK33eZGYZi9YibSz54nnUUTBkSL7nSK6V0c3lEmUy8lm3LjR1QuiriP9uxRuC6wkyymUy4punjRxZuvpmnp4MSA8y4lNTRaieyfgsYf2LfwVOBRYDfwJGAG9x93HuPgr4J2At8LmmjVSkvyTTwHlLJVA5kzEQyiVveENUdpozJ3pTlfSfV1GlTc6q9WRkWScjGUBsskl0O61cUul3dfLkvuNQJkMSqgUZBxOWEv+Ru18O/BuwC/Bdd/9r8SJ3vwn4Fdq7RLpB/C+0nh448sj8z5HsycibyeiktTLS+gsGD8627sNAVK5UAvWVS0aOjGYtrVqVvmldPMiYOLF0JkjecklyeXFQkCF9VAsyJgGx7Sh5vPB5Rsq1TxCWHhfpbAccEE0lPOmk9Bf0ahqZyWj1TqzucPvt8OCD6feXe9PMugLlQFOu6RPqCzLMqpdMkk2d1YKMSo2fUBqQjxlT/XoZcKoFGUOBVbHbxePVKdeuyfB8Iu1v4sSwtfsvfwk/+1ltz9FNPRmXXx62t3/zm+GBB/reXy79H/8+0zblGqialcmA6oFdMpMRL5fkzWRAaSZD01clRZ4VP0UGjt13T5+il1U39WTcemt0fNttsO++pfdnCTKUyYg0K5MB1TMZySAjnnlYsCD0zmRt/AT4p3+CYcPCyra1lBWl62UJMo4ys80LxyMIy4efYmZ7JK7TzBKRokrrZHRaJiP+ZpU2lnJvmgoy0mVt/My7GBfkDzJ6esK/08KF0cZoeTIZkyeHnXaffTbMwhJJyBJk/HPhI+7DZa71+oYj0iW6acXPeNNmWn+IMhn5VCqXVGqWbXS5pBhAbLppdO3s2dH4NtooWz/SLruED5EU1YKMQ/tlFCLdJtmT0apyydy5MHRo+b98s4i/2aWNRY2f+bRTuQRCX8ZThQ20n4ptpD1hgnospG4Vgwx3v6O/BiLSVeJvHkuWRG8QgwZle8NvxBTWm24KNfORI+Hxx0v3qcijWrlEmYx8ai2X5M1kZJldAqUzTGbEJg5mCYZFqtBsEJFmiL95vPxydDxuXLaN1hqRyfj5z0OdfdkyuO662p4DVC5ptEbMLsnSk5FldgmUBhnJTIZInRRkiDRD/M129uzoOEs/BjRmnYyHHoqOa10My12Nn41Wa7kkfrvR5ZKiJ5+MjhVkSAMoyBBphvhfqLNmRcdZX7jrzWTMn1+6VX2tgcqqVWGvjUrPo56MfCplMkaOjPogVqyI9hmB+hs/e3vTZ47EMxnPPhsda2EtaQAFGSLNEP8Ldfny6DhrJmPjjaM3m5UrS99sskhuSlZryaXSDAeAtWujsQ0eXLrZl4KMdJUyGYMGpQeYvb2h7FVUXJE2qVImY8mSaA+ZUaOif6t4kBH/PVMmQxpAQYZIMyTfPIqyvnCblb7ZxN9gsoiXSqD2TEbyjSoZZCT7MeKzERRkpKvU+Anp01hXrAilKwjZj43K9OxXCjLSSiVQGmTEKciQBlCQIdIMyTR4UdZMBtRXMkkGGY3KZKxdG1Z3LKr0hpl8w+vtrW0M3aZSuQTS+zKyLMQFlQO7cnuSxHsy4hRkSAMoyBBphnKZjP4KMpLlklozGWkNo/GxVEr99/REaf3e3tYvKtYuKv3MID3IyNKPAX0DO4+tj6hMhrSAggyRZqi3XAK1r5Xx+uulM1qgceWS5Fiq/VWukklf1col9QQZw4eHxdcgNOzGA5pyQcb48enTqtX4KQ2gIEOkGRqdycgTJCSzGNC4cklyLNXeMBVk9BV/489aLskaZED5n3m5IGPQoPSAQpkMaQAFGSLNMGxY+pLMeV64ay2XJPsxoH8yGQoysqk3k1FtxdhyzZ/lggxIL5koyJAGUJAh0gxm1csH1dQaZJTLZNTSeFlPTwYoyEhTrcSUNrsky0JcReWCjEq7q6YFGfHnEamRggyRZkl7021VJsO99M0tq3rLJfHvV0FG0MzGT8hfLoG+M0zGji0/TVYkBwUZIs1S7S/7amoJMl59NXxA+Cs5/hdqLSUTNX42XjMbP6Ex5RI1fUqDKMgQaZbkm+7gwdXfIOJqCTLipZI99yx9w6ml+bNauUQ9Gfn1Z+NnrUGG+jGkQRRkiDRL8k13/Pj0ZtBy6g0y9t678oZbWbTD7JLe3rBVfXFJ7E62bl20F0xyGfaiRjZ+Zi2XKMiQJlGQIdIsaUFGHrUECPF+jEYEGdXKJc1u/Jw7F/bZB3bfHU48Mf/j202yvJQWdFZb8bOWcklvb+nPP/m7mOzJUJAhDaIgQ6RZkm+6eV+482Yy3PsGGfXu5ponk9Honow5c+CQQ+Bvfwu3r7mmNKjpRNWCMqi/XBL/PXviifB58eJodtGYMWE11jhlMqRJFGSINEvyTTdvJiNvgPDKK2G1Twhbhu+wQ32ZjN7e9Mf0R0/G7Nlw0EHw5JOl5+fNy/4c7ajazwvSp7DmCTIOPDCUYgDuugsefLByqQTU+ClNoyBDpFn6O5MR78d405vCSo61Lk1evD6+90Xa8zQjyHjhhRBgPPdc3/vmzs32HO2qWtMn1J/JmDwZ3vWu6Pa3v109yFC5RJpEQYZIs9Tbk5E3yEiWSpLPkTeTkVYqST5PtSAj2YSYFrQUzZ0L//M/4S/xF18M53p6YKutomuKmZpq1q2D//ov+PKXw86x7SJLJmPjjaNMxKpV4XvJugtr0Wc/Gx3/6U9w333R7bQgI1lCUZAhDaIgQ6RZ+juTkRZk1FMuiTd9xr+XPI2fw4ZFf7GvW9d3QbD16+Gqq+C442DLLeFTn4rW+Rg6NNz3trdF12fNZPzhD3DOOfC1r8H3vpftMf0hS5Bh1jc4zJPJAHjjG+GII8KxO3zjG9F9aUGGWWnJREGGNIiCDJFmqbcnY+TI6Hj58r5TON1h1iy4/HL4zGfg7ruj+/baK3yup/EznsnYZpv056nW+AmVSyYnnwwnnBCaOtevj86PHQvXXgtHHVX65pc1yCg2iwJccUW2x/SHLOUSKA0OFy+GZcui26NGZfta//Ef0XF8SfFy/RbbbhsdT5mS7WuIVKEgQ6RZ6i2XDBpU+oYSf6OZPh122im8+Z9yCnznOyEQgRBYbLddOG5UJmPy5NLnKZY9svxlXi7IWLIErr669NoDD4Rf/Qpeegne/vZwLh5kZC2XxLe6f/DB7I9rtiw/Lyj9d3vllejnPWJE9uW+Dz4Y3vzmvufLBRnf+Ebohfn612HatGxfQ6QKBRkizVJvuQTKN27+4Afw9NN9rzeDz30uBCiVHp9FPJOx2WahfAEho7JqVTiuJ8h4/vnoePJkeOaZMBvi7LNLMzCbbRYdZ81kzJpVevsvf8n2uCyefBL+/d/DWPOqJZMR/16y9GMUmZVmM4rK/R7uvz/ccQd88YvZv4ZIFQoyRJql3kwGlC93xKd2vuUtIbC48srwV+/nP5/++HoaP8eNSw9Ysqz7kCXI2H132H779MfXUi6JZzIAbrgh2+OyOOOM0Odx5JH5p9RmzWTEp7HGv5c8y9JD6HXZYYfSc5qeKv1IQYZIsyT/Uq0lk1EuyHj22ej4kktCqvv442GLLUof36hyydix6QFLPT0Z8SCjWN5Jk7dcsmYNvPZa6bm//KW056NWvb3w6KPheMUK+O1v8z2+lnJJPJORN8gYPDj068QpyJB+pCBDpFmalclYtix6s+3pga23zvf4rOKZjLFj+2YyktvH15PJiDcdJuUtl7zySt9zixfD/fdXf2w18+eXNuD+/OfRSppZ1FIuqSeTAfCe95QGn/H+GpEmU5Ah0izxN92entLZIlmlBQnxN+dp06I1FdLUk8lIlkuSmYzVq6OGxCFDyjcklgsy4ottVQoy4gtFzZtX/U092Y9R1IiSSTJDMnMm3HRT9sfXksmoN8gYOjRku/bfH7761dKZQiJNpiBDpFnibyJ5d2AtSgsy4m/OlcoMEP5aLgYhq1fnW5iqUrlk6dLsb5j1ZjKGDIl6FHp7S6djpom/Kcd7G5oRZAD87GfZH19vkJGn8TPu4IPhnnvgS1+q7fEiNVKQIdIskyZFszwqvYlWktYHEQ8yyjVLFiUXdspTMqnW+Jml6RPSg4zVq+Hll8PxoEHV12XIUzKJZzJOOy1ayfLRR6OvWau0IOOaa7I/b63rZBTVkskQaSEFGSLNsvnmYarpP/1TWMeiFvVmMqD2kkm1xs8sTZ+QHmS88EJUapk8OWQrKsnT/Bn/y3/nncNf8UV//nPlx1aTFmT09oa1PbKoZXZJnIIM6TAKMkSa6eMfhxtvhP32q+3xadNG6wkyas1kNLpckrVUUpRnGms8k7H11mHV0KJ6SybxIGOffaLjX/4yLJteTS2ZjDgFGdJhFGSItLO0TEZ8+mqWIKPWtTKqlUtqCTKK/RR5g4w85ZJ4JmPy5NIg4+abwxTXWs2ZEx1/+MPRuF59Fa67rvrja+nJyHJepE0pyBBpZ2nZg+IGYhttlG2mQC3lkrVro7+6Bw8Ob4iVyiX1ZDKyBEp5yiXJTMYOO0TLZC9fXrrHS17xTMbkyfCBD0S3f/rT6o+vN8hQJkM6jIIMkXaWDDJmzoxuT5mSbR+LWho/k1kMs9obP0eMiHouVq8OS5Jnnb5alDWTEd+xdNiwsPCUWeNKJvEgY/PN4YMfjGYN3XRT6feVRuUSGWAUZIi0s2SAkLcfA2rLZCSbPtPGkrXx06xvNqNZPRnxUsnWW0cBQLOCjG22gaOPjs5VWwFUmQwZYBRkiLSzSkFGtemrRZUaP19+Gd7xDjj11GjTM+jb9JkcS55yCZQGGfPmhdklRVl2/MxaLkn2YxQdckjIbAA89VRpb0VWq1dHP5eNNoqWiT/rrOiaW2+t/BxZMxnx9U3iFGRIh1GQIdLOkm/stWQyKjV+/uhHIc1/2WVw0UXR+WS5BGpv/ITSIOPRR6OZGJttVrqdfTlZyyXJfoyi4cNhr72i23/9a/WvmRQPbjbbLFoDJT5F9qGHSn8uSVl/Zmbp01jV+CkdRkGGSDtrdrnkmWei40ceiY6rlUuWLMnekwGlQcaDD0bHWRcpq6VcktyjY999o+MHHsj2dePi2Y/NN4+OJ06EXXYJx+vXw333pT9+/fpoxdVBg8Jy35WkBRTKZEiHacsgw8w2M7MLzGy+ma0ws7vMbP+Mjz3GzH5nZk+a2QYze7HMdaPM7L/N7BYzW2RmbmZnNfL7EKlb/K/8ZctKg4JaMhnJckl8M7EZM6LjtHJJpUxGpdQ/1B9kjB4dNY+uWFE+W1AukwGlQUYtmYxkP0ZcPJtx553pj0+WSqotM58WZGTJ+oi0kbYLMsxsGHALcDDwCeAEYBlwi5ntmeEpjgf2Bv4GVGr1ngB8ADCgAZsaiDTB4MGlG6vlWYq7qFImI74c9pNPRsdp5ZL4G9zSpWE6aFGeTEY8Y5I1yDDLVjLJmsl48MF8u6dC5SDjoIOi43JBRp7yEvQNMkaMyDabSKSNtF2QAbwf2AU40d0vcff/IwQac4DzMjz+g+6+o7ufDjxZ4bqX3H2cu78N+O+6Ry3SLGkp8m22qb4Ud1G5xs9160rfOOfOjRbLSiuXbLRRlLFwL32jzxNkxDdpy5qNgWwlk0qZjMmTo+dYujQ0gOaRNci4//70Bb/ylJegb5ChUol0oHYMMk4AHnf3vxVPuPsa4BLg7WZWMV/o7pn+PHEvbpwg0ubS3lyyzixJPj6eyZgzJ9o/pKiYzUjLZEDpG19xUTDIF2TE5dk4rtoMk97e0sxMMsgwq69kEg8yttii9L4ttoj+TdasSX/uPOUl6BtkqOlTOlA7Bhm7Ak+knH8MGAzs1L/DiZjZ4kofgF4FpPHSgow8GYBy5ZJ4P0ZRMchIy2QkxxJ/0+2PIKNauWTu3ChLMm5caZmpqJ7mz0qZDKheMqm3XKJMhnSgdgwyJgALU84vjN0vMnA0MsiIl0vSticvNn+mNX4mxxKfbZGn8bNo1KgwMyOrauWSSv0YRW9+c3ScN8goN7ukqFrzZ9Y1MoqSU1gVZEgHalkXkZkZITPxD+6+vnhY4aEtK3O4+9hK9yubIU1Rb5CRbNh0D6WDtCAjT7lk9erouNpf5hNS/jbYdtvqMyziqpVLKvVjFMV3Tn3ssbAA2fDh2b5+nkzGPfeEnpeenuicMhkyALUyk3EwsC7+YWZTgAWkZyuKfwqlZTlEule9QUZPT/SXc29v9GaXVi4pZjKylEviaimX5PkeoHq5JEsmY+xY2HHHcLxhA/ztb+nXJblXDzK22Sb6uitWwN//Xnp/vY2f6smQDtTKIONhYJ/Ex6vAdEJfRtJuwAYgZ0u4SIdLvrmYwdSp+Z4jrfkzLZMxe3aYmpolkxFXS5CRpx8DqpdLsmQyoLaSyeLFUb/HqFHlv99KJZN6Gz+VyZAO1LIgw92XuftDiY+1wJXAbma2R/FaMxsCvBu42d0zbiMp0iWSby6TJ0f7cGSV1vyZFmRAKJnEMxnxx5Z7o6v2pjlqVN+9OOoJMtLKJVkyGVDbDJNqWYyiSs2fKpfIANSOK7v8GvgYcIWZfZ5QHvkkMAk4NX5hcTVPd58SO7cNIStC4TEjzOzkwu0Z7j4jdu2RwMZA8fF7m9nywnNe3shvSqRmyTeXvGUGSG/+jAcZu+0Gjz8ejh98MJQSIPQrxJe/rrVcUtyJdd686FzeIKNauSRrJqOWGSZZg4x4JuOuu8LPsRhcaZ0MGYDabnaJu68G3gbcA/wUuBoYC7zd3R/O8BSHApcVPvYBNondPjVx7U8L54uLcX0sdq1Ie2hEkJEsl/T2lq5zcfjh0XF87414qQTKl0uypP+TJZO830d8Jsr8+VEgVJQ1k7H77lHg9OKLlfdCKao2s6Rou+2i+xcvhidis/Hzlks0u0S6QNsFGQDu/pq7v8fdx7v7CHc/0N3vTrluSjyLUTh3vrtbmY9zUx6fem1zv0ORHJqRyZg3L9oJddw42Hvv6P57742Os7zRDR8e7UhaSTzIGDIEttyy+mPienqi53APgUbR2rVRtsEMJk2q/DxvelN0O0vJJGsmw6x8yUSNnzIAtWWQISIxzchkxEslW20FO8XWuJs5MzrOksnI8oYJpUHG1Kl9ezSyKFcyeeWVaPXSSZNKp46myVsyqbTaZ1K8ZHLHHdGxGj9lAFKQIdLuGp3JSAYZW24Jb3hD+poVWTIZWd4woTTIyNuPUVRuhknWfoyieoKMSpkM6JvJKAY/eRs/hw0rDZYUZEgHUpAh0u6Sby61vEEnyyXxNTK22ioECmm7umYJMmrJZNQSKEH5GSZZ+zGK4tNYs+zImifI2HnnaPGxefOitUfylkvMss3sEWljCjJE2l28RDBlSvYVKuOqlUugtGRS1MhySfyN/ZBDsj0mqVy5JG8mY+rUqJF08WJ49tnK1+cJMgYNKv3+brstfM5bLoFo07WhQ6N/J5EOYtqMtHHMrBewMWrQkkZbvTo0Nw4fXr3fIM3atWEJbYgeX2z8HD48NGKuXt13i/KhQ0vX5HAv3f8EQm9F2mZkaYpfs5bvAcL4isuZx8e2alW0WNawYaXTbstZsQLWF3YyGDGi8piKy7FDCNiqLYce/3lvtFEIxJYvj2bEjByZrSdlw4bwPff01P4zE+kHS5YsmeXu2yTPK8hoIDNbT8gONXLBsGLEsqTiVSKi/ysi1TXr/8kSBRkdqLDpWtXN2UQGOv1fEamuv/+fqCdDREREmkJBhoiIiDSFggwRERFpCgUZIiIi0hQKMkRERKQpFGSIiIhIUyjIEBERkabQOhkiIiLSFMpkiIiISFMoyBAREZGmUJAhIiIiTaEgQ0RERJpCQUYbMrORZvZDM5tjZqvM7CEzO7bV4xJpJ2Z2rpm5mT2SOH974Xzy4w8tGqpIvzKzA8zsVjNbYWZLzewGM9utzLVvN7P7C+81c83s52Y2tlFjUZDRnq4ETgfOAY4GZgBXmtlRLR2VSJsws12A/wBeL3PJs8B+iY9z+md0Iq1jZm8BbgM2IryPnAVMBO40s+0S1x4C3ADMBo4BPg0cC1xvZg2JDzSFtc0UAonrgRPd/crCOQPuAia4+06tHJ9IqxVe/O4FHgR2A8a6+x6x+29PnhMZKMzs/4BdgW3dfVXh3FhgJvBndz89du1fgR5gL3fvLZx7O/B/wGnu/sd6x6NMRvs5AVgCXF084SESvADY0cx2btXARNrEvwFbAV9s9UBE2tB+wK3FAAPA3RcT/lA93swGA5jZlsA+wEXFAKNw7U3AK8BJjRiMgoz2syswI/6PXvBY7H6RAcnMpgFfBT7u7ksrXPoGM1tkZuvN7FkzO8fMevppmCKtNARYk3J+DTACmFa4XXwveSLl2sdp0HuNgoz2MwFYmHJ+Yex+kQGnUDb8JfAXd7+qwqV3EbIdJwDHA3cQApNLmzxEkXYwA3hL4f8LAIUA+82FmxMLn4vvJeXebxryXrNRI55EGq5So4yaaGSg+iCwN1CxZOjuX0qcus7MXge+YGYHuvvdzRqgSBv4EfBr4Idm9k1CMuGrhBIjQDJLXu49pSHvNcpktJ8FpEeQ4wuf06JOka5mZhOBbwPfAFaY2dhCM9tGwODC7WEVnuKCwuf9mjtSkdZy998AnyPMKnkZmAW8AfhO4ZJXC58XFD6Xe79pyHuNgoz2Mx3YKWX6UHGOc1r9TKTbbQWMIQQZi2IfBxBqx4uAcys8vvj/KflXnEjXcfdvEcoiuwFT3H1/QuDwkrvPLlw2vfA5rfdiNxr0XqMgo/1cCYwlzFmOOxN42t1n9PuIRFrvOeDQlI9HgecLx7+o8PgzC5/vb+IYRdqGu69x9yfc/SUzmwK8C/jf2P0vAw8Bp8f/qDWzw4AtgSsaMQ6tk9FmCs06twC7A58FXgDeS3iRPM7dr23h8ETaSnJNDDN7KyFV/CfgJWBj4DjgfcDl7n5qa0Yq0j/M7I2EhueHCDNK9gA+D/wNONLd18eufRthTYw/EYL0ScC3CCWWA9x9Q73jUeNnm3F3N7PjgfMKH2MJ3cInKsAQqWpO4fNXCeniXuBp4FOEhjiRbrcGOAz4JCHInknox/hePMAAcPdbzeydwFcIi0AuA64CPtuIAAOUyRAREZEmUU+GiIiINIWCDBEREWkKBRkiIiLSFAoyREREpCkUZIiIiEhTKMgQERGRplCQIdIPzGyKmbmZndvicUw0swvN7NXCeG5v5XiaycwOKXyPZ7XBWIaZ2Ytm9l+tHksnMrPhhd/Z/2z1WCQfBRkyIJjZODNbXXjTOaPV42mh7xKWF/4Z8B6g7JteLDCKf6wys+lm9hUzG1HrIAoBwLmFTc5qZmZ7FJ5nSj3P0w8+RVhY7zvxk4mfba+ZLTOzmWZ2pZm9z8yGt2S0bcbdVwHfBD5jZpNaPR7JTkGGDBSnA0MIy7Sf3eKxtNLbgb+4+1fd/XfuflOGx9xECEjeA3yBsBnZlwkrA9bqEOA/CW+89dij8DxTUu67ExgOXFTn16hLIVD4DPBbd1+UcskjhJ/tmcC/AxcT9o74DfB4YZloCduXO/BvrR6IZKdlxWWgOBu4Dbga+L6Zbevuz7d4TK2wOfm3cH7G3X9XvGFmPyRsNPZ2M9vL3R9u5AAbxd17gdWtHgfwz4Rg6sIy978S//kWnGNmpwC/B/5sZruUCVCazsxGufuyVnztOHdfYWZXAGeZ2TnuvqbVY5LqlMmQrmdmbyL8xXsB4UV7HWHDrLRr3czON7P9zOwOM1thZvPN7FdmNjLl+oPN7L5CGeE1M/uBme2Sp//CzN5lZncXUuUrzewBMzs5x/e3sZl9w8yeN7M1hXFcaGbbxK4518wcMOC9sRT9WVm/TlFhT4PbCze3T4xlipldZGavF8byvJmdFy+tmNn5hOwDwAuxsZxbuH+SmX3XzB4xs0WFMtcMM/sPMxsc/56A3xZu3hZ7nvML96f2ZGT5eSUfXyhdTC9c/5KZfTbHj+wU4DV3/3uOx+DulwHfBrYAPpYYm5nZR8zs4cLvzDIzu83MDk0+j5mNMLPvmdmcwrX3m9lhhd9zT1x7u4XekWlmdrmZLQSWxu7fwsx+amazzGythT6JX5jZpilfd4yZfcvMniv83OaZ2SVmNi1x3bDC7+fThfEtNrPHzey/U34sfybsSdPn+5T2pEyGDARnAyuAPxX+Grqe8Eb75cJfu0l7ANcR3sAuJqT2zyZstvWh4kVmdiBhB8NFhHrxYuBU4ICsAzOzrwNfBG4EvlT4GicAl5nZx939x1UevxHwl8LXvJzQc7E98BHgHWa2d2FL5ysI26VfBNxFtC36vVnHmrBt4fM/siKFN+m/AmOAnwLPEH52nwcOMLPDChs0/RwYXfg+/w2YX3iKxwqfdwdOBK4kbOPeAxxJ+BlPAz5cuO4KwhvwhwibCT5ZOF82Q5Xj5xX3L8BmhHT9YuAM4Ftm9rK7X1z+RwSFoGh/QhatFr8i/H4cDXw9dv4i4N2F7+G3wFBCSfAmMzvR3a+JXXsZcBShvHUzMJXws32hzNccCdwB3FP42psWvpfJwH2EsuOvCT/n7Qg/u0MLP7slhWvHEH63JhPKPtMJ/1YfBR4oXPtS4ev9GHg/IdPzP8Bgwr/J21LGdl/h8yGE/zPS7txdH/ro2g9gGOGN8PzYueMItd0jU653whv9WxLnrydkQEbGzv2VkI6fFjvXQ3hxduDc2PkpKefeVDh3Xso4riL8BTmqyvf3wcJzfDtx/ujC+YtSvr/zKz1nyph/RfjrcSKwI6Efw4HZwNDY9b8vnD8q8Tz/XTh/duzcuYVzU1K+7nAKmzcmzl8EbAC2iJ07q/A8h6Rcf0jhvrNq+XnFHv8qYTv54vkRwDzgvgw/w6mF5/hemfsduK7KcywFFsRun1B43IcS121E2N77heLPjxBcOPDLxLXF8544f3vh/NdTxnE1MBfYKnF+b2B94nf7B8Aq4I2Ja7cpfD/x/48LgRuy/E4Wrl8HXJv1en209kPlEul2JwLjCKWSousJL5bvL/OY+9z9/sS5Wwkv4lMAzGwzYB/ganefWbzI3dcRXmCzOJ3wgn6Bhaml//gArgFGAftVeY4TCEHRN+In3f16QkPhcWZW7//zswlvqvMI2YKvEP4yP8wLdfHC1zgW+Lu735B4/DeIMjRVufsqL7ybmNkQMxtf+Jn8hVDi3buO76WWn9dv3X1x7NqVhJ6U7aluk8LnvH0wcUsJmZ+iMyhsyZ34nRkLXEv4HS2O7ZjC5+/Fn7Dwb/Qk5SVnwYwB3kn4vVyd+LovErJk7yhca4Tf7TuBVxLXriD87N4Re/olwC5mtmuVn0PRQgrZFWl/KpdItyu+Qb5sZtvFzt8EnGJmE919fuIxM+lrQeHzhMLnqYXPT6dcm3YuzU6EHomnKlyzWZXnmAq86ulNgdMJpZ+JhKCqVlcD/0uUxv4ssDUQb7zbhJBmn558sLsvNLM5hFJHVYWSxucIsy22I/yM4sblHH9cLT+vcr8PE1LOJxV7HpLfQx6jifVFEH5vRgGvV3jMZoRy1VRCUPVcyjVPF54raV48qCp4AyHAO5vys7OKP6dNCD+bdxD+76WJlyn/lZCletzMZhIC2GsJ2Yq0cqYR/VylzSnIkK5lZlMJDWJGeMFNcwbw/cS5DZWeNvG5HsUXyyMrfM0+b9plxtNML7v7zYXjv5jZnwn9E38ws/0LWYdGjuN7wCeAPxLW8ZhLSJG/CfgW9TWs1zLOSr8P1RTfZMfX8mAL63+MIupFgPA9zCPMWinnidi1kO9NeWXaUAqff0dpVjBuVeLamwn/XhW5+9WF7/Mo4GDgcEIgc5eZHe7uaxMPGUf54EXajIIM6WbvI7zgfZDQsJf0dcKL2fdreO7iX21vSLkv7VyaZ4EjgFnuXil1XcnzwBFmNjblr8+dCX8BJzM1dXH3583sO4TejHcTmmPnElL4uySvN7NxhKa/R+JPU+FLvAe4091PSzzPdinX5v2Ltr9/XrMLz5mltJLmA4XP18fOPQvsANzv7surPP4FQlC2PX3LI1l/TyFkQhwYEgs4y5lH+P82OsO1QMh2EQKY3xXKLd8kZMyOIzSuAv8IujYiCqKkzaknQ7pSoa5+FvC4u//K3S9PfgCXALua2T55n9/dXyc02R0Xn5JnZj3AJzM+TXGRqPMsNjUz9lxZ6s5XEf4ffy7x2COBPYFryqSc6/U/hFr6f5rZ4MLXuBbY08yOSFz7ucIYr4ydK745pv2Fv4FExsHMNiZ9EaZKz5PmKvrx5+Vhuu9dwL55H2thnYzPEhpP47OMLiR8D98o87h4ie3awud/S1xzFOmlklTuvgC4ATjRzN6S8jXNzDYpXNtLaAJ+s5WZil383TazwZZY9bWQGStO903+uxa/9h1Zxy6tpUyGdKt3EPoGfl3hmj8RZjmcDTxYw9f4NKG3414z+wnhTfdUwhQ/qPJXtrs/aGEvhq8Aj5jZZYQ3lC2AvQjp4yEVngLgfOC9wH8U/sq7k9DH8FFCzf4Lub+rDNx9sZn9L2GK4z8TAqYvEFYUvarw83gOOIiwjPmdlKbZi4213zKz3xNm6Tzh7k8QpmV+2Mz+SEi5b0Zo0l1AXw8S6vtfLGRMVgAvuPsDZYZ+Pv3/87oMONrM3uzuf025f0uLlrofTpj2+Q7gzYSf4YmJxtPLzey3wMctrAFzHSH7shWhUXg7ov6XGwgNsx8sNF4Wp7B+iFDy2j3H9/ER4G7gTjO7kBAIDCp8reMIwc+5hWu/SJgmfKmZXUr4915LmF1yFPAw4Y+AUcAcM7um8HxzC+P7CGFqeDFIKjq68L3WOiVY+lurp7foQx/N+CC8sDuwW5XrniakdocXbqdO8aTMVEnCXP77CW+SrxNmluxbuPazseumkJjCGrvvaMIbwUJCM+VswqJDH8n4vW5M+Kt2JuGFfC7hTX+blGtrmcL6v2Xun0AokTwLDC6cm1r42nMLY5lJWMNiRMrjP1u4f138Z0OYIvrfwEuFn+uzhMzDYSSmpBaufy8wo/D1/vH9kTKFNc/Pq9zjC/edT2L6Z4Wf4zBCgPSjMv8e8Y/lhBLHVYTAaniF530PIUuytPBzepGwdsi7Ur7f7xd+P1cBDxR+by8HViauvR14scLXnFj4t3mm8DUXA48Tfu93Tlw7grD2y+OFr7uMULL5JbBv4ZohhX+LvxZ+RmsK38dvgO1Tvo/lwH838rVCH839KM6lFpEGMbOTCC/g73b3P7R6PNJ6ZvY5wqJkUz30H7ScmT0O9Lj7jq0eSxZm9klCI/AO7v5qq8cj2agnQ6RGhTr0sMS5HsKOm+uJlt4W+T4h/f/p/v7ClrKTq5kdDexKKPe1vcL/s/8gZDEUYHQQZTJEalR44XuJ0OT2NKF88C5Cnftb7v65Cg8X6Rdm9g1CU+tthL6hPQilmKXAHt53GXWRhlHjp0jt1hGmFh5HaNY0QrDxMXf/SSsHJhJzF6EJ8zOEfWUWEpqev6QAQ5pNmQwRERFpCvVkiIiISFMoyBAREZGmUJAhIiIiTaEgQ0RERJpCQYaIiIg0xf8HsYutt0fzblMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot angle vs BTE\n", + "fn.plot_bte_v_angle(mean_te)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "89ed7108", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAHyCAYAAACkrccuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACMAUlEQVR4nO3dd5xcd3X//9fZXrUr7apaVnW35YaNbYptwKYbg0kogRgwhATC75tG+PKlmoRAQkkCCYSEHofEhGLA2BRj3MC4gi1XWZZkdWml1fa+O5/fH7fMnbvTd3Znd/b9fDz2sdLMnTtX4/XOmXPO53zMOYeIiIjIXKgq9wWIiIjI4qHAQ0REROaMAg8RERGZMwo8REREZM7UlPsCKp2ZTeIFeP3lvhYREZE5sARIOOfSxhimVS2zy8wSgLW1tZX7UkRERGZdX18fgHPOpa2qKOMx+/rb2traent7y30dIiIis669vZ2+vr6MWX71eIiIiMicUeAhIiIic0aBh4iIiMwZBR4iIiIyZxR4iIiIyJxR4CEiIiJzpqyBh5m1mNnnzeygmY2Y2QNm9qo8H7vZzH5gZn1mNmBmN5vZaWmOW2VmXzCznf5z7DKzL5nZmmLPKSIiIsUpd8bjBuBNwIeAVwCPAzeY2cuzPcjMVgB3ARuAtwBvBJYBd5jZ2shxdcAdwOuATwMvAz4FvNY/tr7Qc4qIiEjxyjZAzA8uLgOucs7d4N92G7AJ+Cxwc5aHvxdYCpznnDvgP/Y3wC7gg8C7/OOeA5wEvMM591X/ttvNbBz4CnARcHuB5xQREZEilTPj8RqgD/hhcIPz5rd/EzglR4njNcAtQYDgP7YbuBG4KnLchP+9L/b44O9jRZxTREREilTOwOMM4HHnXCJ2+9bI/dOYWSOwGXg0zd1bgRV+2QTgHuA+4FozO8/vKTkPuBa4E7i3iHPGr6c32xegTVpERER85Qw8OoBjaW4/Frk/naWA5fNY59wU8CJgO3A/MOB/3wu8IhL05H1OERERKV65N4nLtjVurm1zcz7WzGqB/8bLnlwDPA2cCnwU+KGZvdQ5NxF/XCHP55xrz3aRynqIiIgklTPw6CZ9FmGZ/z1d9gGgBy8IyOex1wBXAGc75x72b7vLzLbhNZW+EfjPAs8pIiIiRSpnqeUx4FQzi1/DFv97un4LnHMjwE7S94BsAY4457r8v58DTESCjsAD/vfTijiniIiIFKmcgccNQDteRiLqamCbc+7xHI+93MxWBTeY2TL/XN+PHHcAqDWzc2KPv8j/vr+Ic4qIiEiRzFvBWoYnNjPgVuBM4H148zLeghd4XOmcu9E/7nbgEuecRR67EngYL7D4GDCJN4TsJOAc59we/7h1eKtSeoGPAzvwshwf9k91ur9kNu9zFvHv7G1ra2vr7e0t5uEiIiILSnt7O319fX2ZeiDLlvHwZ3a8Grge+ATwE7wg5Kog6Mjy2MPA8/FWp1wHfBsvuLg4GiD4f3428Gu8IOJm4K+Am4BnB0FHIecUEZmJsckpXvel3/C+78YrwCKLQ9kyHouFMh4iEvXAM8f4vS/9BoBHP/YSWurLvbhQpLTmbcZDRGQxGhqfSv55bLKMVyJSHgo8RETm0Mh4MtgYVOAhi5ACDxGROTQcyXgMjirwkMVHgYeIyBwamVCpRRY3BR4iInNoJJLxGFDgIYuQAg8RkTk0rOZSWeQUeIiIzCEFHrLYKfAQEZlD0VUtKrXIYqTAQ0RkDinjIYudAg8RkTk0nLKqZSrLkSKVSYGHiMgcSlnVojkesggp8BARmUMjKrXIIqfAQ0RkDqWUWsYVeMjio8BDRGQOpaxqUalFFiEFHiIic0irWmSxU+AhIjKHoj0e2p1WFiMFHiIic2hYgYcscgo8RETmSCLhpu1O65wr4xWJzD0FHiIic2R0MnVgWMKREoiILAYKPERE5ki0zBJQuUUWGwUeIiJzZCRN4KGx6bLYKPAQEZkj6coqg5rlIYuMAg8RkTmiUouIAg8RkTkzHJla2lhbDWiImCw+CjxEROZI0OPRWFtNa0MNoIyHLD4KPERE5khQammqq6alXoGHLE4KPERE5kiQ8WiorabZDzxUapHFRoGHiMgcCXo8lPGQxUyBh4jIHBmZSABe4NGswEMWKQUeIiJzZMTPeDTWVdNS761q0RwPWWwUeIiIzJFkc2kNLf6qlqFxBR6yuCjwEBGZI8P+5NLGlFKLRqbL4qLAQ0SkSHc+dYRP/+xJxibzCx6CVS1NtdW0BoHH6MSsXZ/IfFRT7gsQEVmoPnDDI+zrGWHLcW289IzVOY+PrmpJLqdVxkMWF2U8RESK1DUwBsCRwfG8jg96PBrrarSqRRYtBR4iIkUYnZhifNJbHpvvELCUkekKPGSRUuAhIlKE/pFkb0a+S2KjI9Ojk0udc6W/QJF5SoGHiEgR+qKBR55Zi9E0q1omE44xP3Mishgo8BARKUI08BgoIuMR7E4LKrfI4qLAQ0SkCP2j0YxHfkti061qAW0UJ4uLAg8RkSIUU2oZmUiuammpU8ZDFicFHiIiRegfSQYL+TSXTkwlmJjymki9jEd1QY8XqRQKPEREipDS45FHxiLo7wBvOW1NdRUNtd6vYO3XIouJAg8RkSJEA498ejRGIoFHU52X7Wjx+zzybU4VqQQKPEREilDoHI/hSFajMRZ4aGy6LCYKPEREipCS8RifYiqRfQhY0FgK0FTrBRzRIWIii4UCDxGRIkQDD8jdpxEttcQzHvn0iIhUCgUeIiJF6I+VV3KVW4Lm0poqo67G+9XbooyHLEI1uQ8REZmfvnn3M3zt17s4Y00bl5y8nEtPWs6KJQ1z8tz9sYxHrlkcyZ1pk8toVWqRxUiBh4gsWN/8zTPs7h5md/cwNz1yEIBTVy/h3Zdu5oqz1szqc8cDj1wrU0YmklNLAy0NKrXI4qNSi4gsWD1D44AXbARliycO9vNn1/+O3d1Ds/a8Uwk3LVjIN+PRFJlYqlKLLEYKPERkQUokXNjg+cGXn8rvPnI517/zQo5rbyTh4Mt37Zy1545nOyB3j0fQXNpYGym11CnwkMVHgYeILEgDo5MEK1jbm2qpra7iwk0dvOP5GwH4zgP7ODo4NivPHd0grqbKgNzBQ7oej7DUogFisogo8BCRBalneDz8c3tTbfjn159/PO1NtYxNJvjm3c/MynNHl9KubveaWXP1aSRLLZHAw9+vRSPTZTFR4CEiC1I08FjaVBf+uamuhqsvXA/Af/5m96yUMYLAo8pgZasXeOQqtYxOpCm1aHKpLEIKPERkQeod9t7866qrUrIIAFc/ZwP1NVX0jUzw7fv3lvy5g51plzTW0uqXSwbHpvd9RAUj01MzHv5jVWqRRUSBh4gsSEHGo72pFjNLua+zpZ7XnXc8AF/91S4mphIlfe4g47GkoZaWBq/Mk/8cj+mrWsanEoxNKushi4MCDxFZkHr8jEe0zBL1judvpMpgf+8IP956oKTPHTSXtjXW5r3D7EiaHo+g1AIqt8jiocBDpML8bk8P9+7sLvdlzLreSMYjnfUdzbxsy2oA/v2OnTiXfRO3QgQZj7aUUksxzaXRwEPlFlkcFHiIVJDBsUne+OV7+IOv3MuRgdlZSjpfBKWWTBkPgD+5eDMATx4a4I6njpTsucNSS2NN3n0awxNpltNGAo9cgYtIpVDgIVJBDvaOMDqRYCrhONg3Uu7LmVVhqaU5fcYDYMvaNs7fsBSA27cVFniMTU6lzOuI6h+ZXmrJFTiMBM2laVa15PN4kUqhwEOkghwdTC4xrfSVEn1+4NGeJeMBcMKKFoCChoklEo5X/cuvuegTt9I1MDr9ucOMR204BKyYTeLqaqrCnWoVeMhiocBDpIJ0DyXfXCt947FwVUtj5owHQEdzPQDdkaAsl66BMbYdHmBofIpH9vVNu78/sqqlNc+MRzjHoy51b07t1yKLjQIPkQoSfXOt9DHcvTlWtQQ6Wrz7o0FZLruOJjeYO9g3PePR77+2bY21YblkcHQyawNr2FxamzpzRLM8ZLFR4CFSQboj5YTBDP0JlaInx6qWQEdL4RmP6M62h9IEHulKLZMJx9hk+nkhzjlGJqavaoFkn4dKLbJYKPAQqSBHhyI9HhX8RjY2ORVmEJY2Z894dPr3HxseZyqR35LaZ7qHwz/HMx7OuZTm0tZIg2imLNPoRIIgGdJYF894+Pu1aI6HLBIKPEQqSDTjUck9HkGZBWBpnhkP51L3d8kmJePRn7o6aHh8ikk/gGmLZDwgc7A3HNkErilDj0eukesilUKBh0gF6V4kq1pSd6bNr8cD8i+3ZOvxiO5Mu6ShJnUWR4bXPMjOQLZSizIesjiUNfAwsxYz+7yZHTSzETN7wMxeledjN5vZD8ysz8wGzOxmMzstdsxbzcxl+XpD5NhrMxxzqNT/bpHZ0j00u82lE1OJkk4ALVbPUPLNP9eqlqVNdQRbuXTnsaTWOcfuSKnlUN9oyr85OtujrbGW5rrcGY+gvwPSlVrU4yGLS7kzHjcAbwI+BLwCeBy4wcxenu1BZrYCuAvYALwFeCOwDLjDzNZGDr0JuCjN133AKPDTNKe/PHZs1msRmU+isypK/UZ2sG+E8//uF/zRfz5Y0vOCN/78n255im2HBvI+HqC1oYaa6uy/xqqrjGV+ViTaA5PJkYGxlEBheHwqXMUCyfkh4DWXVlVZzuAhW8ZDy2llsanJfcjs8IOLy4CrnHM3+LfdBmwCPgvcnOXh7wWWAuc55w74j/0NsAv4IPAuAOfcESBlXKEftJwDfMc515vm3A9kuF1kXhubnErJcpS61HLX9qP0Dk9w+7aukp4X4H8f2Mvnbt3Ob/f0cN3bL8h5fO9IfktpAx0tdXQPjeeV8YiWWQKH+kZp8zMrQamlqa6aWj/oaa6vZnBsMmOfRrTHo6FGq1pkcStnxuM1QB/ww+AG5+UzvwmcEi+bpHnsLUHQ4T+2G7gRuCrH814N1AJfK/K6RealY7FP86VuLg3ekCcTjvEMy0aL1dXvBQT7e/Mb857cpyV7mSVQyBCxoMyyorWe2mqvRhMdPx+d4RHINYsjGB7WUFtFVZWl3Kc5HrLYlDPwOAN43DkX/w22NXL/NGbWCGwGHk1z91ZghZ/VyORtwDPALzPc/4SZTfl9J1/OcS7MrDfbF9CW7fEipRJ/Uy31KomdRwbDP4+Ml7YRMvi0Hw+eMglWtbQVkPGA/IaIPeOvaNnY2czKJQ1A6iyPvsjU0kCL/+dMwV5yZ9rpSeZgVczQuAIPWRzKGXh0AMfS3H4scn86SwEr5rFmdiFwGvB1N71DbgfwAbzA5HLgi8AbgHvMbGmGaxGZN+J7kZS6uTRaghieKO25gzfs3uEJJqdyZ1N6hgrLeHT6S2qPFpDx2NDRzOo2L/CIrmyJzvAItObIWoT7tMSmlkKy1KIeD1ksytbj4cvWHp+rdb6Yx14DJIBvTHuAc9fFbvqlmd0D/Bz4U+DjaZ/IufZsF6msh8yVaRkPf4S3mWV4RP6mEi5lqNZwqTMekTfsY8PjrGhtyHp8T57j0gMd/hCxQno8NnQ2+1vZ96TPeKQrtWRa1TKefmopJIOWSh9xLxIoZ8ajm/SZiWX+93QZDYAevMCioMeaWRPweuBW59yefC7QOXcLcBBvdYvIvBYvI2Qb4V2oA70jKX0ds1VqgfzKLb15jksPhGPTc5zbW0rrBx4dTcmMR//0jMeSxuTntnCH2hwZj3SBR5DxGJtM5JXtEVnoyhl4PAacambxa9jif0/Xw4FzbgTYSfoekC3AEedcurb73wOWAF8t8Dqr8LIkIvNa8Ka6pi2ZLSjVp+idsZUes5rxyKMckmwuLbDHI8e5jw6OM+T/29Z3NLMq7PGINpdOL7Xkznh4t8dneIC3IiagsemyGJQz8LgBaAeuiN1+NbDNOfd4jsdebmarghvMbJl/ru9neMw1eJmQH+R7gWb2YmAlcE++jxEpl+BNdX1Hc3jbQIk2itsVaSyF1OWhpRB9w85n1kbQXJpvxqPTDzwGxybDFSbpREelr49mPNKUWlJ6PBrym+ORrrm0tT55ngGNTZdFoJyBx83AbcBXzewaM3uBmX0DeB7w18FBZna7mcV7Nj6DtxT3ZjO70sxegTcsbBL4RPyJzGwTcDHw3865tEVeM/udmf2Fmb3czC43s48C3wOeBr4w03+syGwL+hc2dCYDj1LNhohnPLKVWnqGxgt+3miAdCxHH4ZzrvA5Hv5yWshebgn6O1a01tNcX8MqP/AYGJ0M/03pVrXkmsUxPJGtuXThZDzy3WRPJJuyBR7+qpJXA9fjBQs/Ac7EGyh2Y47HHgaeD+wFrgO+DfQCF2fo33gb3kqYbLM7ngTeDXwHL4i5GvgKcIEGislCELyhHr+sMRwRXqrZEPGhWplKLX0jEzz/U7dx+T/ekfesD+dcQT0e/aOT4RtgoaUWyN5gGl3RArC6rTG8L2gw7R8pYo5HsKolS48HzO8hYj98aD9brv0Z3//tvnJfiixwZV3V4pzrB97jf2U65tIMt28HrszzeT4MfDjHMW/M51wi81VQaulsqaelroaBscmSDRHbeSQWeGQoV+zuHvIneE6yv3eEjZHsSyYjE1NEP0jnKrVER5bnW2ppqa+hrqaK8clE1j6PYIbH+o4mAJa31lNdZUwlHIf6RjlhRUvaVS1BqSX3HI/pgUd9TRW11cbElJvXgcetT3QxPD7Fj7ce5Kpz1+Z+gEgG5d6rRURKwDkXzvHobKnLucqiEKMTUxzoS50oOpKhxyP6xnkotqtrJvEG2FzNpdGdaZc255fxMDM6/WPj806igsAjKFdVVxkrWr0yzcE+b2VPsI9LIRmPsNSSJvAwswUxyyMoh+2M9fuIFEqBh0gFGBqfCpfOdjTXh2+EpWgufaZ7iGDcXpAJyFRqGY70KBzuLzLwyJHxCAKPmiqjOc0beSa5ltQ659h9NLXUAqRML43vTBsIXu+Riam0S2KDQK2pNn2SOdjhdj6PTQ+Cyr09IyUfmS+LiwIPkQoQ7VvoaKnLucqiEEGZpbmuOlwxk6m5NDr2+1CegUf8Go/mGGueXNFSV9BwtOSS2vTnPzY0HpZKggALSJnlEZRZIP0cD0jfIJqt1AK5V8XMB0GAOJVw7O0ZznG0SGYKPEQqQHQUeEdzfc69QwoRNJZuXN5Mk78qI2PGI3J7vqWW+Kf8fDMe+Y5LD+TaKC46mTUaeAQrWw71jYbDwyA+Mj3558E0ZaiRLM2lsDDGpkczU7tiPT8ihcirudTfKO3VwKXA6cAKvOmhR/AGfd0O/DDD4C4RmWXBp/jmumoa66pz7h1SiCDjsbGzhVp/Z9VMgUf0jTPfUkt8M7ve4QkmphLhlvNxhY5LDwSzPDI1rz7jB1idLXW0RpbKRmd5BBmP2mpLWRobXRKb7jXPlfHINYBsPoiW7eKrnEQKkTXjYWZnmtm3gT3Al/C2o28CduMtZW0CXgv8O7DHzK43szNn95JFJC7oWwj6GEr5RrbzqNdMuKmzOfzEPpJhk7iUjEeRPR6Q2kAaV+i49ECuUktyVHrqSpxV/pLaQ30jKTM8omWeaKkl3a7AwcC1TIFHsEIm39dsrsWXPMfnuogUImPgYWZfA34LPAv4e7z9SpY45050zl3onLvAOXci3hjyi4BPA+cDD5rZV2b/0kUkELyZBm+uwRthKUamB59uNy1vDt8488p45Ftq8R/TGZm1ka3cUmzGI99Sy/pY4BFkPHqGJzgy4L3O0TILQH1NNXV+hibdax6shGlIM0AM4PwN3gbYdzx1ZF7u1zI8nrrkWStbZCayZTzOAl7jnDvBOXetc+5e59y0UN45N+7f92Hn3Ga8PVHOma0LFpHpgh6P4M21tUTLaXuGxsNmzk2dLTT6qy8yBh6R/oaugTESeUy6DK5x7dKmcPBZtlkbYcajuciMx9AYzk2/rmcim8NFBfu1ADx1eACA1sbpz92SoUF0YirBxJT3fOlGpgO86NSVgFdmenB3T+5/zByLB1MqtchMZAw8nHPPyjVBNMPjfuice9bMLktEChGUWoKsQbicdoallqDMArChsynMeGRa1RJdTjuZcDlXqEDyjbqtsTbMYmQba95bdI+HF5RNTDn6Y2+kzrnwzXR9bOjZykjgse3QQHitcZlmeYxEhq1lKrUc197I6WuWAHDL44dz/2PmWHxZdtfA2LzuR5H5La9VLWbWaGZXm9kFs31BIlK4eKkluTxzZnM8gsbS5a31tDbURkot6d90hmK3d/XnDjyC4KiloYZl/pCvbPu1FL2qJVLKiQ8R6x2eCD/Vb4yVWupqqsKg5anDXiCWNfCIvSFHg7RMq1oALvOzHrc8cThtRqac0gWwzyjrIUXKdzntGPBlVEIRmZe6Y6WWFn9550xLLWF/h58FCFZyZMx4xG7PZ0ltcI2t9TV0NOef8WgvMOOxrDm6X0vq+Z+J7Eq7LlZqgWSfR5C9WNIwvWSSqa8m+ppkyngAXH6aF3js7h5mxzzroQj+TTVVFgZdajCVYuUVeDjnEnirWJbM7uWISDGSq1qmN5fO5NNzkPHYtNwLPIIehUx7tcTnUOSzSiPIELTU10T6MNIHHuOTifD49jRZh2zqa6rDTFB8ZUsQeCxrrkubzQhmeQTSHdOaIeMRzQ5lmlwKcPqaJazxn+fn86zcEgaHDTXh/jtqMJViFTJA7JvAH5pZfc4jRWTOJBKOY0PBPi2pzaWTCReOUi9GODysMwg88h8gBvnN8gje1FJLLekDj96RwvdpiQpen/gsj2eOBitapmc7IJnxCKQLPDINAcu31GJmXOZnPX4xzwKPoMejtaE2zH4V22DaPTjG279xP/97/96SXZ8sLIUEHncDk8BDZvb/mdlLzezi+NcsXaeIZNA7MhEudQx7PCJbrRe7pHYq4djVHZRaWoDkG+f4ZCLcmj4q/mk/n1LLQDTjESx5zdCU2lvEzrRRYSknlvF47EAfACcsb0n7uHjGY0mWVS3xfoggGKupMupqsv/KDfo8fre3N1y6Ox8MpMl4FBt43PpEF7c+2cU/3vJUya5PFpa8Jpf6bon8+XN4k0ujzL8t/12bRGTGUvZpCXo8UgZaTbK8tfBE5YHe5GZgG5enZjzAKyFEJ3x6t3lvsse1N7K/dyTPUkvwabomfGPOVGrpidze3lh4xiM5RCx5nkTCcf8z3hLW8zcsS/u4fDIemabFDucYlx514aYOWuprGByb5JdPHub156/L+Zi5EA0ON/nB2a4jQzjnCtovBwg32usaGGVyKkFNhgm1UrkKCTzeNmtXISJFi+7TEqz0aIlkPPJpMB0Zn+Ird+3kzOPbueSk5UDyE211lXH8Uq8EEQ08RsanpgUeQZlh0/Jm9veOFFZqqa+lud77PJNpgFgwPKylviZn9iCd5A61yWDt6SOD4UTS8/xBXnGrljSm/L2QVS2jfj9MY4bhYVF1NVVccvJybtp6kFsen0eBR6TUEmQ8BsYmOTo4XnBQGwRiCef97MazSVL58g48nHPfnM0LEZHiBG+iS5tqw0+PzXU1mIFz02cwpPO93+7js37q+5VnruajV5weNg+uW9YUvsk3RgZgxfs5JqcSYT/Jps5m7tp+NGepJTqKu6WhJpz+mWm/lmLHpQc6/VJLNFi7b9cx776WuvBNNS6e8VjSkLnUkinjkW1FS9SLT1vJTVsPctf2o4yMT+WVKZlt0ebSDZ3JPphdR4cKDjziOxgr8Fh8lOMSWeDCpbQtyTeAqiqjpS7/IWKP7u8L//zjrQe57B/v4Hu/3Q+Q8mbcVBsttaQGHtGVLkE6vn90MuPSW4CxyeRUz+iqFki/X0vvSHHDwwJhxiNSnnrgGS/wOH/Dsoxlg3xWtWTKeASrWhozTC2Nu/SkFVRXGWOTCe7afiSvx8y2aI9HU11NGIgVs7Il2nyb7w7GUlkKCjzMrNnMPmZmW81s0P/aambXmln6jwoiMqvC4WGxVR6ZPoGn88TBfgAu2LiMtsZa+kYmeMQPRqKBR/TTd3yjuOjU0mD5LWRfUht9k26NrGqB9OWWnhlmPNIt1w36O87L0N8B3h4r0YFlSxqnBxGt4RLm1AzTSIEZj7amWi7Y6F3LL56YH6tbBiJ9OMCMGkyjPyf57mAslSXvwMPMlgH3AR8GVgG/879WAh8B7vOPEZE5dDQcl56a8s53h9qphGObvwfJ2567gV/85SVccdaa8P6TV7WGf66vqaLKTwrEMx7R54kGK9k+1UaDopb6GpY21WXdr6V3aIYZD7/5Nijl7O8dYX/vCADPzhJ4QHKXWmBab4t3/f7QtrHU2SlBJijfwAOSq1tufaIr7eqhuRbtw4FkYFnMELF4qUUWn0IyHn8DnAK8B1jtnHu+c+75wBrgT4GTgWtLfoUiklV8XHog06Zlcbu7hxid8HozTlm1hOWt9fzLG8/hP695Nv/3pafwqkgQYmbJIWLxUkvkDaW9qS7MwGT7VBu9tpaGGqqrLOt+LcWOSw9Ed8DtGRoPyyzNddWcuro108OAZJ9Hq3+dcc31XmCRcISvJyQzHvk0lwaCwKN7aDzcmK6coqUWgI3+8uqiMh6Rn5tsOxhPTCXm3eh4KY1CAo9XAV9xzn3RORf+5Djnppxz/wZ8DXh1ia9PRHKIj0sPBBmP/hzNpU/6G5811VWzblmycfDik5bzrks3T9vKvTHDRnFDkRR6Y211uLlatk+10RkjzX5A05Flv5ZgjkfbDHs8wGswDRpLz12/NOeyzqDPI11jKSTflCFZmoBkQFZIxuP4ZY1hcPXkof68Hzdbgj6h4N8YDBHb3T1UcEYmGmxm+tk4OjjGhZ+4lau/dl8xlyvzXCGBx0q80komv/WPEZE5FB+XHgjeIHP1eAT9HSevaqUqzSf5uOYM00vDJsraaqqrLHyjzlpq8d+EmuuqwyzCsiz7tcw049HeWBuWirqHxnggx/yOqOPaG1OuLy4oQ0Dqa56c45H/9AIz45RV3g4VTx6cDxmP9D0eE1OO/T0jBZ0r2uORKfC4d+cxuofGuWv70XCWjFSOQgKPw2TfJO4c/xgRmUPBTqud8VJLnj0eT/hvbMEbXS6NYakl9bxD/htsMDo8yHhkL7X4czki2YJs+7UEczyK7fGoqjKW+ZmhHV2DYW9LpvkdUa8+5zheeMoK/vQFm9PeHx/aFiim1AJwil/6eeJQeQOPialEWDoKelvWLm2kttqL4HYcLWxlS7THI1OpZc+x4fDP+SwHl4WlkMDjRuDtZvbHZhY+zsyqzOydwDXAj0p9gSKS2djkVFiu6Ig3l+a5qiVI5efqcQg0ZSi1DAfZC7/XYVU+gUfYtBgJPPzAIL5fi3NuxnM8IBmg/ewx73NSbbVxzvG5A4/j2hv52lvP56VnrE57f1NtddgYG33NR4poLgU4Ncx4lLfUEm8ABqiprgrLcruOFNbnEV1OOzQ+lTawiAYe/TPcYVnmn0ICj48AO4EvAgfM7A4zuwM4APybf99HS3+JIpJJdMnptOW09bnnePSPTrDPT5Xnm/EIN4qL7VA7FC4b9Z53VZsXQBzuz7znSDiKO9I3kSy1pD5ucGySSb+foNiMByQzKvfu6gbgjOPaSjKkK93slKmEC3f4TTf7I5sg49E1MDZtb5m5FO3DifaxFNtgOpTHRoL7eiKBx4gyHpUm78DDOdcNnAf8PdANnO9/HQU+CZzvHyMicyS65DSe8UjOlcgceGyLpPFPyTPjEZQMpjeXJvs1ILXUksjQgBhc25I8Si3RDeJmFHj4GZXgkvLp78hXPMv0yye7wj6GF59eWAvciStaw36UbWUst0QbZVsjfSzBktpCAo+JqcS0no1DfdODqtSMhwKPSlPQADHnXL9z7oPOudOdc03+1xnOuQ8558rfei2yyARvzrXVlvLmDcnAY3As8y/uII1/XHtjxtUacWHGY1qPh796oz7IeHiBx2TCZdz0LVupJT7HI2Vn2ubiSy3xJtxSBh7Nsb6ab927G/BWCK3vKGzGYmNdNRv8Js5y9nlEA9eWlIxH4YFHvCEZpmc8JqcSKQ2rxe6uLPNXIQPE3prj/loz+9yMr0hE8pacWlo/bdx3ONAqyy/u4A0t3/4OiDaXxns8/ObSutQeD8jc5zE4Nj3wCEotfSPekK9AsKKlpsrCnWCLER+0dt763P0d+Yo29O49NswdT3kjz990QXGbvc2HPo/gjT+68giSgcf+3pFwI7xcov0dQaAcX9lysG80LKmBSi2VqJCMx9fM7L/MrCV+h5mdjDfV9D0luzIRySm5T8v00kN0gFimQUzBG9qpq/Pr74DMzaVhxsMPTNoaa6n3N5fLtKQ2eFNLt6oFUvdrCfpZ2ptqC96KPSraC3PiihaWZlgeW4zWyGv+rXv34Jw3eOxFp6wo6nzB1Ngny5jxSLfyCFLH4u/Ic8+WaJYs2M8nHpTujfR3gEotlaiQwOPvgTcAvzOz84IbzeztwAPABv9+EZkjR4eCqaXTdwgNPn1PTLlw19ioRMKFb2j5NpZCtNSSPuPR4q9qMYvM8siY8fDnQ6SUWpKBQLTccs9Or4UseMMqVvS1On9jaXd5CF7zY4PjfOeBvQC84fx1OYeTZXKKH3g8dXiAyanyzLNITi1NLW8tb6kP/1s9tj+/jEx0yNxm/79jPCjdeywWeIyo1FJpCmku/QDwEqAF+JWZvd/Mrge+DGwFznbOfWd2LlNE0jk6EEwtnf6pPdrzka5OvrdnOAwe8m0sheTk0umrWlJ7PABWtmZfUhuWWiLX2h7ZryXIckwlHD9/3Fv++pLTV+V9relEMyq59mcpVBB4/OTRg3QPjVNdZbz+/OOLPl+QiRqbTPBM93COo9Pbuq+Xf79jB2OT+ZVD4gbS9OGAF1huWdvmPcf+3rzOFfyMmMHGTm85bvxnY0888FDGo+IU2lx6K7AFeBj4O+D3gc8CFzvndpf+8kQkm22HvU+a0VHngUwDrQLB4LCG2io2FND42BSuaok1l8ZWtQCszDG9NL75GJB2v5b7nzkWBiEvKXB1SNza9kaqzHueZ5c649EQjKn3/l2Xn7oyzPoU47j2xvANv9jR6e/77lY++ZMn+emjh4p6fHyflqgzj/MCj0cKzHg01VaHm+7Fs2F7jqVOQlWPR+UpJv93NXA20AcY8GLghBJek4jkYXRiKhynffa69mn3Rz+hpmswDUelr2xNu+lZJpk3iUud4wGwaolX1shcapme8YBkBidong3eNLcc18bapdODrEKsWNLAv//heXzl6vNY096Y+wEFiDe9vvnC9TM6X1WVJfs8ihydHuy+Gy9h5CsY8JVu1dMZfuDxxMH+lEbgTIYjWbGg+fjIwFhKGSm4ziDrpQFilaeQVS2dZnYT8BngFuBE4PeAtcCDZnbN7FyiiKTz2IH+sPv/rLXt0+5vjgQAA2mW1AafoAvp74Asm8SNp04uhdxj08NP07E37GBly7GhcZxz/OwxL/B46RkzK7MELj9tJS8osuEzm2gAtaGjieds7pjxOU8JG0wLz3hMTiXC1/joYPolzbmkW3kUONP/uRufTOS1i+5QZOVTMGAu4VKvLQg8NvpZOGU8Kk8hGY+HgRcBf+Wce6Vzrts59328PVoeAr5sZv89C9coImk8vLcX8HYyTbdxWVWVJaeXpvnUGDaWFtDfAbmbS1MyHllKLeOTibDpdVrGIzJEbOu+Pg76j59pf8dsa468Ob/pgvV5bbqXyyl+n8cTRWQ8eiNv2keLnH6ardSyckl9uDz5kX19Oc81HAanNayILLcOMmJDY5Nhee10P5uiHo/KU0jgMQw81zn3T9EbnXN7gIuBT+D1fIjIHHh4Xy+QPtsRaM2wX8vQ2CS7/WbFQpbSQiTjMTGVMpE0XcYjSKf3j05mnHQK0z9NJ4eIjfFTP9txwooWTlgxsxUtsy0oEdXVVPF7z1pbknOe6mc89veOFPwm3BtZjlx84JF+OS14DaZnrg36PHIHHsndiGtora8Jg9ggMI0upT1jzRL/+VVqqTSFBB7nOuceTHeHcy7hnPswcFlpLktEcgkyHmcf357xmEw71EbnQgSp/HxFMxqj/kqJqYQLdzCNlnhWpvlUGxjMEnhESy0/8/s7XjrPsx0ALzxlJW977gY+9/qzSzYf5KTIf59CR6f3DEczHplLLRNTCbYfHkg77yXTctrAGcflH3iEfUD11d5y61gpbo8fDDfWVocDylRqqTyFLKfN+RPvnLtjZpcjIvnoHR4Pl1eelS3waMgUeHj9AqvbGmgvcN+T6C6rwRtJdDBUtNyQEnjEyi2ZNh+DZKnl0f397PRHcpeqv2M21dVU8dErTudlW9LvYFuMJQ21rF3qNcEWOsG0Zyi/jMdHfvgYl//TnXz/t/un3ZepDycQrGx58uDAtH1Y4oYiGQ9I/nwEQWmwlPb4ZY3hpnpD41Nlm2EisyNj4GFmJxV7Un+SqYjMkq1+Pb26yjh9TeZSSaYej2CFRKHZDkhuEgfJBtPoYKhoYFJXUxWWH7oGMmc8mjOUWoIt5Y9rb8z676x0QQNwoXu2RCe/9g5PZFx58pCfPfvtnp5p9wX/ndL1eADhLI/xqdwNpkGgGpTjgh6gw0GpxQ881i1rYklkN1+VWypLtozHY2b2NTM7I9+Tmdk5ZnYd8OjML01EMgnKLCetbE0pfcQld6hNTVcHGY9C+zsgfcZjKEPGAyKfavvigYd3TQ21VdTGJnvGm2VfesaqGY1JX+iCvXQKzngMp/53j2+8F+jyMw4HY/+NnHORwCN9qWXlkgZWtHqB4tYcDabBuZoyZDz2+pvDHb+sKSXQUYNpZckWeFwBXAA8bGa/M7OPm9mVZnaGma0xs+PMbIuZXWVmnzKzR/BGp58NvHIOrl1k0Uo2lrZlPS7YxjyaXUgkXDLjUVTgkXxDCEoswxkyHkDGsekDaYaHBTpbpgcei1mQ8dh2aCCloTeXaMYD0pdbxicT4UqSA72pw7uGx6eY8p8vXXNpYEuefR7DsQbkYM7L4XipZWlqxkNj0ytLxp8k59xPzewW4HXAu4EPAOl+4oOPIbfj7dXyPeecCnIis8Q5x0N7vV/w2fo7INLjEUlVbzs8wIAfiOQKXNJpqK3CDJyLlFoiGY94Bma1H3js60l9U8uWwo9mPDpb6jl3Xel2kF2IgiXPQ+NT7O8d4fg0k2rT6R1KzRSkCzyORG6LBx7RgDVTqQW8csutT3bxSI7R6UOxJddhqaV/jETCpZRaWupqwp8zZTwqS9a9pZ1zU8D/AP9jZiuBS4DTgOV4QcgRvLLKHc65o7N8rSICHOgbDd9Asi2lhUiPR+QN5L5dxwBvBkO6Ueu5mBmNtdUMj09Nay5tqK2aNgU1WJ2wy28SDQxm2AMEkvu1OAcvPn1lQZNVK9GGjmbqa6oYm0zwxMH+vAOP6RmP6aWW6HC3/tFJhsYmw3JZtESXqbkUkhmPbYcGGJucor6mOu1xwc9J8N88KLUMjk2yq3sonOuyrqOJqiqjtb6G/tFJrWypMFkDjyjn3GHgf2fxWkQkD0F/R0NtFSetzD7XIt0cj/ue8QKP8zcsK7pvoqnODzwmUptL0wURwfbpu7uHmEq4MIjINhGzuso4aUUr2w4P8JpzjivqGitJtT86feu+Pp48NMCL81xa3DucO+PRFSuBHewb4YQVXoYldeVR+h4PSAYeE1OObYcGwommccmMR2pzKcAD/s8lEK7iWdJYS//opJpLK0xxezWLSNkEgceW49pybreezHh4b0DOOe73Mx4z2SAtOTbde0MYijUNRm3s9IKjiSnH/ki5JezxyJDC/9YfXcCN73ke55d4B9mFKliBFGSs8jEt4zEwPfA43J9624HeZCAS/DeqqTIaajP/rK1Y0sBKv18jW5/HUGRyKcDylnqCZNZ9u7wVNZ0t9eHPUbA/jEotlUWBh8gCEyx9zFVmgeSn1CDjsefYMF3+m89M3tCbalM3ihsaT/0kG3X80kZq/HeXHUcHw9vDHo8MKfzOlvpwqabAi071duX91dNH+c2O7rweEwQe9TXer/p0GY940+/BvvTBYa7s2Jbj2oHso9OHYxmPmuqqcOT6A7u9gGrdsuTGfUsa/d1+VWqpKAo8RBaQqYTjUf8T5Zk5GkshdYCYcy78tLykoYaTVxY+wyPQGNuvZXgs9ZNsVE11Fes6vJ6EXUeSfR6DOTIekurFp63kWeu9JttP3PxEztUtzrmw1BKMmu8eyt7jAakZj2DJc7bG0kCulS3jkwnG/TkiLWmGzAUj/KN9R8mMh0otlUSBh8gCsuPIYJhdODuPjEfwC35iyjE2meB+v45+3oZlM9rArCm2Q222jAfAJr/BdGeajEe6Hg+Zzsz4wMtPBbw39xu3Hsh6/MDYZLh78Yl+4HEkTamlK1ZqSZvxSLPkOS7Ys2XboQFGJ6am3T+cYeVTdLotkNI4GyypVcajsijwEFlAgjLL0qZajo+kpDOJflIdHJvk/me8OvpM+ybiO9SG8xkyDDPbtNx744uubAlW2ijjkb9nrV/Ky7d4jaWf+um2tG/wgehS2hP97Fa2VS3BRNroELFsO9PGBXu2TCZc2j1lhiKbBKZsJNhWn3JcNPAInlc9HpVFgYfIAhI0lp51fHteK1Ki2YSdR4bCN/6ZNJYCNPoBxshE0Fya3PwrnXBJbUqpxU/jK+NRkPe95BRqq439vSN84+5nMh4XbSzd7Ad+x4bGwoFggSDwCEol0VkeQeCxJI/AY3lrfTizZWuacsvwWPqMx6pYxiNtqUUDxCpKXoGHmbWY2ZSZfXi2L0hEMktOLG3P6/joJ9VfPtkFeMtwgzeZYjXVps94ZCqbBIHHgb7R8Nhcq1okvQ2dzbz5wvUAfOG2pzmWpm8DkoFHbbWx3u+xSbjUgGRkfCrsnzh7XTvgZTyCXWqDOR75lsPCPg//5zQqmvFI1+MRWJeu1KKMR0XJK/Bwzg0CvUDXrF6NiGQ0OjEVjjo/O4/GUkgtfdzmBx5nH99OXc3Mkp3x5tL4HhxxwSwPgGeODqc8Jp/+AUn1f154Iq0NNQyMTvL5W7enPSYIMNqb6sKVI5C6siW6cV/wMzU8PkWf31ORa5+WuGAE/44jQ9PuC5Zcm5GyNDc6y6O22lICkSDToh6PylLIb5/b8CaXikgZPLy3N2wWPDPPZaZVVRZ+utzm7xz67BLMxYg3l4a7jmZoLl3eUh9ex66j3iCx4DH59A9IqqXNdbznBScA8F/37GZ/bNQ5QI/f47G0qZZlzXXhvIzoRnHRGR7R8fvBypZCs1LL/c3i0mVhgsCjuS51aW601LJ2aVPKlNog46EBYpWlkMDjr4HnmdnHzGzx7k8tUiZ3bj8CwMkrW+loqc9xdFI8TX7+DPs7INpcGhsgliElb2Zh1mPnkcGUPUC0qqU4b3nOBprrqplMuLD3J6rXz3gsbaqjusrC/W+iGY+gv6O9qZY1bQ1hJixY2RKUWvINDjv85+hOMy9kOMPKp5WRjEd8FHzQ4zEwNjmtN0UWrkICj1uBBuBDQI+ZHTKznbGvHbNzmSJy+zYv8Lj05OUFPS76abW6ykqy4VrQXDqcZ8YDUvdsyXfzMcmsobaatUu9N+r45m4APcNBxsMLBoJyS3RJbRB4rGxtwMzC5tAD/sqWgQJLLcFz9Y9OMjGVulfoUIY+oNb6mjAYOX5p6kqtYIAYpI79l4WtkP/j95B+d1oRmWVdA6M8dqAfgEsKDDyib+ynr1mSdshXocJSy0Rqc2mmjAckA48dR4dS3kSU8SjemvYGth0eSBn6FQh6PJY2e0GDF3gMpCypDabYrvDHna9pa2R39zAHe4OMR/bpsnEdLcldhXuGx1nRmsxmJLNiqcGpmbGmvZGnuwbDJtjAkkjA0z86QVuT+oEqQSGbxF06i9chIlnc4Wc7muuqOW99YaWS6Bt7Kfo7YPocj2A5bbaMRzjL48hgyq6nWtVSvNXtXoYgXcYjmFraHmY8MpdagobO1e3e92CWx2ABczyAsJwDXp9HauARlFqmn+uvLj+JHz18gNecszbl9qDHA6BvZILj87oKme/0f7zIAnD7U17g8dwTOgtekRJ90yhFfwckh02NjE8xlXBh5iNbNiWYXto/OsmeY97KlrrqqoxbqEtuxwWBR1+6UkvQ4+G9eQd9QekDj2TGA7xAZmIqEf53zTcr1d5Yixk4B8diw8qSQ+am//d+2ZbVvGzL6mm3t9bXhOfTktrKUXDgYWabgSuBTf5NO4EfOufU3yEyCyanEtz1VNDfsaLgx0ffNEq102tT2OMxGdbuIfPkUvDmTwS2+huJKdsxM2v8DEXaUstQcjktJHs8oqtagnHpq9JkPKLlsHx7PGqqq2hrrKV3eIJjsZ1xB8dyB6dxVVVGS10NA2OTGiJWQQr6v97M/hZ4PxAPWT9lZp9wzn2kZFcmUkFGxqeoqTZqc2xjn87D+3rDIU+FNpZCck7GCStaUlLhMxHM8Ui41NHcmSaXetdRw8ol9RzuH2OrP2BK/R0zs9rPUBwdHGNsciolezS9uTRzqWWFH3gEGY9DfaMpGYZCGoCXNdd5gcdQpoxHYf/NlzTWeoGHMh4VI++fADO7BvggcDfwaeBR/67T8ZbaftDMdjnnvl7yqxRZwO5/5hhv+I97qKkyzjiujbPWtnP2unbO37A0fOPIJljNctLKFta05z4+7iWnr+TmRw7ytuduKPixmUSXRB6JvJHlelPZ2NnM4f6xsFFWgcfMHBf5eTjUN8r6Di+rNDoxFZZJglJLZ2sy4+GcY2h8KpwmGu/xGJ9KhLvFQmGBR0dzHTuPDKVkViD3WP1MWjVErOIU8n/9nwL3Apc656I5rx1mdjNwF/AeQIGHSMQvnjjMVMIxlXA8uLuHB3f3wK+9pa3f/ZOLOCfH8tYg8LjkpMKzHQAXbOrgng+8qKjHZhINPKKfoHO9qWxa3sI9O48xNulvj65Sy4ysXNIQ9kDs7x0JA4+gsRS8YWPgDXEDL6joH5nk6NBY5DzefdFA+KnDyY3eCgkQg6xaz3DpMh6gIWKVpJC876nA9bGgAwD/tuv9Y0QkYq/fSHnhpmX8ySWbuXDTMhpqq5hKOL774L6sjz0yMMYj/oZbxfR3zJbGTIFHbY7AI9LnAdogbqbqaqrCgOJgpM8j+qYfn+MBXpYqKLOYJe9b0lATNn8GO8w21lZTU0CJMAg8uofiGQ8/8Cjwv3m4UZxKLRWjkMBjHGjJcn+rf4yIRAQp6+efuJz3v+wUrn/nRfzFZScB8LPHDmedyHin31TaVFfNeRtmPvirVKJLIo8OeP/b19dU5XyD2hgLPJTxmLk1aZbUBoGHGbT5GYNof8/RSODR0Vwf9h6ZWbhEN8h4FDrgLXie+KqWoKzTXGCpJRgipubSylFI4HE/8MdmtjJ+h5mtAN6JV4oREZ9zjj1+4BEdjvSyM7ylg0cHx7zSSwbBMtrnbO6cV8tOG2unZzzySccHszwC6vGYuXBlS18k4+E3/C5pqA33PqmrqQqDkO7B8XCflqDMEgimlz51eBAoJvBIv1/LcI6NBDNRxqPyFBJ4/C2wGnjCzD5tZm/zvz4DPAGsAj4+GxcpslD1Dk+EY6fXL0t+2l/X0cRp/k6eP3n0YNrHTiUcd20vbkz6bKuuMur9eSLBCO58mgbXLm2kJrIJmDIeMxedvRGIz/AIRFe2xIeHxc8XzvDIcyltINivJb6cdiiPsfrpBD0eai6tHHkHHs65O4GrgAHgr4Cv+l9/6d92lXPurtm4SJFycW5muwTsPpZcGbAutgHWy85YBcDPHj2U9nke3tcbNgnOt8ADkg2mQcYjn6bB2uoq1kUyP+rxmLmgNHIwMkQs2CAumOER6IwMEevKlPFoTw1ElhQYHAbNrD1D4+HPtXNuBj0efqlFzaUVo6ChAs65G4GNwAXAG4A3As8GNjnnflzok5tZi5l93swOmtmImT1gZq/K87GbzewHZtZnZgNmdrOZnRY75q1m5rJ8vaHQc8ricf19ezjnb2/htie7ij7H7u4hwKuzx/eZeNkWL/A40DfKw/5ArahgNcsJK1rCzcDmkyBlHgQe8V1HM4k2mKrUMnPH+YHC/p6R8I0+OcMjlvFoTQYe4QyP1ljGI7Zku9D/RkHGYzLhwr6M8akEk34vU+E9Hsp4VJq8Ag8/QNhhZn/unEs45+53zv2vc+7bzrkHnHOJ3GdJ6wbgTXg73r4CeBy4wcxenuN6VuAt390AvAUvAFoG3GFm0WH/NwEXpfm6DxgFflrEOWWRuHHrAXqHJ/jWvXuKPkewoiW++RXACStaOWGF1/MQL7eMjE/xPX/Fy6VFLqOdbY1hxsP7dJ3vJ9log2mhaXyZLlgCOzQ+FWYFkhvEpWY8loc71I5zeCB7qSVQbHMpQLe/ZHfYn+EBxfR4BBkPBR6VIq/Awzk3CHQAg6V6Yj+4uAx4h3Puq865X+K94f8G+GyOh78XWAq83Dn3Az/b8gqgHm/IWXDdR5xz90S/8Ea8nwN83znXW+g5ZfEIUtH37erOuvIkm2BFy/HL0mcsgnLLT2Plln+9bTv7e0eoq67iTReuL+q5Z1tQqx8MmwbzzHhEGkyV8Zi5aIYiKLf0xqaWBlJ7PPIrteQ7Lj0QDTyCACjfsfrpBM2lg2OTJIr8/1Dml0JKLfcA55XwuV8D9AE/DG5w3m/ebwKn5ChxvAa4xTl3IPLYbuBGvD6UbK4GaoGvlfCcUoGCLcP7Ryd58lB/UecIejzWZwg8XuoHHru7h3nioLd88emuAf7jzp0A/Mmlm6ctQZ0vGmOBRr5vKNF/T6GfpmW6jua6cOPAoME0c3OpF2TsODLIuD/ELVfGo9DgsKG2OgxCg+mlQ5GMR7GlFudgcFx9HpWgkMDj/cDr/JUslvPo3M4AHk9TptkauX8aM2sENpMc2R5/7Aq/bJLJ24BngF+W4pxm1pvtC2jLci0yT41OTNEXqSnfs/NYUefJVmoBOG31krDp9KePHsQ5x4d+8CgTU451y5p496Wbi3reuRBPmedbatm0PBl4tDWq1DJTVVUWLoENNouLbxAXCHaojU4BXRHLeDTWVdMeCViKCQ7DWR5DaTIeRQ4QA/V5VIpCAo9/BHqArwBdZnaPmf0y9nVrAefrANL9Nj8WuT+dpYAV81gzuxA4Dfi6S11GUPQ5pTJFp3EC3LOzu+BzjE5Mcchv4Fu3LH3WwszCcstPHj3EDx7aHwY5f3Pl6TTkmARaTvGMR757cKxobeDPLzuRN5x/fLikWGYmvqQ2vkFcICi1BKqrjI7m1MADUkenFxN4xJfUBj0eVUa4DDtfwQAx0BCxSlHIT9QmwAFBp920QWJFyFawy1XMK+ax1wAJ4BulOqdzrj3LY1DWY2EKyiyB+3YdI5FwVFXln+zb1zNMEN6uy5DxAK/c8u937mR71yAf+eFjALx8y6p5NSI9nfh49EJq93/uT26V0ohuZz+VcGEjZqZSS2B5S304YCxqTVsDTxz0youF9nhAsqk1mF46FNmnpdCEebTUowbTypD3bwrn3IYSP3c36bMIy/zvmXLbPXhBQEGPNbMm4PXArc65+DKFos4plStoLK0yb+v3vpEJnjjUz+lr8o8h9/hllrrqKlbF6uhRZ61tZ3VbAwf7RhkYnaS5rpqPvPL0mf0D5kC8mTTf5lIpvWCX2v29I/SNTIQBb7zUsrw1NfBY2Zb+5zLaYFpMA/C0UkuRMzwAaqqraKmvYXBsUqWWClHIctpfmtnbS/jcjwGnmln8Grb439P1W+CcG8FbmZKuB2QLcMQ5l27wwu8BS/CGnpXqnFKhjvhLDdd3NLPG/+VcaJ9HsKJl7bLGtJ8qA1VVxktOXxX+/S8uP4lVGd4Q5pPGIns8pPTWRIaIpWwQ15yarWiorU4JJFa2Ti+zQOlKLd1hj4dXasm3HBenIWKVpZDltOeX+LlvANqBK2K3Xw1sc849nuOxl5tZ+NvazJb55/p+hsdcg5e1+EEJzykVKii1LG+t58JNXiKs0D6PIPCITyxN5/XnH09dTRXnrV/KW5+zobCLLRNlPOaPoLn0UN9oyh4p8R4PSO3ziK9oCayJZDyKKbUE+7X0hD0eyVJLMTRErLIU0uXzEKXd9v5m4Dbgq2Z2jZm9wMy+ATwP+OvgIDO73czi/RWfwVuKe7OZXWlmr8AbFjYJfCL+RGa2CbgY+G/n3Fj8/mLOKZUt2H9kRSTwCPo88rU3x1LaqFNXL+HBD13Gf//RhQVtQV5O8UCj2DcVmbmg1DIx5djub+7WWFudtjk52ucRn+ERmGnGY1lzcjM6iGQ8igxOWzVErKIU8hvuo8AfmdkLSvHE/qqSVwPX472x/wQ4E2/PlxtzPPYw8HxgL3Ad8G2gF7g4Tf8GeEtojemzO2ZyTqlgXWHg0cAFm7w2n76RCZ48NJD3OYIZHus68pvD0dpQG85jWAimzfFQqaVsVkeGiD16wBu/H28sDXREMh4rMmQ8thzXxpq2Bk5bvWRaQ2o+4jvUBj0exQ6MC5bUDqjUUhEK+Sl4M96Kll+Y2cPAU8Bw7BjnnMu7D8Q51w+8x//KdMylGW7fDlyZ5/N8GPhwHsflfU6pbF1+j8eKJfWsW9YUNn/es7Ob09bkXgKaSLiwuTSfUstCNC3jUWT9Xmaupb6GJQ019I9O8vgBbzVKvLE0kJrxSB94NNfXcMf7XkCVWdb+pEyC5tKRiSlGxqcY9le1NBUbeKjUUlEK+Sl4a+TPZ/tfcQ4oZQOqSFkEq1qWt9RjZly4qYMbfrefe3Z2c83zNuZ+/MBYOBky0/Cwha6xNvXXR6F7cEhprWlvpP/QQDhlN95YGsin1ALeTsLF6oiMTT82PB5OLm0ustSi/VoqS94/Wc65qjy+9JFHFryphAu78YOpjhf65ZZ78+zzCHalBWU8ZG4EK1tGJ7yAN2PGI7KSZWXr7Kyeim5Od2xwPJnxmHFzqUotlWDhFJRF5sixofFwU7hgy/CgwTTfPo+gv2Plkvp5PX10JqavalHGo5zWxDZ3y9TjESyhra+pShmNXkpLGmqorfZKNN1DY+FGgi1FL6f1Aw9lPCpC1sDDzNaYWV4hsZmtNLMXluayRMon6O8Ab1ULEPZ5QH7LavcUsJR2oZo2Ml3LactqdWxzt2UZMh4Xn7ScK85awwdefmrBU0TzZWbhUt6e4XGGwzkexWY8VGqpJLkyHnuJ7MxqZm1mttXMnp3m2MuAW0p5cSLlEKxoqa228BOhmXHBRq/cklfgETaWzs+dZUshmuGoq6maUU+AzNxx7amBR6ZSS0NtNf/yxnN4yyzPiwkaTLsHx5OTS4vu8VCppZLk+k0RD4dr8KZ7tszO5YiU35FYY2kgnOfxTO4+j905dqWtBNEMR7HLJKV0Vsem3WZqLp0r0bHpYcZjhj0eA6MTBc3SkflJH1FEYo74O9Mujy01vGizF3j0Dk9w5/YjWc+xx28uXSylFpVZym9NnhmPuRINPAZnsFcLJDMeCZfccE4WLgUeIjFd/lb2K2L7WKzvaOY5fvDx5bt2Znx8/+hEuC15tl1pF7ro7rSaWlp+q9oaiLZspBuXPpei+7UEGY9iVz5Fp6dqiNjCp8BDJKYrMi497p0XbwLg10938+j+vrSPDxpLIb9x6QtVTXUVdX5fR7Gbf0np1FZXpfzMZlrVMleC6aWH+kbDVWIzLbWAGkwrgQIPkZjouPS4S05azskrW4HMWY+gsbSlviZMN1eqoNyijMf8EC23lL/U4gULe3uSgXgpMh5qMF348vltcbWZXej/uQFvOul7zOzVseNOKuWFiZRLsJx2eZqMh5nxjudv5K+/u5Ufbz3IX7/kZNYuTc1qBIHH8cuaZm254nzRVFdN38iEejzmiTVtjfyOXqqrLJz2WS5BxqN3OJmhKDZAra2uoqmumuHxKY1NrwD5/BS82P+KenWGY9VuLAuacy5lZ9p0rjz7OD7z820c7h/j679+hg+/8rSU+3d3578r7UIXZjy0qmVeCIaILW2qLXvQmy7bN5OfkyUNtV7goVLLgper1LKxwK9Ns3alInNgYGwyHDm9IsM+FnU1Vbz1Od5+Ldfft4e+2CewPce8FS2VvJQ20BQGHsp4zAfBTsjpyoRzLboLbmAmmbFwiJgyHgte1vDTObd7ri5EZD4INoeD7L+8/+CCdfzrL7czND7Ff9+7h3dduhmAsckpnjmaLLVUuiZ/ozj1eMwPrz57DbuPDvGiU1eW+1KmraqprjLqa4pvK0yOTVePx0Kn5lKpeHuPDfPcv/8ln7z5iZzHBv0dZuk/sQXaGmt5w7PXAfD1X+/i8QP9fPzHj3PRJ3/J/t4RADZ0VO7U0sDzTuykpsq4wN9ET8qrtaGWD73ytHDmTDnFV9U011XPqPwTNMse7BvNcaTMdwo8pOLdveMo+3tH+N8H9uY8NujvWNZUl3ME+Nueu4HqKqNrYIyXf/4uvvKrXRwbGqfK4BVnrub8jUtLcv3z2f950Yk8+rGX8MJTyv8JW+aXmurUTehm2gd01to2AO5/5tiMziPlp/yoVLxgeFHP8ATjkwnqsqR7g8Aj3YqWuLVLm3jlmav54UMHAG9K6evPP57XnruWVW3lr7HPlUrdfVdmbllTXbiqZaYrny7c3AG3wNNdgxwZGMvr/1GZnxR4SMULAg/wtuiO7+IZFc7wWJJf4PC3rz6D01YvYctxbVy4qYOqqspePitSiGXNdew86jVbzzTjcebaNhpqqxidSHDvrm5eeeaaUlyilIFKLVLxRiKBR7R5NJ1M49IzWdJQyx9fspnnnNCpoEMkJrqkdqYNyPU11TxrvVe+zGeHaJm/FHhIxYtmPIJSSibZxqWLSGGiDdqlWHJ94UavafbenerzWMgUeEjFG5lILr/ryhF4FNLjISLZRZfUFrtPS9QFm7zAY3vXIEcHs/+/LPNXQT8JZnYR8B7gRKADiOeWnXNuc4muTaQkist4LJ7mUJHZklJqKUHG46zj26ivqWJsMsG9O4/xijNXz/icMvfyzniY2dXAr4DX4u3ZsgfYHfvaMwvXKDIj0cAjmNORzujEVDiFNNPUUhHJX0qppQQZD/V5VIZCfhI+CGwDLnPOHZil6xEpuZE8Mx7R+9TjITJzwUZxAE0l2s/nwk0d3L2jW4HHAlZIj8d64N8UdMhCMzIRzXhkDjyi96nHQ2TmljVFMx6lmfdyofo8FrxCAo99gH4by4KTb49HcF9LfU1JGuFEFrtlkVJLqTIeQZ8HaHXLQlVI4PEl4E1mpjGFsqCMjCdXtRwZGMM5l/a4IwOFzfAQkew6mkuf8aivqebcderzWMgKCUEfxGssvc/MvgDsAqbiBznn7izRtYmURDTjMT6VoH9kkrbYBlaQLLWozCJSGg211bQ11tI3MjFtt9qZuHBTB7/Z2c29uxR4LESFBB63Rv78FSD+sdH825QRkXkl2lwK3sqWtIFHf2Hj0kUkt7999Rn8dncPzz2hs2TnvNDfDfmpw16fR2eLPiwsJIUEHm+btasQmSXOOYYnUgOPIwNjnLiyddqxXSq1iJTcq85aw6vOKu2+Kmcd3x7O87hv1zFevkXzPBaSvAMP59w3Z/NCRGbD+FSCqURqci7TypYjgyq1iCwEDbVen8dvdnrLahV4LCwamS4VbXQ8Ef652t/ELdPKlrDUosBDZN4LltWqwXThKSjwMLNmM/uYmW01s0H/a6uZXWtmzbN1kSLFGo7s07J2aSOQfnrpVMKFMwE0Ll1k/ov2eTy4u6fMVyOFKGRk+jLgPuDDwCrgd/7XSuAjeKtdls3GRYoUK7qiZd2yJiB9xqN7aIygIqNx6SLz37nrl3Ky36v1nv/+LceGxst8RZKvQjIefwOcgrdJ3Grn3POdc88H1gB/CpwMXFvyKxSZgeiKlg0dXlLuSJpph0GZBVRqEVkIaqur+MKbzqW5rpqDfaP8+bcfIpFIP6NH5pdCAo9XAV9xzn3RORf+NnfOTTnn/g34GvDqEl+fyIxEMx7rO7yMRzTICOzrGQGg0Z87ICLz3wkrWvjka88E4M6njvCF254u8xVJPgoJPFbilVYy+a1/jMi8MexPLa2rrmJVm9e7kS7j8XTXAOD9IjOzubtAEZmRV521hj+8cD0A//SLp7j76aOAt5R+x5FB/ue+Pfz00YPlvESJKWSOx2HgnCz3n+MfIzJvBKWWxrrqsGm0d3iCsckp6muSs+6eOjwIwIkrWub+IkVkRj70ylN5eF8vW/f18X+u/x0Xburgnp3HUjaR+8mfPZ9TVy8p41VKoJCMx43A283sj80sfJyZVZnZO4FrgB+V+gJFZiIotTTWVqfM5zg6mNqItr3LCzxOWKnAQ2Shqa+p5gt/cC5LGmo4OjjOj7cenLZz7WMH+st0dRJXSODxEWAn8EXggJndYWZ3AAeAf/Pv+2jpL1GkeCP+1NKmuuqUptGu/uSS2qmEl5IFOHHF9ImmIjL/Hb+siS++6VmctnoJr9iymr+98nRu+YuLOX+Dt6HcrqODZb5CCRQyubTbzM4D/i9eE+n5/l078fZu+ZRzTiGlzCvRUktzfQ1NddUMj0+lLKnde2yY8Ulv0NhJyniILFjPO7GTm//s+Sm3beps4f5neth1dKhMVyVxhfR44AcWH/S/ROa9oNTS5G/JvaK1nme6h1PGpgdllvqaKtYubZr7ixSRWbNxubeMftfR4TJfiQQ0Ml0qWjC5tLHOi7GDPo9oxuOpw96Kls3LW8Kx6iJSGTZ2eoHHM0eHNOdjnsiY8TCziwGcc3dG/55LcLzIfBCUWppqvYxHEHhEMx5P+xmPE1VmEak4m/zAY2RiisMDo6xuayzzFUm2UsvtgDOzRufcePD3LMebf391lmNE5tT0Uos/yyOl1OJlPLSUVqTyrOtowgycg11HhhR4zAPZAo9r8AKJidjfRRaMIOPRUJea8TjibxSXSLhIxkMrWkQqTX1NNWuXNrL32Ag7jw7xnBM6y31Ji17GwMM5941sfxdZCILJpfFSS5Dx2NczwuiEt6JFGQ+RyrSxs4W9x0a0smWeKGR32o+Y2RlZ7j/dzD5SmssSKY3oHA+IBB6DYzjnwjJLXXVVuHutiFSWoM9Dgcf8UMiqlmuBM7PcfwYaICbzTHKOh5fcC4aITUw5eocnwqW0m5Y3U1OtRV4ilWijAo95pZS/aRuAyRKeT2TG4s2l0bHpXQNjbPf3aDlBZRaRihUEHnuODTMxlSjz1UjWAWJmtgRoj9zUYWbr0hy6DHgTsLd0lyYyc8ORyaUAHc31VBkknNfnEZRaTlJjqUjFCgKPqYRj77FhNi3XB41yypXx+Atgl//lgH+O/D369SBwGfCl2bpQkWLEezyqq4yOFi/rcbh/NLmiRRkPkYq1pr2Ruhrv7U7llvLLNTL9dv+74W0SdwOwNXaMAwaBe5xzd5f06kRmKFzVUpccL7OitZ4jA2M8vK83zIhoeJhI5aquMjZ0NPHU4UEFHvNA1sDDOXcHcAeAma0HvuScu3cuLkxkphIJFy6VbahNBh5Bn8fdO7oBqK021nc0z/0Fisic2djZzFOHB9mpwKPsCtmd9m2zeSEipRaUWQCa6pI/6sHKlqDMsrGzmVqtaBGpaBs7W4DD7DqiwKPcCtqdFsDMqoFTgKWk6RHRXi0yX6QGHtMzHoETV6ixVKTSaZbH/FFQ4GFm/xd4P7Aky2Haq0XmhWCGB0BjtNTSkhp4aCmtSOXbuNwLPA71jzI0NklzfcGfu6VECplc+g7gk8BDwIfwGk7/Gfg0cAx4AG8/F5F5YXg8fcZjxZKGlOPUWCpS+YIltQDPdCvrUU6FFLb/BG/lyguA//Bvu8k59368iaYbULZD5pFgRQuk9nio1CKy+HQ019Ha4P0eULmlvAoJPE4FvuP/OdiltgbAOXcQLxj5s9JdmsjMREstDbXJH/UVkcCjuspSPgmJSGUys2SfhxpMy6qQwGMKCP5rBd+XRe5/BjixBNckUhLh1NLaaswsvD2a8djQ0RQOFhKRyqY9W+aHQn7j7gE2AjjnxvDGoz8/cv/5eL0eIvPCcGxqaaCproYWv7FMZRaRxcNbUotmeZRZIW29dwKvAP6f//fvAH9uZo14Acybga+V9vJEijfi93g01k1vPVreWs/g2KQaS0UWkWBly84jgzjnUjKhMncKCTw+BzxsZo3OuRHgo8BJwFv8+3+Ot9RWZF4YGU+f8QB4w/nH81/37uaVZ66Z68sSkTIJejz6RyfpGZ5gWXNdma9ocSpkcuk2YFvk70PAq8ysDZhyzg3OwvWJFC0otTTWTf8x/+NLNvPHl2ye60sSkTLaEGkk33V0kGXNy7IcLbNlxl11zrk+BR0yH4UZj1qt8hYRaKmvCVe17dTKlrIpZIBYwswOmNmzM9z/JjObSnefSDkMZym1iMjipJUt5VdoxqMDuM3Mfm82LkaklMLltAo8RMS3abkCj3IrNPD4a+BB4Hoz+8BMn9zMWszs82Z20MxGzOwBM3tVno/dbGY/MLM+Mxsws5vN7LQMx24ys+vM7JCZjZnZbjP7YuyYa83Mpfk6NNN/p5TOgd6RcFfZXMJVLSq1iIgvyHio1FI+he6ScxR4Ed6y2Y+b2YnAHznnJrM/LKMbgHOB9wG7gLcCN5jZFc65mzM9yMxWAHcBXXiraibx9o+5w8zOcc7tixx7JnA73l4y7wGOAOuAczKc/nIg+s42Xsw/TErvUN8oL/3nOxmdTHDLX1zM+o7sE0dVahGRuM3LvSX0u44OMZVwVFdpSe1cK3h7PufcBPCHZvY03pLajWb2mkLPY2YvBy4DrnLO3eDfdhuwCfgskDHwAN4LLAXOc84d8B/7G7zg5YPAu/zbDPgv4G7gCueci5zjugznfsA511vov0dm38dvepz+US/G/cmjh/iTHKtSRrKsahGRxSkIPManEuzrGc75AUZKr+hVLc65jwF/CFwA3IM306MQrwH6gB9GzumAbwKnZCqbRB57SxB0+I/tBm4EroocdwmwBfh0LOiQBebup4/y460Hw7//4vHDOR+TbY6HiCxOa5c2UlftvfXtOKIFmeUwo+W0zrlv4ZUmluGVOgpxBvC4cy4Ru31r5P5p/Empm4FH09y9FVjhl2IALva/V5nZr8xs3Mx6zOx/zCzT5KgnzGzK7zv5cuRcaZlZb7YvoC3b4yW38ckEH/nRY4C3wyTAg3t66B4cy/o4lVpEJK6muooNnU0A7OhSn0c5FBJ4fBPYEb/ROfcr4EK8Hoo9BZyvg/R7uxyL3J/OUsDyfGwQXHwfr9zyErx+ksvw+kGaIo/dAXwAeBteMPVF4A3APWa2NNc/RmbPN+7exdNdg1QZfPWt59NcV41zcNu2I1kflyy1KPAQkaSg3KKMR3kUMrn0bVnu24FXcilUtvJHrtJIPo8NAqtvO+fe5//5NjM7APwY+APgKwDOuXjPxy/N7B68UfB/Cnw87RM5157tIpX1mJlDfaP88y+2A3D1RRs4+/h2nn/icn762CF+8fhhfu9ZazM+dthf1aKMh4hEKfAor3LuB95N+qxGMMM20063PXiBRT6P7fa//yx23M+BKbwVNRk5524BDgIXZTtOZs/f3fwEw+NTdLbU8ReXe21El522EoA7tx9hdCLzzLpwjoeW04pIxOYVXkPpjixLahMJtQXOlowZDzP7Gt4b/Dudc1P+33Nxzrm35/ncjwGvNbOqWJ/HFv97uh4OnHMjZraT9D0gW4Ajzrku/++P5LiGeH9JOlV5HicldveOo9z4sNc//P6XnUpbYy0ALzh5OWZeYHHPzm4uPTl9G87IuFa1iMh0Qcbj2NA4x4bGp20Wt7t7iNd88W5edMoKPv37Z5XjEitatozHW/2v6tjfc33l6wagHbgidvvVwDbn3OM5Hnu5ma0KbjCzZf65vh857ifACPDy2ONfivfvujfbBZrZi4GVeKt2ZI5990FvHMs569q56pzjwts7Wup51jqv7eYXT6Rf3TI+mWDS/8SiUouIRAWBB6Qvt9z0yEGODY3zw4cPKPMxCzIGHs65KudctXNuPPL3XF+F/Ia/GbgN+KqZXWNmLzCzbwDPw5uQCoCZ3W5m8f/yn8FbinuzmV1pZq8AbsIbJPaJyL+hB/gYcI2ZfdbMLjOzdwFfBx4Gvh15nt+Z2V+Y2cvN7HIz+yjwPeBp4AsF/LukRILJgpeetIKq2JCfF53qlVtufaKLdCulRyIlGJVaRCSqub6G1W0NAOxIMwn5t7t7Ae8DzKH+0bm8tEWhbD0e/lyNVwPX4wULPwHOxBsodmOOxx4Gng/sxRsE9m2gF7jYObcnduw/4DWHvgwvOLkWLyvywiCo8j0JvBv4jn/c1XiNpxdooFh5BHspbFw+fcDP5ad55ZWDfaM8dqB/2v1BmQWU8RCR6TI1mDrn+N2envDvu7uH5/S6FoOyFr+dc/14Y8zfk+WYSzPcvh24Ms/n+RLwpRzHvDGfc8nc6Bkap29kAoCNaSYLbl7ewvqOJnZ3D/OLJw5zxnGpC4eCFS0ATerxEJGYzcub+dXTR6c1mO7uHqZ7KPmZdM+xIS7anGm6gxQjW3PpR4o4n3PO/e0MrkcEgJ2RnSODYT9RZsZlp67kq7/axa1PdPHnl6UOzh2OZDw0x0NE4javSJ/x+G0k2wHKeMyGbB8Fry3ifA5Q4CEzFpRZOlvqaW2oTXvMi05dwVd/tYtH9vdxsG+E1W2N4X3RHg+VWkQkLii17D02zOjEFA1+L9i0wOOYAo9SyxZ4bJyzqxCJecYPPDZ1Zt7A6fwNy1jSUEP/6CS3PtHFmy9cH94XZDxqqoza6nKOqxGR+SgIPBLOy2qcvKoVSDaWttbXMDA2yR5lPEou26qW3cV8zeXFS+UKG0uzBB611VXhDI/bt3Wl3Dfi93iozCIi6axcUk+z//shKLcMjk3y5CGvWf1lW7xpDbu7tZ9LqemjoMxLQeCxIUvgAfCs9d48j52xBjFtECci2ZhZss/DX1K7dW8vCQdmcOXZ3uyg/tFJeofHM55HCldwu7+ZnYe3L8tSpgcuai6VGXPO5ZXxADiu3evr2N87gnMOM2/eR9DjoRUtIpLJ5uUtbN3Xx9N+xiPo7zhxRQtnrEmulNvdPUx7U13ac0jh8v6t7G9H/33gxXi7wzr/O5E/q7lUZuxw/1gYOOQMPJZ6gcfYZIKjg+Msb60HIuPSNTxMRDLYvDzYsyUIPHoBL5Pa1lRLW2MtfSMT7D42zFnHt5fpKitPIaWWj+AFHX8HvAAv0HgL3mCuu4D7gdNKfYGy+ATZDjNY3zF9KW1UEHiAl/UIqNQiIrmEQ8S6hkgkXJjxOMffkiH4/bNHfR4lVUjg8XvAd5xzHyG5gdt+59zPgMuAOgrbq0UkrSDwWNPWGC5xy2RJQy2tDV7ibn/P9MBDzaUikknQ4zEyMcXdO7rpHfaGFp7rBx7rlnmBh2Z5lFYhgcfxwB3+n4MhCXUAzrlJ4H+AN5Tu0mSxeqY7v/6OQLLPI/nLIVzVolKLiGSwvqOJYBuo7zy4F4C2xtpwGX+Q8dAsj9IqJPAYINkTMoC3VfyayP19wKr4g0QKFaxQyTfwWOuXW9JlPFRqEZFM6muqWe9vyfDTRw8BcO669nBTyvXLvPs0y6O0Cgk8dgAnATjnpoDH8MovmLeU4Cq8TdtEZmTXUa/RK9dS2kB0ZUtgeCIotWhVi4hkFjSYjk0mgGSZBWCdn/E41D/KaGQacjZTiem7ZUuqQgKPXwCvNbPgI+S/Ay81sx3Adrw+j6+W+PpkkZlKOPb4ac1sU0ujggbTfZGMx4gyHiKSh6DBNHDu+mTgEW1u35NHueW6e3Zz+kd/yk1bD5buAitQIYHH35NczYJz7ovAe/FKLD3AB4BPlfoCZXHZ3zPCxJT3iSH/jIf3yyGa8VDgISL5iAYeVUbKstmVrQ3U1Xhvk/k0mH7j17sYnUhw65OHS36dlSTvPLRzbhDYFrvtH4F/LPVFyeK1y28sramysHcjlyDjMTA6Sf/oBEsaaiOlFgUeIpLZ5hXJDzgnr1pCS33ybbGqyli3rImnuwZzjk7f0z3MDr8/7eigJp1mk1fGw8xazGyHmf35LF+PLHK7/EE+65Y15b25W9DjAckG02BVS5NWtYhIFps6kxmPc9e1T7t/vb+kNlep5fankvtFHR0YK83FVai8frP72Y4OYHB2L0cWu3z3aInqbKmj3k+HBoFHclWLmktFJLOlzXWsWtIAwLM3Lpt2f9BgmqvU8ssnk4FH95ACj2wK6fG4Bzhvti5EBGCX/z93vktpwdvsKb6yJejxaFCpRURy+NwbzuZ9Lz2ZV2xZPe2+fDIeI+NT/GZHd/j37sFxElrdklEhgcf7gdeZ2dss2IlLpMQKXUobCPo8gsAjzHio1CIiOVywqYN3X3oCNWnKu8Gcj309wxmXyv5m59FwOS7AZMLRNzIxOxdbAQrJQ/8j3uqVrwCf8pfRxkNA55x7UakuThaXscmpsFSS71LaQJjx6BkhkXCR3WkVeIhI8YJSy8SU40DvCMcvm75/1G1PHgG85bdBSebo4BhLm7WjbTqFZDw2+cfvwev1WAlsjH1tKvUFyuKx99gwwQeKQkotkAw89vWOMDqZHPSjVS0iMhNrlzYS5PjTlVucc2F/x2vPXRverpUtmeUdeDjnNjjnNub6ms2LlcoWjEqvr6kKm73ydVxkbHrQ3wFqLhWRmamvqWZNm/f7JV2D6dNdg2GJ9/LTVrK0qRbwMh6SXiEZD5FZFd0cLtgrIV9BxuPo4Bg9w8naqkotIjJT4S61x6bP8rhtm5ftWN3WwCmrWulsqQcUeGRTcOBhZhvN7B1m9kEz2+DfVmdm68xMBS0pWriUtqOwMgskMx4AO44kV32r1CIiMxWMTk+3WVxQZrn05BWYmQKPPBQUeJjZPwBPAf8B/A3Jno4G4HHg3SW9OllUgsBj4/LCA49VSxqo9rMkT3dFAg+tahGRGco0y6N/dIIHnukB4AUnLwego8X7/N2tHo+M8g48zOyPgb8GvgC8GH/PFgDnXD/wI+CKUl+gLB5h4FFExqOmOtkXsv3wQHi7Ag8Rman1y7zfSXuODeNcckntr7YfZTLhqKuu4rkndAIo45GHQjIe7wZucM79OfC7NPdvBU4uxUXJ4jM0Nsnhfu9/1GIyHpDs89juZzwaaqsK7hUREYkLSi2DY5McG0pmMm7zyywXbFpGs7/Hy/JWL/A4ooxHRoUEHicBt2S5/wjQObPLkcVqb08yhRndiroQQZ9H0OOhFS0iUgrrIr+Tdh8bZmhskscO9HHbNm9+x6Unrwjv7/RLLdqvJbNCfjOPAtk+iq4Hemd0NbJoBdmOmiqjs7m+qHMEGY/RCW+CoMosIlIKSxpqWdpUS8/wBFd/9T4GxyZT7n/hKdHAw/v91T00hnMODfqerpCMx33Aa9LdYWYNwB8Cvy7FRcnic8T/dNDZUl90eSS6sgW0lFZESufU1UsAUoKO5rpq3vjsdSkDDzv8wGN0IsFQZKaQJBWS8fg08DMzuw74mn/bKjN7CfAxYC3wByW+PlkkugZGAVixpLhsByQzHgEFHiJSKn/3mi389NFDLG+tZ0NHE+s7mulsqZuW0QhKLeCVW1rqVfKNy/sVcc79wszeBXyOZIBxnf99HPgj59xvSnx9skh0+aWW5S0zCDxiGQ/N8BCRUtnY2cy7Lt2c87jOyO+wo4NjBW94uRgUFIo55/7DzH4E/D5wCt6S2u3A/zrn9s/C9ckiccRfelbKjId6PERkrjXUVtNaX8PA2KT2a8mg4ByQc+4Q8C+zcC2yiB0pQcajobaazpa68H92rWoRkXLoaKnzAw+tbElHe7XIvBBkPJYXuDlcXDTroVKLiJSDhohlV9BHQjO7CHgPcCLQQWR6qc8553IXwURiuvr95tLW4jMe4PV5PLyvD1BzqYiUhwKP7PIOPMzsauDrwATefi17ZuuiZHEZGpsMl50tn2ngoYyHiJRZZ6v2a8mmkIzHB4FtwGXOuQOzdD2yCB2JTPibccYjEng01arHQ0TmnjIe2RXS47Ee+DcFHVJqXZHAY8YZj6XJ0cYqtYhIOXSEgYcyHukUEnjsA2b2riCSRpDxaGuspb5mZsFCNOPRoMBDRMpgufZryaqQwONLwJvMTL/NpaTCqaUzzHZA6hCxJs3xEJEyCEotA2OTjE5obHpcIUXwB4HXAveZ2ReAXcC0V9Q5d2eJrk0WiaDUMtMyC3hZk2XNdRwbGmdZc13uB4iIlFh0emn30Pi04YaLXSGBx62RP38FcLH7zb9NHzOlIEGppRQZD4BPvfZMHtzTw3NP6CzJ+URECtER269FgUeqQgKPt83aVciiFmQ8VsxweFjgstNWctlpK0tyLhGRQrXU11BfU8XYZEIrW9IoZJO4b87mhcjiFQwPm8m4dBGR+cLM6GypZ3/viGZ5pKGR6VJ2R0uwQZyIyHzS6ZeOjyjjMU1BgYeZHW9mXzOzfWY2bmYv9G9f7t9+/uxcplSqyakE3UPeJwJlPESkUnT6ze0qtUyXd+BhZhuBB/BWtjxGpInUOXcEOA94R6kvUCpb99A4zm9TVsZDRCpFp4aIZVRIc+nfAQngDGAE6IrdfzNwRYmuSxaJrv7o1NLSNJeKiJRbsF+LhohNV0ip5TLgi865vUxfSguwG1hbkquSRSMYHlZXU8WSBu2tIiKVIch4dA8p8IgrJPBYAhzMcn8dhWVQRFJmeJhZma9GRKQ0VGrJrJDAYy9wepb7LwSentnlyGLTVeLhYSIi80EwRKxneJzJqUSZr2Z+KSTw+D5wjZmdEbnNAZjZa4HfB/63hNcmi8CREo5LFxGZL4JVes7BsSFlPaIKCTz+Dm+H2nuB/8ILOt5vZr/BCzgeBj5b8iuUipbcIE6NpSJSOaL7tajckirvwMM51w9chLdPy3l4e7NcDpwMfBF4gXNudDYuUipXKTeIExGZL9oaa6mp8vrWNMsjVUHNoH7w8WfAn5nZcrzg44hzLt0qF5GcSr1BnIjIfFBVZSxrrqNrYEyBR0zRI9Odc0ecc10KOqRYzrnIBnEKPESksiRXtijwiMqZ8TCz1YBzzh3y/94AvDvNoXudc98p8fVJBesfnWR80uv2Xt6iHg8RqSydrfVwEG0UF5M18DCzk4FHgQ8B/+Df3Ax8Bq+5NDp4YdLMHnLObZ+NC5XKc2Qg2RKkjIeIVJpOf0mtNopLlavU8jbgGPBPae57L/AC/+tFwABwTUmvTipaMC7dDDr8DZVERCrFcg0RSytXqeWFwI+cc+letYedc3cEfzGzb+MFICJ5CT4FdDTXUVNddLuRiMi8FAwR034tqXL9tj8ReCjPcz0JnDCjq5FFJch4aHM4EalE2q8lvVyBRzMwGLutB9gC3BO7vd8/XhaRvpEJ/vLbD/GTR7Jt45NeMDxMMzxEpBKFgcfgOImEFoAGcgUevcDq6A3OuYRz7jHn3HDs2FVAXwmvTRaAr/1qF9//3X7+6jsPFzwWWDM8RKSSBYHHZMLRNzJR5quZP3IFHo8AL87zXC/2j5dF5BdPHAZgeHyKr/1qV0GP1QZxIlLJjmtvxB9eytfvfqas1zKf5Ao8vgdcYmavynaQmb0auAT4bomuSxaA/b0jPHagP/z7N+9+pqCoXhvEiUgla2uq5R3P3wTAv/5yOw/uPlbmK5ofcgUeXwW2Af9rZn9jZuujd5rZejP7W+B64Anga7NzmTIf3epnO9oaa2muq2ZgbJJvFhDVJzMeai4Vkcr0Vy8+iVNXLyHh4M+//RCDY5PlvqSyyxp4OOfGgFcCu/CGiO00sx4z221mPcBO4IP+91f6x8siccvjXuDxolNX8IcXbQDga7/eldf/WKMTU2F2RBkPEalU9TXVfO4NZ1NXU8XeYyNc+6PHyn1JZZdzeIJzbidwDt7mcL8CpvAaTqeAu4D/A5zrnHum0Cc3sxYz+7yZHTSzETN7IFdZJ/LYzWb2AzPrM7MBM7vZzE7LcOwmM7vOzA6Z2ZgfOH1xJudc7PpHJ7hnZzcAl5+6knc8fyMNtVX0Dk/wX/fszvn46N4F6vEQkUp20spW/t/LTgHguw/u4+YiVgFWkrymNjnnRp1z/+Kcu8Q51+mcq/O/X+qc+1fn3Gjus6R1A/AmvGzKK4DHgRvM7OXZHmRmK/CCng3AW4A3AsuAO8xsbezYM4EHgJXAe/CaYD8EjMaOy/ucAnc+dYSJKUdddRUXn7SczpZ6/uDZXiXuK3ftZGR8KuvjuyIDdZTxEJFK95aLNnDxScsB+MANj3Cor9i3zYWvbOMi/eDiMuAdzrmvOud+ifeG/xvgszke/l5gKfBy59wPnHM/xgtc6vFKP8FzGPBfwN3AS5xz33XO3eGcu84595fFnFM8QZnlOSd00FzvDcD940s2UVddxdHBcf7nvj1ZHx80ljbXVYePFxGpVFVVxqd/70yWNtXSOzzBm796L7uODpX7ssqinHOqX4M39+OHwQ3OOQd8EzglR4njNcAtzrkDkcd2AzcCV0WOuwRv2Nmn/XPnup58zrnoTUwluO3JLgAuP21lePvKJQ287nwvOfTvd+7gS3fs4JM/eYL3f28r7/7Wg3zhtqfD/o+wsXSJGktFZHFYuaSBz77uLGqrjae7BrnyX3/FnU8dKfdlzblyBh5nAI875xKx27dG7p/GzBqBzXi75sZtBVb4ZROAi/3vVWb2KzMb95tj/8fM1hR5zvj19Gb7AtrSPW4hu3/XMfpHvQDislNXptz3J5dspqbKONw/xt//5En+/Y6dXH//Xm5+5BCf/tk2LvnUbXz917vY3zMCqMwiIovLC09ZyfXvvJDOlnr6Ryd569fv4yt37ST3Z+PKUc7AowNv59u4Y5H701kKWJ6PDYKL7+OXW4D34ZV47jCzpiLOuejd4i+jPWttGytjGYu1S5t430tPZmNnM1uOa+P5J3ZyxVlreM05x9FQW0X30Dgfu/FxvnTHDkCBh4gsPs9av4wfvee5bDmujYSDj9/0BO/77tZFM1a93MX1bK9yrv8C+Tw2CKy+7Zx7n//n28zsAPBj4A+Ar8zkepxz7dkustKyHs65sL8jnu0IvPPizbzz4s3Tbn//y07h87du5/r79zLl/w8WbBstIrKYrGlv5Dt/chHv++5WfvTwAb7z4D4uPXkFrzhzde4HL3DlzHh0kz6LsMz/nmnEWw9eEJDPY7v97z+LHfdzvOXA5xZxzkVt2+EB9vllkstPTx94ZLJySQN/95ot/OIvL+GKs9awckk9Lztj1WxcpojIvNdQ6834uPRkb7XL9fdnb8qvFOXMeDwGvNbMqmJ9Hlv87+n6LXDOjZjZTtL3gGwBjjjnuvy/59o7JlHEORe1Wx7zsh1rlzZy8srWos6xsbOZf3njOaW8LBGRBcnMePMF67l92xHu2n6UvceGOX5ZU+4HLmDlzHjcALQDV8RuvxrY5px7PMdjLzez8OOymS3zz/X9yHE/AUaA+FyQlwLVwL1FnHNRCzaFu+zUlXirlUVEZCYuPXl5OEjxOw/sLfPVzL5yBh43A7cBXzWza8zsBWb2DeB5wF8HB5nZ7WYW76/4DN5S3JvN7EozewVwEzAJfCI4yDnXA3wMuMbMPmtml5nZu4CvAw8D3y70nIvZ3mPDPLyvD4AXn1ZYmUVERNKrqa7i98/zRhH87wP7wh64SlW2wMOfq/FqvA3mPoGXnTgTuMo5d2OOxx4Gng/sBa7DCyB6gYudc3tix/4D8KfAy/ACiWvxMhgvdM6NF3POxepHD3sjTpa31nPBJi3yEREpldeftw6AQ/2j3PFUZVf2y7qqxTnXjzfG/D1Zjrk0w+3bgSvzfJ4vAV/K47i8z7nYOOf4we/2A3DFmWuorlKZRUSkVNZ1NPHcEzr49dPdXH/fXl54SuVmlctZapEF5MlDA2zvGgTgyrPX5DhaREQK9frzvazHrU920TVQuXu5KPCQvPzwIa/MsrGzmTPXVsxYEhGReePFp62kvamWqYTjuw/uK/flzBoFHpJTIuG40e/veNVZa7SaRURkFjTUVnPVOV6T6bfv31uxY9QVeEhOD+zuYX+vNzTsVSqziIjMmteffzwAu7uHuWfnzOdWXn/fHn740P4Zn6eUFHhITsEP7Zbj2ti8vKXMVyMiUrlOXtXKOevaAfj2DCeZ7jgyyPu//wh/dv1D/OMtT82bDIoCD8lqfDLBTY8cBNRUKiIyF648y/tde/8zPTM6z95jw+GfP3/rdv5pngQfCjwkq189fYTe4QnM4IqzFHiIiMy2TX5m+VD/KJNTiRxHZ3ZkYCzl75//5dN89uflDz4UeEhWwWqWizZ1sHJJQ5mvRkSk8q1d2gjAVMJxqL/4ZbVHBr3A4/Q1S8Jdb//1tqf5zM+3lTX4UOAhGQ2NTfJzf1M4lVlERObGmvbG8M/7/d3AixFkPFa3NfC5158dZq2/cNsOvvNA+ZbrKvCQjH7xxGFGJqaoq67ipaevLvfliIgsCg211eGmcftmEHh0+YHH8tZ6aqqr+KfXncVzT/C2u7hj+5GZX2iRFHhIRr/b0wvABZuW0dZUW96LERFZRIJyy0wCjyDjsbzFC2Jqqqs4a207AL3D45keNusUeEhGh/3a4vHLmsp8JSIii8txS73fu/t6hnMcmdnRSMYjsLSpDoCeoYkZXN3MKPCQjIKmptVqKhURmVMlzXhEAo92P3utjIfMS4f7vMBjZZsCDxGRuRQEHsHU6EKNjE8xMDYJwPLW5O/wMOMxrIyHzDNTCRc2Jq1SxkNEZE6t9UstB3pHmEoUvvT16GByhseKaKml2ct4jExMMToxNcOrLI4CD0mre3CMSf+HfZUyHiIicyrIeEwmXNhvV4iuyPCwzpZoqaUu/HNvmbIeCjwkrejQGg0OExGZW8dFZnkU0+cR9He01tfQWFcd3r40Enj0lKnPQ4GHpHXI7+9orK1mSUNNma9GRGRxaaitDjMV+3sLX9kSTC2NNpYCtDXWYub9WYGHzCtBam9VWwMW/JSKiMicCVe2HCs+49EZCzyqq4wlDcHKFpVaZB4JSi0rl9TnOFJERGbDTJbUpltKG1jqL6lVxkPmlUN9WtEiIlJOwcqWfcWUWmJTS6OCBlNlPGReCUotmuEhIlIex80k45GhxwMiGY8hZTxkHglKLcp4iIiUR1BqOdA7QqLAWR7pxqUH2ss8REyBh6QVTC1V4CEiUh7H+4HHxJRLmcuRi3Mua49HucemK/CQaYbGJsNRuyq1iIiUx3HtyQ0645vFOef43/v38uDunmmP6x+ZZHwqAaTv8UiOTVfgIfNEdHiYMh4iIuXRWFdNZ4sXJMT7PG55/DDv+95W/vi6B3AutQzTNZD8Hb4iS4+Hmktl3gjKLGbp03QiIjI3ggmm8YzHrU90AXB0cJyDfakj1YMyixksa64jrl0ZD8mXc463fv0+Lvn0bdy94+isPU+Q8ehsqae2Wj8iIiLlEiypje5S65zjjqeOhH9/6vBAymOCFS0dzXXUpPkdHpRa+kYmCm5aLQW9qywgZsb2w4Ps7h5m19GhWXserWgREZkf0g0R2941mFISf7prMOUx4dTSNP0dkGwuTTjoH537cosCjwVmfYcX/e7pLnygTL6CUos2hxMRKa90gccd246kHDMt45FlRQvA0uboRnEKPCSHIPDYPYuBR5jxaFN/h4hIOYWllp7kLI87t3uBR5W/jdb2DBmPjIGHn/GA8vR5KPBYYNYtawZg97HZDDw0Ll1EZD4IppeOTyU4OjjGyPgU9+46BsBLz1gFwNOHB1NWtmSbWgreruN1Nd7bfzlmeSjwWGCSpZahaUuoSkWlFhGR+SFY1QKwt2eEe3Z1Mz6ZoMrgrc/ZCMDA2GRKz0e2fVrA6xdMjk1XqUVyCAKPofEpumdhzv5UwoXR8ioNDxMRKavm+ppwSey+nuGwv+OcdUs56/g2qv16y/bDyXJLrlILlHeImAKPBWZ9R3P459no8zg6OMaUX0dUqUVEpPyiDaZBf8fFJy6nvqY6/DAaNJhOTCU45gcTK1oz/w5vL+MQMQUeC0xLfQ0dfvS751jpl9Qeigyi0bh0EZHyC8ot9+zsZucR7/f+xSd1AnDSilYguaT22NA4QRVeGQ8pmXWzuLIlqBM21VXTWl9T8vOLiEhhgozHXdu9wZHtTbWcubYdgBNXtgDJjMeRyGZy2QKPYHqpMh6Sl/XLZm+Wx+HI8DAzK/n5RUSkMMGS2sDzTugMeztOXOllPLZ3DabsSltXU8WShswfHsPmUmU8JB/rOmZvSe0hrWgREZlXgoxH4JKTlod/PnGFl/EYGJ3kcP9YyoqWbB8ek6UWZTwkD0HGYzZLLVrRIiIyP8QzHhdHAo9Ny5sjg8QGcs7wCCSbS5XxkDwEXcxHB8cYGpss6bmDUosyHiIi88NxkYzHKataU34/19dUs8HPgm8/PEiX/zs8V+Ch5lIpSNBcCrCnxOWWoNSyaonGpYuIzAct9TVhhiJaZgkEDaaFZDyWNnvnG51IMDoxVcrLzUmBxwK0vKWeprpqoPTllsP9Gh4mIjLfXHXOWpY11/H7562ddt+J/pLa7YcHc04tDQSrWmDusx4KPBYgM2NdsLKlhLM8BscmGfRLNyq1iIjMHx+54jQe/NBlnOAHGVHRJbVdeUwthWSpBeZ+bLoCjwVq3Sw0mEaHhynjISIyv2RapRJkPPpHJ9nrl99zBR5tjbUEp5vrBlMFHgvU+lkYIhY0llZZ7jSdiIjMD9GVLYk8ppYCVFcZSxqCWR7KeEgekrM8SldqCTIenS311FTrR0NEZCFoqK1O2ccL8vvwWK4hYnp3WaCCWR4HekeZmErkPH58MsFkjuM0w0NEZGE6wR8kFsiV8YDo2HQFHpKHoNQylXDs7xnJeuzRwTGe8/e/5EX/eAdPdw1kPE4zPEREFqaTViYDj9aGGhpqq3M+JpnxUKlF8rCmvTGc1Z9rdPqNDx/g6OAYu7uHee2//Yb7nzmW9rjkDA8FHiIiC8mJkdUu+WQ7oHxDxBR4LFC11VXhVsl7urP3edz8yMHwz30jE7zpK/fy00cPTjvusEotIiIL0omRjEe+iwPKtUOtAo8FLJ+VLYf7R3lgdw8Af/vqM9jY2cz4ZIJ3feu3fOPXu0gELdAkezxUahERWVg2L28JV7bkn/EoT3Np5j1zZd4LZ3lkKbX89NFDOOet2X7D+cfzii2recc37+e3e3q59sbH+ZsfP05bYy3tTXXh4BmVWkREFpaG2mrWLWvime7hvAOP9mZlPKRAwcZAe7JkPG7yyywvPm0ltdVVLGuu41vvuJCXnL4S8NZ89wxPsOvoEM6BGWzobMp4PhERmZ8uPXkFAM/esCyv45XxkIIFm8XtOTaMc27aVLuu/tGwkfTlZ64Ob2+sq+ZLb34WT3cN0jUwRu/wBL0j4/QOT3DyytZpWzCLiMj899ErTuPdL9jMitb8stZBc2nfyARTCRcuWJhtCjwWsKDHY2RiiiMDY6yIlUh++phXZlnSUMNzN3em3GdmnLiylRNXTp/7LyIiC4+Z5R10AOGOt85B/8gES5vrcjyiNFRqWcCCHg9I3+dx01avzHL5aauoq9F/ahERSVpaph1q9W60gDXV1YRNRPGVLV0Do9znl1leceaqOb82ERGZ31IDj7lrMFXgscAFo9Pjszx+5q9maW2o4XknLC/HpYmIyDzWWFdNvZ8Nn8ux6Qo8FrigwTReaglWs1x+2kqVWUREJK3k9FJlPCRP65d5S2qfPDgQjjw/MjDGfbv8MsuW1RkfKyIii1vQYDqXGQ+talnggpkb2w4PcOEnb2VDRxMrWhtIOGitr+F5J3bmOIOIiCxW5divRRmPBe5Fp67kZWesoqnO24nwme7hsKn0stNWUl+Te4dCERFZnJY2z/0Otcp4LHAt9TX825ufxcRUgkf393HPzmPcu6ubo4NjvOvSzeW+PBERmceSG8Wp1CIFqq2u4px1Szln3VIFHCIikpdwbPqQmktFRERklqnHQ0REROZMstSijIeIiIjMsnLsUFvWwMPMWszs82Z20MxGzOwBM3tVno/dbGY/MLM+Mxsws5vN7LQ0x7kMX38SO+7aDMcdKtW/V0REZD4JMh5jkwlGxqfm5DnL3Vx6A3Au8D5gF/BW4AYzu8I5d3OmB5nZCuAuoAt4CzAJfAi4w8zOcc7tiz3k28A/x27bmeH0lwODkb/PXRgoIiIyh4KMB3hZj8a6xll/zrIFHmb2cuAy4Crn3A3+bbcBm4DPAhkDD+C9wFLgPOfcAf+xv8ELXj4IvCt2/CHn3D15XtoDzrnefP8dIiIiC1V8h9o17bMfeJSz1PIaoA/4YXCDc84B3wROSVc2iT32liDo8B/bDdwIXDU7lysiIlJZljTW8sJTVnDVucfRVDc3uYhyBh5nAI875xKx27dG7p/GzBqBzcCjae7eCqzwSzFRV/s9JKNmdq+ZvS7LdT1hZlN+38mX05wrfj292b6AtmyPFxERKZfqKuNrbz2ff3zd2WzsbJ6T5yxnj0cH8FSa249F7k9nKWCR4zI9tsv/87fwyjZ7gdXAu4Fvm9lq59znIo/dAXwA+B1eX8dz8XpPXmRmz3LO9eTzjxIREZHMyt1c6oq8L+/HOufeHL3DzL4L3A583Mz+wzk34h93XewcvzSze4CfA38KfDztEznXnu0ilfUQERFJKmeppZv0WY1l/vd0GQ2AHrzAopjH4pd2/gtoIUM5J3LsLcBB4KJsx4mIiEh+yhl4PAacambxa9jif0/Xw4GfodhJ+qBhC3DEOdeV5r6o4Dnj/SWZjs3nOBEREcmhnIHHDUA7cEXs9quBbc65x3M89nIzWxXcYGbL/HN9P9uT+oHOm4ABvOAn27EvBlYC+S7FFRERkSzK2eNxM3Ab8FUz68CbwfEW4HnAlcFBZnY7cIlzziKP/Qzwh8DNZvYxkgPEJoFPRB77XuBk4Jd4JZNVeDM+ngf8qXNuNHLs74D/BLYBE8Bz8OaFPA18oYT/bhERkUWrbIGHc86Z2avxAoVP4GU/HscbKHZjjsceNrPn4wUg1+Flbu4CLnbO7Ykcug0viHm1f/4h4EHgVWme40m8FS9rgFq8VTBfAf5WA8VERERKw7yZXTJbzKy3ra2trbe3t9yXIiIiMuva29vp6+vry7TqU7vTioiIyJxR4CEiIiJzRoGHiIiIzBkFHiIiIjJnFHiIiIjInFHgISIiInNGgYeIiIjMGQUeIiIiMmc0QGyWmVkCsLa2tnJfioiIyKzr6+sDb0B52uSGAo9ZZmaTeJml/hKdMohg+kp0PslMr/Xc0us9d/Raz53F+FovARLOubTbsijwWGDMrBcg0yhaKR291nNLr/fc0Ws9d/RaT6ceDxEREZkzCjxERERkzijwEBERkTmjwENERETmjAIPERERmTMKPERERGTOKPAQERGROaM5HiIiIjJnlPEQERGROaPAQ0REROaMAg8RERGZMwo8REREZM4o8FggzKzFzD5vZgfNbMTMHjCzV5X7uhYyM3uRmX3DzLaZ2bCZ7TOz75vZljTHXm5m9/ivfZeZ/buZtZfhsiuGmV1rZs7MHkpzn17vGTKzS83s52bW6/98P25m74wdo9e5BMzsHDP7gZkdMLMh/7V+v5nVx47T640Cj4XkBuBNwIeAVwCPAzeY2cvLelUL258A64B/Al4G/KX/9/vN7MLgIDO7FLgZ2AtcAbwXeBVwk5np/6EimNnpwP8FDqe571L0es+Imb0F+AWwA3gD3uv4BaAucsyl6HWeMTM7Bbgb2AD8Od5r+X3g74AvR467FL3egJbTLgh+cHETcJVz7gb/NgPuAjqcc6eW8/oWKjNb4Zzrit3WDuwCfumce61/231ALfAs51zCv+1y4OfAG5xz357TC1/g/F+ydwP3A1uAdufc2ZH79XrPgJkdD2wDrnXOfSrLcXqdS8DMrgU+CpzgnNsRuf06vKCvyTk3odc7aVFFWQvYa4A+4IfBDc6LGL8JnGJmp5XrwhayeNDh39YLbAfWApjZccD5wHXBLwv/uFuA/cBr5+RiK8tf4L2+H4zfode7JN7uf/+XTAfodS6pCf97X+z2Pv++Kb3eqRR4LAxnAI9Hf2B9WyP3SwmY2XK81/NR/6bgtX00zeGPoNe+IGa2Cfgb4D3Ouf40h+j1nrmLgSeAq/z+pSm/f+nvzSwoteh1Lp3rgGPAv5nZRjNbYmZXAm8BPuv/3tbrHaHAY2HowPvBjjsWuV9myC9f/Qfe/xef8W8OXttMr79e+zz5r++XgZ85536Q4TC93jO3BjgRL+PxeeBFwNeAvwK+7h+j17lEnHN7gAuB04CdeJmOHwCfd8592D9Mr3dETbkvQPKWrRlHjTql8Wng1cDbnHNPxO7L9Brrtc/fHwHn4f2CzkWvd/GqgFbgjc656/3bbjezRuC9ZvbRyLF6nWfIzNYDNwKH8MrivcAlwP8zs0Qk+AC93oACj4Wim/QR8TL/e7ooWgpgZn+H94nwz5xz34jc1e1/z/T667XPg5l1Ap8CPgkMRZYQ1gDV/t9H0etdCt14GY+fxW7/Cd5KinPR61xKf48X6J3jnBvxb7vdS/DxETP7Knq9U6jUsjA8BpyaZslVMG8iXd1Q8mRmfwN8AHifc+7zsbsf87+nq8FuQa99vtYCbXiBR0/k67l4r20PcC16vUvhkQy3m/89gV7nUjoHrwdvJHb7A3jvsaeg1zuFAo+F4QagHW/td9TVwDbn3ONzfkUVwk87fxj4sHPu0/H7nXP78H6BvCka+JnZi4Dj8NbrS25PAy9I8/Uw3qyJFwD/ode7JILXKD7j5+V4Kf379TqX1AHgDDNrit1+kf99v17vVJrjsQD4TXm3AmcC78ObM/EWvMDjSufcjWW8vAXLzP4Kr4n0x3jDfqLGnHO/8497Id5a++/hNZ+uAf4B2AM81zk3NWcXXWHM7Hamz/HQ6z1DZnYz8By8+RKPAS/E+93xH865d/vH6HUuATN7Nd6Hw18B/4zXXHop3ut9h3Pucv84vd4B55y+FsAXsAT4V7wGplHgt8Cry31dC/kLuB3vE2C6r2dix74UuNd/7Y/grc5YWu5/w0L/8v8bPJTmdr3eM3tdm/GC6v3AOF7G6f1AlV7nWXm9L8ObFHsYGMIL9j4MNOv1nv6ljIeIiIjMGfV4iIiIyJxR4CEiIiJzRoGHiIiIzBkFHiIiIjJnFHiIiIjInFHgISIiInNGgYeIFMzMNpiZM7Nry3wdnWb2n2Z2wL+e28t5PbPJzC71/41vLfe1iMyEAg+RBcjMlprZqP9G9OZyX08ZfRZ4PfAl4A+ZPoE2FAmWol8jZvaYmX0szcjrvPlBwbWRze+KPc/Z/nk2zOQ8IvOZdqcVWZjeBNThjc9/O/Bf5b2csrkc+Jlz7m8KeMwtwH/6f14OvBb4CN7eGi8u8jouxRtP/g28bdGLdbZ/ntuBZ2L33Qk0AhMzOL9I2SnwEFmY3g7cBvwQ+Gcz2+yc21HmayqHVRS+pfhTzrkwUDOzzwP3AJeb2bOccw+W8gJLxTmXwBu1LbKgqdQissCY2bl4n4y/CXwL7xPw2zIc68zsG2Z2kZndYWZDZnbUzL5iZi1pjr/EzH7jlyAOmdnnzOz0Qvo5zOz1ZvYrMxsws2Ezu9fMfq+Af1+zmX3SzHaY2Zh/Hf9pZusjx1xrZg5vq/e3REonb833eQLO25zrdv+vJ8auZYOZXWdmh/1r2WFmn4iWZczsG3hZCoBdkWu51r9/jZl91sweMrMev0T2uJn9XzOrjv6bgK/7f70tcp5v+Pen7fHI5/WKP97M3uaXmMbMbLeZva/Q102kWMp4iCw8b8fbiOp7zrkhM7sJ7833I/6n4riz8Xbg/Trw33hlgbcDCeCdwUFm9jy83TN7gL/HKxm8DnhuvhdmZh8HPgj8FG+TrATwGuA7ZvYe59wXcjy+BviZ/5zfxevhOBF4F/BiMzvPeVuMfx9v47PrgLvwdvsEuDvfa43Z7H8Psyf+G/d9QBvwb8BTeK/d/wOea2Yvcs5NAv+Ot4nja4C/AI76p9jqfz8TuApvB9MdQC3wMrzXeBPwx/5x3wdW4/03+QTwhH97xkxWAa9X1J8AK4Gv4v03fjPwD2a2zzn335lfIpESKfcudfrSl77y/wIa8N4cvxG57Uq8HXVfluZ4h/fmf2Hs9pvwMiUtkdvuw0vlb4rcVgv82j/PtZHbN6S57Vz/tk+kuY4fAP1Aa45/3x/55/hU7PZX+Ldfl+bf941s50xzzV8BOv2vU/D6OxywF6iPHP8t//aXx87zaf/2t0duu9a/bUOa520Eb0PO2O3XAVPA6shtb/XPc2ma4y/173trMa9X5PEHgPbI7U14O6X+ptw/3/paHF8qtYgsLFcBS/HKLIGbgC7gmgyP+Y1z7p7Ybb/Ey3huADCzlcD5wA+dczuDg5xzE8Dn8ry2N+G9sX3TX+YafgE/AlrxGjizeQ1eoPTJ6I3OuZuAh4ArzWymv7fejvdGewQvq/AxvH6ZFznnxgD853gV8Dvn3M2xx3+SZCYnJ+fciHPO+eetM7Nl/mvyM7xy93kz+LcU83p93TnXGzl2GK/H5URE5oBKLSILS/Cmuc/MTojcfgvw+2bW6Zw7GnvMTqbr9r93+N83+t+3pTk23W3pnIrXc/FklmNW5jjHRuCAc64nzX2P4ZWNOvECrWL9EPhXoBrvzfZ9wPHAWOSY5UCL/5wpnHPHzOwgXpkkJ78c8n7gauAEvNcoammB1x9VzOuV6eehI83tIiWnwENkgTCzjcAL8N64nspw2JuBf47dNpXttLHvM2H4JZ8szzntjTzD9cymfc65X/h//pmZ/QSvH+N6M3uOn50o5XX8I/D/Ad/GmzPShVfmOhf4B2bW5F/MdWb7eRCZdQo8RBaOt+G90fwR6WdFfBwvI/LPRZw7+BR8cpr70t2WznbgpcAe59wTuQ7OYAfwUjNrj5YDfKfh9YnEMzoz4pzbYWafwev1eCNeA24XMACcHj/ezJbiNYE+FD1Nlqf4Q+BO59wbYuc5Ic2x2c6Tzpy/XiIzpR4PkQXAr9O/FXjEOfcV59x341/A/wBnmNn5hZ7fOXcYeACvJyAsIZhZLfBneZ7mOv/7J6LLRCPnWpHHOX6A93vp/bHHvgw4B/iRS79yZ6b+CegDPmpm1f5z3AicY2YvjR37fv8ab4jcNuh/X5bm3FPEMhNm1oy3AiYu23nS+QHleb1EiqaMh8jC8GK8PoSvZjnme3irK94O3F/Ec7wXr1fkbjP7It4b8evwJqRCjk/jzrn7zeyjeM2aD5nZd/BWUKwGngW8PHKuTL4BvAX4v+aNDb8Try/i3cBh4AMF/6vy4JzrNbN/xVsK/Ad4QdQH8Caj/sB/PZ4GLsYb0X4nqQ2+QfPuP5jZt/BWBz3qnHsUb5nrH5vZt4Ff4PW5XEOyzybqfrxm0Q/6mZUhYJdz7t4Ml/4NyvB6icyEMh4iC8Pb/e/fz3SA/yb3FPAGM2ss9Amcc3fglUqewXvD+gBeFuQ9/iEjeZzjb4BX4gUcfw58AW8uRT15ZE78VTQvwZtx8Wy8stGbge8AFzjn9ub/LyrYP+FlHD7iZz12Axf4zx30zjwbbwXJy5w3wyO47l8D/xdvHsiX8bJPwdC0vwQ+A1wI/AteoPAfxLIU/nn24AUljXizQ/4HbyZHWmV+vUSKYv4qLxGRtMzstXif2t/onLu+3NcjIgubMh4iAoB5GmK31eJ9Yp8kOVZcRKRo6vEQkUA9sNvvUdiGN9fh9Xgjv//BOXeonBcnIpVBgYeIBCbwpqBeidcQangByJ86575YzgsTkcqhHg8RERGZM+rxEBERkTmjwENERETmjAIPERERmTMKPERERGTOKPAQERGROfP/A3Z826ZaRBXkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot angle vs generalization error\n", + "plt.figure(figsize=(8,8))\n", + "plt.plot(angle_sweep, mean_error[:, 1])\n", + "plt.xlabel(\"Angle of Rotation\")\n", + "plt.ylabel(\"Generalization Error (xor)\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "35a39ca3", + "metadata": {}, + "source": [ + "## Task Unaware: K-sample testing \"dcorr\"\n", + "Instead of adding a new task for every angle of rxor, we use a k sample test to determine when rxor is different enough to warrant adding a new task. Then we plot the BTE and multitask generalization error of xor (task1). Once again, we start by definining hyperparameters. We will examine BTE and generalization error for 100, 500, and 1000 task samples." + ] + }, + { + "cell_type": "markdown", + "id": "19ef76d2", + "metadata": {}, + "source": [ + "### 100 task samples" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0fae255a", + "metadata": {}, + "outputs": [], + "source": [ + "# number of times to run the experiment, decrease for shorter run times\n", + "mc_rep = 100\n", + "# samples to use for task1 (xor)\n", + "task1_sample = 100\n", + "# samples to use for task2 (rxor)\n", + "task2_sample = 100\n", + "# we will use the same angle_sweep as before\n", + "angle_sweep = range(0, 90, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "5328545c", + "metadata": {}, + "outputs": [], + "source": [ + "# call our function to run the experiment\n", + "un_mean_te, un_mean_error = fn.unaware_bte_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "527cec68", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAHyCAYAAABGcdxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABsVklEQVR4nO3dd5iTZdbH8e+hCQiCoGBBxS6CBUXFChZUsIINe/fVtZdV11VXt9h7X9eCYkfFLhYU7AoiUuwCKhaqFOnlvH/cT0wmk8kkk2SSzPw+15UrT7mfJydhmJy5q7k7IiIiIvnWoNgBiIiISN2kJENEREQKQkmGiIiIFISSDBERESkIJRl5ZGY/mNkPxY5DRESkFDQqdgB1TKtWrVq1AjRkR0RE6hNLdVA1GSIiIlIQSjJERESkIJRkiIiISEEoyRAREZGCUJIhIiIiBaEkQ0RERApCSYaIiIgUhJIMERERKYiSTDLMrIWZ3WZmv5rZAjMbaWb7Z3DdTmb2gJmNNrMlZlblpFhmtpqZ3WlmE6LXmGhm95jZGvl9NyIiIvVTqc74ORjYCrgQmAgcBww2s/3c/ZU01+0O9ARGAUuAbqkKmVkTYDjQBrgc+BLoBPwT2N3Murj7ory8ExERkXrK3EtrBmwz6wO8DPRz98HRMQPeBdq6e6c01zZw9+XR9i3A2e5eaapTM+sJvA2c5O73Jxw/EbgP2NXdh9Ug9lmtWrVqNWvWrGwvFRERKWdlM614X2A28HzsgIdM6CFgEzPbtKoLYwlGBpZEz7OTjsf2VYshIiKSo1JsLukCfJEiYRiTeD7H1/gI+AS4wswmAV8BmwBXAO8AH6e6yMxmVXPfVjnGJSIiUmeUYk1GW2BmiuMzE87nxN2XEfpvfAuMAOZGzz8B+2RRIyIiIiJVKMWaDEi/VHrOnUjMrDHwGKFW5ATgO0LHz38Az5vZ3u6+JPk6d29dzX1nodoMERERoDSTjBmkrq1oEz2nquXI1gnAfsCW7v55dOxdM/saGAYcDjych9cRERGpt0qxuWQ80MnMkmPbLHoel4fX6AosSUgwYkZGz1V2LhUREZHMlGKSMRhoTahpSHQM8LW759rpE+AXoLGZdU06vn30/HMeXiN3CxbAtdfCwIHFjkRERCRrpdhc8gphDov7zawtYTKuY4GdgANihcxsGNAjcR4MM1sV6BHtbhAdOzjan+TusZqKAcB5hAm+/g18T6i9uAyYQuivUVxjx8K++8KPP0L79tC3L7RoUeyoREREMlZyNRnRnBgHAk8AVwGvApsTJud6sZrLOwODosc+0bHY/hkJr/EjsC3wPnApIbE5nzAJ2LbuPiNPb6fm1l8fli0L21OmwPXXFzceERGRLJXcjJ/lLO8zfg4YAMcfH7abN4dvv4U1tLSKiIiUnLKZ8VNijj4attgibM+fD5dfXtx4REREsqAko5Q1bAg33BDff+ABGDOm6vIiIiIlRElGqdtjD+jdO2y7w4UXFjceERGRDCnJKAfXXQcNon+q116D118vbjwiIiIZUJJRDrp0gRNOiO//9a/xkSeZeOghaNs23EMdfUVEpJZodEke5X10SaJff4UNNggdQCGMPDn22OqvmzMH1lorPAOMHh3vTCoiIpIfGl1S1lZfPdRgxDyc4dIq990XTzAAPk65ir2IiEjeKckoJ6ecEt9+552KyUMqS5fCrbdWPPbJJ/mPS0REJAUlGeVkjTVgq63C9tKl1XcAfeaZMC15ItVkiIhILVGSUW722Se+/fLLVZdzhxtvrHx8/HiYOzf/cYmIiCRRklFu9t03vv3KK7B8eepy770HI0aE7RVWgHXWCdvuMGpUYWMUERFBSUb56dYN2rUL21OnwsiRqcsl1mIcfXSY1CsmVb+MpUvhww+hECNjRESkXlKSUW4aNIA+feL7qZpMvv0WXnghvn/uubDttvH9VEnGOefADjvAllvCvHn5ilZEROoxJRnlKLFfxksvVT5/yy3xSbd694ZNN4XttoufT+78OXduGOoK8MMPMGRIXsMVEZH6SUlGOerVCxo1CtujRsEvv8TPTZ8ODz4Y3z///PDcuTM0axa2f/opTO4V89JLsGhRfD9dh1IREZEMKckoR61awS67xPdfeSU8u8PJJ8OCBWF/iy1gt93CdqNGsPXW8WtinUIBBg2qeP9XX626Q6mIiEiGlGSUq1RDWe+4A557Ln783/8GS5jpNVW/jD/+CElFot9+g88+y2u4IiJS/yjJKFeJQ1nfeAM++AAuuCB+7MwzK5aBiv0yYknGSy/BwoWV768mExERyZGSjHK10UZhwTQIo0H22gsWLw77W20F119f+Zrkmozlyys2lSQunKYkQ0REcqQko5wl1lT88Ud4btkSnnwyTMCVbJ11YNVVw/bs2aFJJNafA+Cee6Bhw7A9YkSYh0NERKSGlGSUs8R+GTH33huv4UhmVrE24/LL400lXbpA9+5hrgwInUiT+2qIiIhkQUlGOdtlF2jRIr5/yinQv3/6axL7ZSTWYhxySHjOdG0UERGRaijJKGdNmsA//hFmAe3VK0zCVZ3EmoxEqZKM116DJUtyDlNEROonJRnl7oILQn+M116LT7aVzjbbVD7WuTN06hTfXnvtsD1nDrz/frzcCy/A9tvD3/4Wn1FURESkCmWfZJhZCzO7zcx+NbMFZjbSzPbP4LqdzOwBMxttZkvMrHy/NZs1qzgfRjpt2lTusxGrxYBwn8TajFiTys03w4EHwkcfwTXXwIABuUQsIiL1QNknGcBg4EjgUmAf4AtgsJn1SXsV7A70BL4DRhcwvtKT2C8DKiYZUHltlHPPhfPOq1h7cf75MGVK4WIUEZGyZ17G1d5RIvEy0M/dB0fHDHgXaOvundJc28Ddl0fbtwBnu3uG1QFV3nNWq1atWs0q9eXSb7sNzj47bG+6KYwfX/H8/PnQtm3qSboS9e8Pjz9emBhFRKScpPz+LPeajL7AbOD52AEPWdNDwCZmtmlVF8YSjHrpoIPCfBoQX0AtUfPmsOuuqa97/vn4/hNPaASKiIhUqdyTjC7AFykShjEJ5yXZmmvCpEnw1Vdw/PGpyyTPwXHuufDUU7D//nD00fHjp50WlooXERFJUu5JRltgZorjMxPO542ZzUr3AFrl8/UKqk0b2HjjqjuMHn10mKCrRQu49Va46aYwVBbC9iqrhO2ffoJLL62dmEVEpKyUe5IBkK5TSfl2OCm2lVaCMWNg+nQ466yK51ZZJYw2ibn9dvj449qNT0RESl65JxkzSF1b0SZ6TlXLUWPu3jrdg9A/pO4wS70GCsCRR4ZF2SCMOrnpptqLS0REykK5JxnjgU5mlvw+Nouex9VyPPWHGfzzn/H9zz4rXiwiIlKSyj3JGAy0BvZLOn4M8LW7f1HrEdUnm20W79Px/fewYEFx4xERkZLSqNgB5OgV4G3gfjNrC0wEjgV2Ag6IFTKzYUCPxHkwzGxVoEe0u0F07OBof5K7jyx49OWuWTNYf3347jtYvjyMVunatdhRiYhIiSjrJMPd3cwOBK6KHq0JM372c/cXq7m8MzAo6Vhs/yHguLwFWpd17hySDAiTeinJEBGRSFknGQDuPgc4I3pUVaZnimPDqGKGMslCly7xCbqSZw4VEZF6rdz7ZEixde4c3x6nfrYiIhKnJENyk5hkqCZDREQSKMmQ3Gy8MTRsGLYnToR584obj4iIlIyskwwzW9nMNjazjcxs5UIEJWVkhRVgww3j+19o1LCIiATVJhlm1sDM+prZY2b2MzCdMILjS2C6mf1sZo+a2YEpJsWS+kBNJiIikkKVo0vMrCFwGvA3YHVgHjCCMDfFDMLIjDaEOSb2Bw4HfjWzq4B73H1ZYUOXktGlCzzzTNhWkiEiIpF0Q1jHA2sBTwADgXdSLKkOhNoOYFfgKOA6wnDSTvkNVUqWRpiIiEgK6Zo3XgXWc/cT3X1YVQkGgLsvd/eh7n48sD4wJN+BSglTc4mIiKRg7loNPV/MbFarVq1azZo1q9ih1K4lS2DFFcMzwOzZYal4ERGpL1JObpnXjppm1jKf95My0bhxGMoao9oMEREhT0mGmbUws0sJC5RJfaQmExERSZLJENZG0RDWC83sJDNbJeHcCmZ2MTAJ+CfwR+FClZLWpUt8W0mGiIhQzQJpZtYGGEZYsdQAB24wsz2AJcAzwHrABOAiwuqlUh9phImIiCSpbhXWy4AuwHPAm4Q5Mf4C3A10AJYBJwADNS9GPafmEhERSVJdkrEv8KK794sdMLPvgdsJ82js4u6/FzA+KRfrrx+mGF+0CH79FWbOhDZtih2ViIgUUXV9MtYCXk86FpsD4yYlGPKnhg2hU8L8a6rNEBGp96pLMpoAyYnErOj5x7xHI+VNTSYiIpIglyGsVc4AKvWUOn+KiEiC6vpkAJxvZv0T9hsTRpn8x8ymJ5V1dz8gb9FJedEwVhERSZBJktE1eiTrnuKY5iivz9RcIiIiCdI2l7h7gywfDWsrcClBHTtC8+Zhe9o0+OWXooYjIiLFlde1S6Sea9AAttgivn/OOaAF+ERE6q2skgwza2xmm5rZ9tFz40IFJmXqoovi24MGwQMPFC8WEREpqoySDDPrZGZPEYavjgXei55nm9lTZrZp4UKUsnLAAfB//xffP+ss+Oqr+L47PPggbLstnH++ajpEROow82p+yZvZfsDjQHNgMjAamA2sROgQ2gFYAPR39xcLGWypM7NZrVq1ajVr1qxih1Jc8+fDNtvAF1+E/S23hI8+gilT4JRT4LXX4mVHjoStty5KmCIikjeW6mDamgwzWxd4ApgJ7OPua7v7/u5+tLsf4O5rA32A6cDjUflaFS0zf5uZ/WpmC8xspJntn+G165vZc2Y228zmmtkrqpXJg+bN4fHHwzTjAKNHw377hSGuiQkGwOef13p4IiJSO6prLvkrsJSwRsmrqQq4+xCgB2GxtAvyG15GBgNHApcC+wBfAIPNrE+6i8ysHfAu0BE4FjgcaAMMN7MOhQy4Xth8c7j++vj+G2/A3LmVy335Ze3FJCIitaq6JKMXMMDdJ6UrFJ0fAOyVl6gyFCUSewAnufv97v4WIWH4ELixmssvAFYG+rj7c+7+EiFJWQH4ewHDrj/OOAP23bfisY02Cn0xYpRkiIjUWdUlGR2ATOuzPwfWyC2crPUl9A95PnbAQyeTh4BNqmn66Au84e5/Tubg7jOAF4F+VV4lmTMLo0u6d4eWLeGvfw1NJ8ccEy+T2ClURETqlOpm/FwItMjwXisCi3ILJ2tdgC/cPXkdlTGJ55MvMrNmwPrAoBT3HAMcYWbt3H1q0nWzqomnVSZBZ2vAgAGVjnXu3JltttmGJUuW8Oijj1Y6v+WWW7Llllsyf/58nnrqqUrnu3XrRpcuXZg9ezaDBw+udH777bdn4403Zvr06bz00kuVzu+yyy6st956/PbbbwwZMqTS+d1335211lqLnxYuZOjJJ4eDDRrAk0/ScMkSjjLD3PGJE3nkf/9jWeOKo6H33XdfVlllFb7++ms+/PDDSvfv27cvrVq1Yty4cYwcObLS+UMPPZTmzZszevRoRo8eXen8kUceSePGjRkxYgTjU8xOetxxxwHwwQcf8M0331Q417hxY4488kgAhg8fzsSJEyucb968OYceeigAb775JpMnT65wfqWVVqJfv5DHDhkyhN9++63C+bZt27LffvsB8OKLLzJjxowK51dbbTX23ntvAJ599lnmzJlT4XyHDh3YY489AHjqqaeYP39+hfPrrrsuPXr0AODRRx9lyZIlFc5vtNFG7LDDDkCZ/+z99BNDhw6tdH7vvfdmtdVWY8KECbzzzjuVzutnTz97df1nrzZVV5PxBaFjZyb6ALVd992W0Ck12cyE86msTOgJW5NrJVsNGoRHZFnjxixbe20AbPlyWib9ohMRkboh7RBWMzsLuBk4xd3vT1PueOA+4Fx3vy3vUVb9ut8AX7v7fknHNwS+AU5z93tSXLcG8DNwgbvfmHTuZOBeoJO7Z1WXryGsWdh3X3j55bD95JMQ/fUlIiJlKfshrMA9hL4W95rZY2a2m5m1tqB1tP8YIcH4PCpfm2aQusahTfScqqYC4HfCYm41uVbyoVOn+LY6f4qI1Elp+2S4+2Iz2xt4GugPHJaimAHvA4e4++L8h5jWeOAgM2uQ1C9js+h5XKqL3H2BmU0g9NlIthkwLbk/huTZJpvEt9X5U0SkTqp2WnF3n+ruuwAHAAOBz4Dvo+eBwIHuvrO7F6NhfTDQGtgv6fgxhGaUSp0+k67tZWarxQ6YWZvoXs/mOU5JppoMEZE6r7o+GZVGWKS9mdm+0XwTtcLMDBgKbA5cCEwkzJNxDHBAbJpzMxsG9HB3S7i2PaGJ5xfgSsKkY5cCGwFd3f3HGsSjPhmZmjkT2katVU2bwh9/QMOGxY1JRERqqkZ9Msab2SHV3tmslZk9TMJ8FbUhmhPjQMLU51cBrxISjn7VraPi7lOAnYGfCDUyTxIWgNulJgmGZKlNG2jXLmwvXAg/6iMXEalrqpsnYybwhJkdBJweTVZVgZntA/yXMBHXvfkPMT13nwOcET2qKtOziuPfEpqBpBg6dYKpUUXZl1/CurW+9I2IiBRQdTUZWwB3AIcAY83szy/kqPbiIeAFQlPDnu5+asEilbonsfOn+mWIiNQ5aZMMd1/o7mcDuxNm83zWzB42s8MIIzuOJgxf7eLubxY8WqlbEjt/aoSJiEidU11zCQDuPszMNiPMg3Fk9PiJUHuh5EJqRiNMRETqtGqHsCbYHtiF0IPUCWuVaOptqbl0c2UMGQJrrRVmAl2evDSNiIiUg2qTDDNb0czuAYYQEow+wI6E2TYfM7NBZrZKYcOUOmmttWDFFcP2jBkwbVrYXrYMTj0VJk+GQYNg2LCihSgiIjWXNskws12BscApwCOEvhdD3P1jQqfQWwlLpo+PRqCIZM4sdefPF1+EH36IH0+x2qCIiJS+6moy3gSaEia2OtbdZ8dOuPsidz8P2BWYCzxlZo8XLlSpk1I1mdyWtMbeqFG1F4+IiORNdUnGE0DndBNbufu7hAmw7iEMdRXJXHLnz7Fj4e23K5ZRkiEiUpaqG8J6pLv/Xt1N3H2+u58O9MpbZFI/JCcZt99eucy338KcObUXk4iI5EU2o0uq5e5vV19KJEFic8moUfDII/H9Fi3i259/XnsxiYhIXlSZZJjZRjW9qZltXNNrpZ7ZYIP4wmjTpsGCBWG7a1fo1y9eTk0mIiJlJ11Nxngze8DMumR6MzPramYDgXG5hyb1QpMmsP76lY+fdRZsvXV8X0mGiEjZSTfj537AjcDnZjYGeBkYAXxPWDjNgDbAhkB3oDewKfAFsG8BY5a6plMn+Oab+P4qq0D//hWHrirJEBEpO1UmGe4+xMzeAA4F/gJcQpjpM1lsDflhQH/gGXfXFI2SuU6d4Pnn4/unnAJNm8IWW4S5NNxDp9AFC6BZs+LFKSIiWUm7dom7LwMeBx43s/ZAD0JtxaqEhGMaoWlkuLtPL3CsUlcldv5s2BBOOy1st2wJG20EX38dZgEdOxa23bY4MYqISNYyWiANwN2nAE8VMBapr3bZJSQXy5bBkUdChw7xc1ttFZIMCE0mSjJERMpGXoewitTIuuvCW2+FOTLuuqviua22im+rX4aISFnJuCZDpKB22SU8knXtGt9WkiEiUlZUkyGlLTHJGDsWFi8uXiwiIpIVJRlS2tq0gY4dw/bixfDFF0UNR0REMqckQ0pfYr+Mzz4rXhwiIpIVJRlS+tT5U0SkLGWcZJjZkWa2QiGDEUlJSYaISFnKpiZjIPCrmd1uZl2rLS2SL4lJxujRYT4NEREpedkkGf2BT4DTgJFm9qmZnWpmKxUmNJFI+/awxhphe/78iuuciIhIyco4yXD3p9x9b6AjcCWwMnAXoXbjITNLMclBzZhZ++ie081snpm9a2Y7ZHjtfmb2iJl9aWbLzGxSFeVamtn1ZjbUzH43Mzez4/L1HiTPNF+GiEjZybrjp7tPdvd/uvt6wJ7AC4RF1N42s6/N7EIza1fTgMysKTCUsE7KmUBfYC4wNMNmmgOBbsAo4Ls05doCJxEWeHulpvFKLdEIExGRspPT6BJ3fxO4CXiR8GW9IXAN8KOZ3WlmLWpw2xOAzkA/d3/c3V8nJBq/AldlcP3J7r6Jux8JfJmm3A/uvrK77wZcX4M4pTYlJhlPPAG//168WEREJCM1SjLMrI2ZnWVmnwMfAfsCjwC7ANsRFlI7FfhfDW7fFxjr7n/Wibv7IsJqsL3MrGW6izNdZt7dUy1bL6Vqt91glVXC9s8/w1lnFTceERGpVlZJhpn1MrMngJ+BWwi1F+cAa7j7Me7+nruPcPdjCLUOfWoQUxfC8vHJxgANgU41uGdemNmsdA+gVbFiq/NWWgnuuSe+/8gj8PTTxYtHRESqlc08GZOAIYRaiyeAHd19c3e/3d1npbhkHJC21qEKbYGZKY7PTDgv9dFBB8HRR8f3Tz0VfvutePGIiEha2dRkzAbOItRaHO/uH1ZT/kVg3apOWtAo8ZFwOl1TRtGaOdy9dboH4TOSQrrtNlhrrbA9YwacfDKo5UtEpCRlM4R1C3e/093nZFh+vrv/kKZID2BJ4sPMOgIzSF1b0SZ6TlXLIfVF69bw4IPx/ZdegnvvVaIhIlKCsmku6Wpmp6c5f7qZbZnFa38KbJP0+AUYT+iXkWwzYBnwVRavIXXR7rtX7Ph56qmw9tpw1FFw330wYULxYhMRkT9l01zyD2CfNOd7A5dnejN3n+vuI5Mei4HBwGaJCYuZNQEOB97MtCZF6rhrroFNNonvT54Mjz4amk/WXx9uuql4sYmICJBdkrENMDzN+eHAtrmFA8D9hPktnjWzw8ysF/AssAbw98SCZjYpeUZPM1vHzA42s4Oja5rH9s1s06SyvaNye0SHuiVcK6WsWTMYMgT69YMWKaZjufxymDq19uMSEZE/WabTRZjZIuAMd08594WZnQzc7u5Ncw7KbDXCBFn7AE0Js3de7O7vJZWbBODuHROOHQc8SGpXuvsVSdevk6qgu1sN4p7VqlWrVrNmzcr2UsnF0qVhFtDhw+HOO2HSpHD8nHPg5puLGZmISH2R8jszmyTjJ+AZdz+nivO3Aoe4+xo1jbDcKckoAc8/DwceGLZXWAG++w46dChqSCIi9UDKJCOb5pI3gZPMrHOlO4dmiBOjMiLFs//+sG3UardoEfzrX8WNR0SkHsumJmN9QrNFY+ABYDRhzoquhPVGFgPbuPu3BYm0DKgmo0S88QbsuWfYbtQIvvoqdAYVEZFCya25BMDMugEDgE2TTo0Hjnf3kTWNri5QklEi3GHXXUMfDQhDWwcOLG5MIiJ1W+5Jxp8XheGlG0Y3/drdP88ptDpCSUYJef992GmnsG0GY8dC50otfSIikh/5SzIkNSUZJaZPH3j11bDdrx8880xx4xERqbvyWpPRnDD1d6WbuvuPWd+wjlCSUWJGjYKtt47vv/ce7Lhj8eIREam7chtdYmYNzOxiM/sZmAtMAiameIiUhq22goMT5lU76SRYuLB48YiI1DPZjC65DriA0MnzbcJCZpW4+5V5i67MqCajBP34Y+iL8ccfYf/SSzWsVUQk/3KejOsXYLS798lnVHWJkowSdeedcMYZYbtRI/j0U9h88+LGJCJSt+Q8GdfKwPP5iUWkFp12WrwvxtKlcOKJ4VlERAoqmyRjLLB6oQIRKZgGDcIS8E2ahP2RI+HWW4sbk4hIPZBNknElcKqZrVWoYEQKZpNNwsqsMZddBt9/X7x4RETqgWz6ZFxOWBV1U2AwYSTJsqRi7u71tled+mSUuCVLoFs3GDMm7HfpAkOHQrt2xY1LRKT85dzxc3kGxdzdG2YTVV2iJKMMjBwJ3bvDsig/7tQpJBqrqyVQRCQHOScZ62RSzt1/yCKoOkVJRpl49FE45hhYHuXNG24Ib72lJeFFRGpO04oXmpKMMvLkk3DkkfEajfXWC4nGOhnl0iIiUlHOQ1jjdzLbwMx2NLNWucUkUiSHHQaDBkHjxmF/wgTo2TM+aZeIiOQsqyTDzPY1s++Br4F3gK2j4+3M7DszOzjtDURKSd++8Oyz8aGtkyZpETURkTzKZu2SnoRRJTMJw1n/rBpx96nA90D//IYnUmD77gt//3t8f9iwooUiIlLXZFOTcTnwObAdcGeK8x8CW+UjKJFatcce8e233y5eHCIidUw2SUY34FF3r2oo62RgtdxDEqll3bpB8+Zh+4cfQrOJiIjkLJskoyGwKM35VYDFuYUjUgRNmsBOO8X3VZshIpIX2SQZXwI7pzm/L6E5RaT87LprfFv9MkRE8iKbJON+4GAzOzHhOjez5mZ2G7A9cG++AxSpFT17xrfffhs0f4yISM4yTjLc/W7gSeB/wLeAA48Ds4EzgAHu/mg+gjKz9mb2kJlNN7N5Zvaume2QwXUNzex8M3vdzH42s/lm9qWZ/dPMWiaV7WZmd5vZODP7w8x+M7PXzGynqu4vddjWW0OLFmH7p59g4sTixiMiUgdkNU+Gux8FHAQMBb4iDGd9BTjE3U/MR0Bm1jS6fw/gTKAvMBcYamZdq7m8GfAPwuJtZwN9gAeAc4C3zKxRQtn+hM6s9wP7Af9H+DzeMbN++XgvUkYaN4adE1oD1S9DRCRnJTetuJn9hTBEdmt3HxUdW4HQJ+Rrd++d5tqGQGt3n5F0/FhgALC/u78YHWsXze+RWK4xMA74w923rkHsmla8nF1/PVx4Ydg+8kh45JHixiMiUj7yN614gfUFxsYSDAB3X0RomumV3OyRyN2XJScYkRHRc4eEslOTC7n7EkLnVa2UVR8l9ssYNkz9MkREctSoqhNmdky0OdDdPWE/LXd/OMeYugCp6qrHEIbRdgI+yfKeu0XP49IVimpMdqiqnJnNquZ1tJZLOevaFVZaCebMgZ9/hu++Cyu0iohIjVSZZBCaFxx4gjD/RWw/ZZVIxIFck4y2hL4eyWYmnM+Yma0H/BMY7u7vVlP8WmANIKOESuqYRo1gl13gpZfC/rBhSjJERHKQLsnYFcDdFyfu54uZGaFm4k/uvjS2mebSjOuwzWxV4GVgHnBUNWXPJHQWvcLd30r5wu6tq7nHLFSbUd569ownGW+/DSefXNRwRETKWZVJhrsPT7efBz1IahYxs3WBGaSurWgTPaeq5ajEzNoCbwKtgR7uPjlN2VOAW4Gb3f3KTO4vdVTipFyx+TIsXeWdiIhUJV1NRqF9CmyTdOwXYDyhX0ayzYBlhKGzaZlZG8Iw2NWBXd39mzRlTwLuAe5y9/MyC13qrC22gNatYdYs+O03+OYb2HjjYkclIlKWslnq/Uozq7LjpJmNNbNLM72fu89195FJj8WE5eQ3M7MtE+7dBDgceNPd51QT58qEGoy1gD3cfXyasscTZim9jzAnh9R3DRuGfhkxmi9DRKTGshnC2hd4I83514GDcwsHCJNjfQk8a2aHmVkv4FlCh8y/JxY0s0lmNilhvxnwGrAFcBnQ3My6Jzw6JJQ9hJBcjAQeBLZLLJuH9yHlKrHJZOjQ4sUhIlLmsmkuWZf0TRVfAyflFg64+0Iz2w24HrgbaAqMAnq5+6fVXN6eeBPMnSnOXwlcEW3vQ0iytgE+SFFWDfH11e67x7effx4mT4YOmjpFRCRb2U7G1TrNuZVJGi1SU+7+m7sf7e5t3L25u+/k7u+lKNfR3Tsm7E9yd0vzuCKh7HHpyubjfUiZ6tIFdtwxbC9ZEmYCFRGRrGWTZIwHDkh1IhqOuj8ZdMoUKXlmcGlC96J774UpU4oXj4hImcp2qffuZjYgmn8C+HMuigeA7lEZkfK3115hZVaAhQvh5puLG4+ISBnKaoE0M3sEOIIwIdav0fMahP4LT7r74YUIslxogbQ6ZvBg6BctyNuiBfzwA7Rpk/4aEZH6KfcF0qKl3vsDLwGzCUuwvwAcWt8TDKmDDjgAOncO23/8AbfdVtx4RETKTMkt9V7OVJNRBz3+OBxxRNhu3TrUZqy0UlFDEhEpQWWz1LtI6Tj00PgiabNmwV13FTUcEZFyUmVNRhGXei9bqsmoox54AE48MWyvuipMmBD6aIiISEzKmox0ScZyQsfOZu6+OGE/7VLv7p6XuTLKkZKMOmrx4lCb8eOPYf+44+DBB4sakohIiUmZG2Sz1PtuZLHMukid0aQJ/Oc/cPTRYX/AAOjRIyQbIiJSpeqaS95x90m1GlEZU01GHeYekoqHo9bAZs3gk0/C7KAiIpJ1x88HgR3+vNpsmZkdke+oRMqCWej02alT2F+wAA45JAxtFRGRlNIlGfOA5gn7Ws9D6rcVV4RBg6B59N/iq6/gtNNCLYeIiFSSrk/GeOBMM5sG/B4d28TMdkl3Q3d/J1/BiZSczp1DjUasP8Yjj8Buu8Hxxxc1LBGRUpSuT8auwDNAq0zvhUaXqE9GfXHCCfERJu3bw6RJ0LRpUUMSESmi7IawAphZa2AbYHVgAHAv8GG6V3H3h2oaYblTklGPzJ8PG20EP/8c9u+/PyQeIiL1U9bzZKwNTHP3BdH+ROBsd3+hYCGWOSUZ9cz118OFF4btTTeFceNCB1ERkfon69ElE4G+CfuTCJ1BRQTg5JPjM39+8QUMGVK5zPTp8OabYUIvEZF6Jl2SsQRonLDfA2hf2HBEykjr1nDSSfH9G26oeP7bb8OQ1169KpYTEaknqqvJ2N/MEjt+aqyeSKKzz4aGUV/nt96Czz4L27NmwX77hZoMgIEDYfz4ooQoIlIs6ZKM2wnNJTPNbBkhwXgkmpSrqsfSWolapFR07AgHHxzfv/FGWLoU+veHr7+uWPb662s1NBGRYqtudElPoBdhdMmxwHvAhHQ3dPd6O2GAOn7WUyNGwLbbhu1GjeCww+DRRyuXa9QIJk6EDh1qNz4RkcLLfghrhYJhFdaj3P2xfEZVlyjJqMd69IB3UsxDd9llMGwYvPtu2D/vvFDbISJSt2Q9uiTZusBzeQlFpK45//zKxw46CK64Ij7MFeDee+H33yuXFRGpg9ImGWa2g5m1BXD3H9x9fpqy65mZZiOS+mnffcPkXDFbbgkPPQQNGkCfPmE6cggLqt19d1FCFBGpbdXVZLwL7BXbMbM2ZjanivVLtgf+l8/gRMpGgwZw551hEbXNNoPnnw/bsXOJtRm33hpWcRURqeOqSzKS21gMaEH6hdVyZmbtzewhM5tuZvPM7F0z26H6K8HMLjGzkWY2w8wWmdlEM7vXzNaqovyWZjY4Kr/QzL4zs8vz+46kXthjD5g7F0aPhrXXrniuf/94h8+pU0Mth4hIHZdNn4xaYWZNgaGEyb/OJAyjnQsMNbOuGdyiNfA0cByhFuY6YB/gYzNbOem1egEfAYuA44HewDX5eB9ST5mFmotkTZqETp8xN9wAy5bVXlwiIkVQ3RDWCiNKov4Z04A93P2tpLJHAg/nugqrmf0FuBPY2t1HRcdWAL4Evnb33jW4597Aq8Cx7v5wdGxF4HvgWXf/Sy4xJ7yORpdI1f74I9RwxDp+Pv887L9/cWMSEcmPnEeX1Ja+wNhYggHg7ouAx4FeZtayBveMpl1kScKxQwjTpF9b00BFstKiRVjvJCbVXBoiInVITZOMQk4v3gUYl+L4GKAh0CmTm5hZIzNrZmZbArcAXwGJK8juAswENjaz0Wa21Mymmtk9ZrZSFfecle4BtEp1ncifjj46vv3ii6EPh4hIHZVJB87zzax/tN2YkGD8x8ymJ5VbM08xtSV8+SebmXA+LTNrQejHEfMxsJu7J64iuwbQnNB/42rgHGBr4J9AFzPb2TOdqUwkU126hMe4cWGEyfPPw1FHFTsqEZGCyCTJ6Bo9EnWvomzGX8pmZoSaifjF7rG1T9LdJ5PXmA9sAzQBNgEuAoaZWU93/zUq0wBoClzp7rHOnsPMbCFwB7A78GZSfK3TvahqMyQjRxwBl1wSth9/XEmGiNRZaZtL3L1Blo9sOn32IPSR+PNhZh2BGaSurWgTPaeq5UiOe7m7j3T3D9z9AWBXoCNwcUKxGdHza0mXvxo9b5XBexDJXv/+8e3XX4+v1CoiUscUs+Pnp4TahsTHL8B4Qr+MZJsBywh9K7Li7r8Ak4GEKRkZW0XxWA/Z5dm+jkhG1l0Xtt8+bC9dCk8/Xdx4REQKpGhJhrvPjWobEh+LgcHAZlGHTQDMrAlwOPCmu8/J9rXMbD1gHeC7hMODCU0vfZKKx/Y/zvZ1RDJ2+OHx7ce05qCI1E0Zr8JaW6LJuEYR+kv8jdA8cjahj8RO7v5pQtlJAO7eMdpfB3gEeJKQUCwl1IqcBzQDtnH3SQnX302YhOs/wAeEjp9XAMPcPTn5yCR2zZMhmZkyBdZYA5ZHFWY//ghrpZyUVkSkHJTHPBnuvhDYDXgfuBt4njCLZ6/EBKMKswgTbJ1FGDXycrT9KtAtMcGInAn8i5BovBrt3wH0y/2diKTRvj3svnt8/8knixeLiEiBlFxNRjlTTYZkZcAAOP74sN21K4walba4iEgJK4+aDJF6o29fWGGFsP3ZZ/BV1n2aRURKWkZJRjRz5jFmtl2hAxKpN1q1gn32ie8//njxYhERKYBMazIWAf+j8qRcIpKLxFEmN94I779fvFhERPIsoyTD3ZcDPwEp1/QQkRrad1/o2DFsz5sHvXvDJ58UNSQRkXzJpk/GQ8DR0bLrIpIPTZvCkCFhtAmEBdP22gtGjy5qWCIi+ZDx6BIz2x24gTB/xV3At4Q1Qipw93fyGWA50egSqbFx46BnT5gRzXa/yiowbBh07lzMqEREMpVydEk2SUbyNNvJFxrgWa5fUqcoyZCcjBoV5s6I/fy0bw9jxkC7dkUNS0QkAymTjExWYY05Pk+BiEgqW20Vmk569QrNJlOmwP/+B3//e7EjExGpEU3GlUeqyZC8GDgQjjkmbHfqBOPHg6X8I0FEpFRoMi6RstCvH6y4Ytj+8kv4/PPixiMiUkNZJRlmtpaZPWBmk81ssZntFh1fNTq+TWHCFKlHVlwRDjwwvq9VWkWkTGWcZJjZusBI4CBgPPBnB093nwZ0A07Kd4Ai9dIRR8S3H388vlqriEgZyaYm4z/AcsLS6UdSuf3lFWCnPMUlUr/16gVt24btyZPhvfeKG4+ISA1kk2TsAdzl7j9RefgqwA9Ah7xEJVLfNW4Mhx4a33/00eLFIiJSQ9kkGSsBv6Y534TshsSKSDpHHhnfHjQIFi8uXiwiIjWQTZLxE5Bu+sHuwHe5hSMif9p+e1hnnbD9++/w2mvFjUdEJEvZJBnPAieYWZeEYw5gZgcBhwBP5TE2kfqtQYOKq7RqlImIlJlsphVfCfgQ6Ai8A+wJvEloRtkWGA3s6O4LCxFoOdBkXJJ3Y8fC5puH7WbNYOpUaNGiuDGJiFSW22Rc7j4H2B64jzBc1YBewMaEBdN2rc8JhkhBbLYZdIkqDxcsgOeeK2o4IiLZqDLJMLNdzGzVxGPuPsfdz3b3VYH2wGpAW3c/M0pCRCTfEjuAqslERMpIupqMtwk1FQCY2QQz2z+27+7T3H2qa/ETkcLq3z++/dZbsFAVhiJSHtIlGYuAFRL2OwJqDBapbR07wsYbh+1Fi+CDD4oajohIptLNa/ENcKyZjQJ+j461NbO1093Q3X/MV3AiEtl9d/j667D91luw227FjUdEJANVji4xs4OBx0hYoyQT7p5V+bpEo0ukYJ55Bg4+OGx37w4ffljceEREKko5uqTKmgx3f9rMPgd6AqsD/wCeA8YUIDgRSadnTzADdxgxAubMgZVWKnZUIiJpZTNPxnLgKHcvePd2M2sPXAfsAzQDRgEXuXu1jdFmNgA4NsWpj929e0K5lsDlwFbRozVwvLsPyCFu1WRI4Wy1FXz2Wdh+8UXYd9/ixiMiEpfzPBkNainBaAoMBXoAZwJ9gbnAUDPrmuFt/iDM6ZH4ODGpTFvC0vRGWEFWpLTtvnt8+623iheHiEiGMl7QzMzaAu3c/cuEY+sC5wFtgIfdPR+LK5xAWCNla3cfFb3OcOBL4Cqgdwb3WObuH1VT5gd3Xzm6/5bAETWOWKQ27LYb3HBD2B46tLixiIhkIJu1S24FHortmFkL4F3gdOBw4GUz2yUPMfUFxsYSDAB3XwQ8DvSKmjlypvk9pOzsvDM0iv4uGDMGpk2reP6hh2D//eH992s/NhGRFLJJMrYHXk3YPwxYA+gTPX8JXJiHmLoA41IcH0MY6dIpg3u0MLMpZrbMzH4wsxujpCgnZjYr3QNoletriFSpRQvYbrv4/ttvx7c/+ACOOy701TjoIFiypNbDExFJlk2S0R5InAOjNzDS3Ye4+2/AACDTPhPptAVmpjg+M+F8Op8DFwBHEhKgQcAZwFtm1jgP8YkUT6p+GcuXwznnxI9PmQKvqJuRiBRfNknGEsJIj5gewPCE/VlUnwD8yYJGiY+E0+maMtI2c7j7ze5+i7u/6e6vufsFhCRjG0LtS425e+t0D2B2LvcXqVbiJFyxfhmPPhqGtSZ64IHai0lEpArZJBnfAAdFycH+hM6eib3P1iJ1DURVehASlz8fZtYRmEHqZKVN9JzNa8Q8AiwnNPmIlK/u3cOS7wDffQdffgkXX1y53Msvw2+/1W5sIiJJskky7iQkBr8DTwMTqJhk7AKMzeJ+nxJqFxIfvwDjCf0ykm0GLAO+yuI1YmLjd5fX4FqR0rHCCrDTTvH9Qw6BX34J26utBt26he1ly+CRR2o/PhGRBNnMk/EwcAwhsXgE6O3uS+DP4a2tgKeyuN9cdx+Z9FgMDAY2i4aVEt2/CWEEy5s1XFL+KMJ7rW5Yq0jpS+yXMX58fPuqq+Avf4nvP/BAmCFURKRIMp7xs7ZEk3GNApoCfyM0j5wN7A7s5O6fJpSdBODuHaP9dYCBhOGu3xNGo+xB6JPxKbCLuy9NuL43sCJhhdnrCbU1w6J7Pl2D2DXjpxTeiBGw7bYVj3XtCiNHwvz5oUZj3rxw/KOPKo5IEREpjJQzfpZckgFgZqsRvvT3ISQbo4CL3f29pHKToEKSsTJwP2Ga8PaENz2BMMLkGndfkOL6dVLF4O4pP7Bq4laSIYW3bBm0bQuzE/oZDx8Ou0TT1JxwAjz4YNg+5RT4739rP0YRqW9yTzKiZd7/D9iQ0Dkz+abu7rtXurCeUJIhtebAA+H558P2wQfDoEHxc++9FybuAmjZMnQAbd681kMUkXoltyQjaloYDDQhrCWScpSHu69bwwDLnpIMqTWjRkGvXrD66vDqq7DWWvFz7rDxxvDtt2F/4EA46qjixCki9UXOScZoYBXgQHcfmb+46g4lGVLrli+HBin6b199NVxySdjedVctqCYihZbbKqzAJsAtSjBESkiqBAPgmGPi595+GyZMqL2YREQi2SQZ04DFhQpERPJozTVh773j+5ozQ0SKIJskYyBwUKECEZE8O+aY+Pajj2rODBGpddn0ydiIsNT7VMKy7xMJM3BW4O4/Jh+rL9QnQ0rK/PnQvj388UfYHzEiPiOoiEh+peyT0SjVwSp8RViczIB905RrmMU9RaRQmjeHfv3g4YfD/qOPKskQkVqVTU3GFVSzAiqAu1+ZY0xlSzUZUnJefx322itsr7YaTJ4MDfV3gIjkXfnM+FmulGRIyVm6FDp0gClTwv7rr4f5NURE8ivnIawiUm4aNYL+/eP7jz1WvFhEpN7JuibDzBoS5sxYmRRJiru/k5/Qyo9qMqQkJS6o1rJlqNVo1qy4MYlIXZNzx0/M7CLgYmClNMXU4CtSSrp1gw03DNOMz50LL70EhxxS7KhEpB7IuLnEzE4CrgZGA5cSspZbCKulzgRGAifkPUIRyY0ZHHlkfP/RR+PbP/wAl14KN90UpigXEcmjbEaXjAQWu/sOZtaWMAPoHu7+lpmtTkg+/ubuDxQs2hKn5hIpWd99F2ozABo3hs8/h7vvhnvugSVLwvFBg8KKriIi2cu542cnILaedCwzaQTg7r8C9wJn1zQ6ESmgDTaI98tYsgQ6d4bbb48nGBDWOEll5sywiuupp8JirSwgIpnLJslYBsyLtmPPbRLOTwI2zENMIlIIiU0mqWowP/009XU33BCaWP773/AQEclQNknGj8C6AO6+CPgJ2Dnh/DaEvhkiUooOOwyaNInvb7EFDBwY3//88zCvRrLhw+PbL7xQuPhEpM7JJsl4B9gnYX8Q8H9m9oCZDQBOAl7JY2wikk/t28NTT4UajSefhFGjQjPI2muH8wsXwhdfVLxm8eJQLmb48PhaKCIi1chmCOutwOdm1szdFwD/ADYCjo3Ov04Y3ioipeqAA8Ij0dZbw4/RuoYjR8Lmm8fPjRkTko+YJUtg6NDK9xARSSHjmgx3/9rd/xslGLj7PHffn9Avo5W793Z3NZeIlJutt45vJ/fL+OijyuVfUYWliGQmoyTDzFpEzSKVZvBx99nurvpTkXKVuDJrpkmG1jwSkQxklGRESUR/0s/0KSLlKLEmI7nz58cfx7ctGgY/eTKMG1c7sYlIWcum4+cXQMcCxSEixbLKKqk7f06fHibxgjAqJbEfhppMRCQD2SQZ1wGnmdlGhQpGRIoksTZj5MjwnFiL0bUr9O0b31eSISIZyCbJ2IQwN8ZYM3vGzK4xs8uTHpflIygza29mD5nZdDObZ2bvmtkOWVzfxMwuNLPxZrbQzGaY2bDkBMnMOpvZC2Y2O3qdd8xsl3y8B5GykqrzZ2J/jO7dYe+94/vvvw+aPl9EqpF2CKuZTQDOdvcXgSsSTvVNfQUO/CuXgMysKTAUaAGcCcwAzgGGmtkO7v5ZNdc3Al4ENgOuAT4HWgE7AM0Syq0HvA9MBk4hzGJ6OvCGme3q7h/k8j5Eykqqzp+JNRndu0O7dqHcyJGwbBm88YZWcxWRtKqbJ6Mj0DLaXrewofzpBKAzsLW7jwIws+HAl8BVQO9qrj8b2BHY3N0nJBxPnqrwYqAJ0CtaewUzG0Loe3J9dA+R+iG58+fixZWTDIA+feLNKa+8oiRDRNLKZp6MHzJ55CGmvsDYWIIRvfYi4HGgl5m1rPLK4ExgUFKCkcr2wKhYghG9zlLgVWCHaGVZkfohufPns8/CnDlhv107WGedsN2nT/yaV1/V8vAiklY2fTJqSxcg1fi4MUBDwmqwKZnZ2sA6wLdmdreZ/W5mi81spJntk1S8CbAoxW1ix7qkuP+sdA9Cs4xIeUqszbjzzvh29+7x4avduoWEBGDKFPgsbeuliNRzmSQZbc1s7UwfeYipLakXWpuZcL4qa0TPFxH6ZBwDHAjMAl40s70Syn4BbGFmzZPuEWsmWSXzkEXqgMQk47334tuxphKAhg0rdgDVKBMRSSOTJOMWYGKGj+qaKP5kQaPER8LpdNMJpjsXez+Lgd7u/qK7vwLsC/wMJI5+uYMwJfrDZrZeNKLlP8B20flK9cDu3jrdA5id9k2LlLLEJCNRYpIBFZtMlGSISBqZLJD2HlkkD1noAbydeMDM1iWMJklVW9Emek63PsqM6PkDd58bO+juC83sbeDghGNDzex44Ebg++jwF4RE5Crgl8zfikgdkCrJMKs48gRgzz3DcXf45BOYNw9WXLF2YhSRspJJkvFfd3+sAK/9KbBN0rFfgPGk6A9BaP5YBnyV5p7fA/OrOGck1U64+0Nm9iiwIbDE3b8zs0uie3ya4h4iddeqq4bOn7EVWQG6dIGWSX2t27aFTTeF8eNDx88RI6Bnz1oNVUTKQ9E6frr7XHcfmfRYDAwGNjOzLWNlzawJcDjwprvPSXPPpYQ5MnY0s5USrm8G7Ap8nOoad/8ySjBaE+bMeNDdq0pWROqu5NqM5KaSmO23j29/+GHh4hGRslaKo0vuJ8yJ8ayZHWZmvYBnCZ06/55Y0MwmmdmkpOsvBxoDr5lZXzPbH3gFaBedi127ejRr6f5mtpuZnU6YuGs2cEmB3ptIaVOSISJ5VHJJhrsvBHYjzMZ5N/A80JowaVa1TRju/g2wCyFZeBh4gtBUsru7v59QdAmwFSGpGQKcH5XdOV1tiUidlmmSkXj8o4+09LuIpGSe5peDmfUAvnT3qbUXUvkys1mtWrVqNUtrOki5mj4dVlstTBu+8sphv0GKv0WWLw99M2I/6999B+uvX6uhikhJsVQH09ZkuPtwJRgi9cgqq8B114UOn3femTrBgHB8u+3i+2oyEZEUSq65RESK7LzzYOxYOPzw9OXUL0NEqqEkQ0RqJrlfhohIEiUZIlIzic0ln38eJuUSEUmgJENEaqZ16zApF4SOorEl4GNGj4ZLLoEvvqjtyESkRCjJEJGaq6pfxvTpYRbQq68O05AvSrXgsYjUdVVOK25mx9Tkhu7+cM3DEZGy0r073H9/2E7sl3HddTA7Wi/w559h0CA46qjaj09EiqrKeTLMbDlhxdPEsa+JhS3FMdy9YT4DLCeaJ0PqnfHjw3BXgHbt4LffYMoUWG89WLAgXq57d41AEanbUs6TkW6BtF2T9hsD1xJWSL2HsGKpAZsC/wdMBy7KOUwRKR+dOkGrVqHWYupUmDgRbrutYoIBoZbj00+rXk5eROqkKvtkRBNx/fkAdgaaApu5+zXu/oK7P+/uVwObA82jMiJSXyRPyvX003DPPfH9DTeMb995Z+3FJSIlIZuOn8cTViedm3wiWuvjwaiMiNQnifNlXHZZvJPndtvBQw/Fzz3+OMyYUbuxiUhRZZNkrAqk62/RkLDSqYjUJ4kjTBYvjm//618hAenaNewvXAgPPli7sYlIUWWTZHwFnGxmKyefMLM2wMmEJdpFpD5JbC6J2Xln2GMPMIMzzogfv/vusLiaiNQLaVdhrVDQ7ADgWWAG8ADwNWFkSSdCM0kb4GB3f64gkZYBjS6ReqtTJ/jqq/j+sGHQo0fYnj8fOnSA338P+y+/DH361HqIIlJQ2a/CmsjdnwcOBhYCFwL3E5KNv0bHDqvPCYZIvZbYZLL77vEEA6B5czjhhPj+HXfUXlwiUlQZ12T8eYFZA2BrYD1C5vI98Km71/s6UNVkSL318cew227QqBG88w5ssUXF899/H0aauIcmlG+/hfXXL06sIlIINa/JMLMWZva9mZ3j7svdfYS7P+nuT0Tb9T7BEKnXttsOfvkFfv21coIBIaHo3Ttsu8Ptt9dufCJSFBklGe7+B2ESrj8KG46IlK1WrULTSFXOPDO+ff/98WnHRaTOymZ0yUdAt0IFIiJ13F57xVdt/eMPuO++4sYjIgWXTZJxMXComR1vZinbXkREqmQG554b37/1Vli6tHK5778PDxEpe9kkGTcBvwP3AVPN7CMzeyvpMbQwYYpInXDUUbDqqmH7p5/CNOSJHn8cNt44dBL9z39C/w0RKVvZJBnrReV/JPTNaA+sm/RYL98Bikgd0rQpnH56fP/GG+OJxMiRYajrsmXh2KWXhqQkebE1ESkbWQ9hlappCKtIBqZOhbXXjq9x8u67YfTJNtvAzz9XLr/ddvDcc7DaarUapohkJbfJuERE8qJdOzj66Pj+NdfAQQfFE4zWrUMNRszHH4cE5KOPajVMEcmdkgwRqX3nnBPffvll+PDDsN2gATz5JDz8MNx2W9gHmDw5zCp60EHwxRe1Hq6I1ExWSYaZrW9md5jZCDP7zswmJD3y0iXczNqb2UNmNt3M5pnZu2a2Q4bXNjCzv5rZN2a2yMx+MrPrzKx5UrluZna3mY0zsz/M7Dcze83MdsrHexCRNDp3hr33rnz8+uthzz3DSJQzz4RXXgnzb8Q8+yx06QLHHAMTJtRevCJSIxknGWa2GTAKOAloQujkOQ9oCnQElhE6hebEzJoCQ4EewJlAX2AuMNTMumZwi1uBa4DBwL7AjcBpwJNJ5foT5v24H9gP+D/C5/GOmfXL9X2ISDXOO6/i/tFHVxziCmFujZEjQw1GjDsMHBgSlXffLXycIlJj2azCOhjYKXrMAKYCe7j7W2Z2MnAV0MPdc6rLNLO/AHcCW7v7qOjYCoRl5L92995prl0LmATc7u7nJBw/FhgA7Onub0TH2rn71KTrGwPjgD/cfesaxK6OnyKZcg9Tjb/2WlhQbciQMPqkKp9+GkacDBkSP7bRRjBmDKywQuHjFZF0cu74uRNwr7vHlnj/86bu/j/gVUINQq76AmNjCUZ0/0XA40AvM2uZ5tptCe/ppaTjL0TPByfcc2pSGdx9CfA50KFmoYtIxszg+edh3DgYOjR9ggGw9dbw6qthAbaVVgrHvvkGbrih8LGKSI1kk2S0JKy4CrA4el4x4fz7hEQkV10ItQnJxgANgU5prm0SPS9KOh6Lt0u6F45qTHao4vUxs1npHkCrVNeJSBVWWCE0ezRsmPk1O+8cJuqK+fe/YeLE/McmIjnLJsmYAqwG4O5zCf0xNko4vzIhCchVW2BmiuMzE85XJdZUk9xJNLa/SjWvfS2wBvCfasqJSDGddhp0jbpoLVwIZ51V3HhEJKVskozRwDYJ+8OBs81sFzPrCZxBaGrIiAWNEh8Jp9N1FKnynLt/DrwD/M3MDjKz1ma2I3A3oWNqlUvSm9mZwNnAle7+VhX3b53uAWhZSZHa0LAh3H13aHIBeOkleOGF9NeISK3LJsl4DGhrZs2i/csIzQNvE0aDtAYuyeJ+PYAliQ8z60joVJqqtqJN9JyqliPRIcAHwNOEtVbeirZHA7+kusDMTiGMSrnZ3a/M4j2ISLFstx2cfHJ8/6yzYN684sUjIpXkNK14NJqjL6GW4FV3z3jgetSBc+Okw2OAV4B27r55Uvl/E1aCbePuczK4fztC884PwAJC8nKju1+RVO4k4F7gLnc/I9P4q3hNjS4RqU0zZsAmm8D06WH/4ovh6quLG5NI/ZRydEnJrV1iZqcDdwBd3X10dKwJYQjrt+6eYgafau95LqGfxcbu/lPC8eMJ82TcB/yf5/hhKMkQKYIHHwwLq0HoSPrTT/GVXkWktuSWZJjZBcBQd/8sn1GleJ2mhEm/mgJ/IzSPnA3sDuzk7p8mlJ0E4O4dE46dSqhZ+Y7QxNIHOA442d0fSCh3CPAE8Gl0/wofhLtnvVCCkgyRIli+PKxtMioa9X7ttXDhhcWNSaT+yTnJWE74Ip5F6PT5FvBWrpNvVfFaqwHXA/sQko1RwMXu/l5SuUlQKck4DTgLWIfQ12MkcJW7D026dgBwbFUxuHvKD6yauJVkiBTDgAFw/PFhe7314Ntv4+ueiEhtyDnJ2IRQm7AbsAuhc6YTZv58m3jSUW8XFFCSIVIkCxbAmmvC77+H/VdfTb02iogUSm4zfrr7V+5+p7sf5O6rAlsBFwAjCE0S/wW+yUekIiJZadYsXpMBcNddxYtFRP6US33iFGAaoc/EXEIWsywfQYmIZO3UU+PbL78MP+a8XqOI5CibVVhbm1nfaKn3L4HJhEXHOhPm0OhNmPVTRKT2bbgh7LFH2F6+HO69t7jxiEhWfTKWEJKSL4n6XwDD3H1WwaIrM+qTIVJkgwdDv35hu337UJvRJFrSaPz4cL5Ll5CMtGhRvDhF6p6UfTIapTpYhYaEabkXAPOjR/JCZCIixbPffqED6M8/w5QpIano3RuuuAJuuw2WRS26K6wAu+4ayh9wQLhGRPIum5qM1YiPLtkV6EhY3fRj4jUbH7r70oJEWgZUkyFSAq68MiQVABtvDHPmwK+/Vl2+SRMYMiQkHSJSU/md8dPM1iUkHLsDPYH2wHx3b1nDAMuekgyREvDLL7D22vFai0Tbbw9//AFjx1Y8vt9+WmBNJDe5DWFNoUnSw4DmOdxPRCR3a6wBBx5Y8dhqq8Gjj8L778OYMTBxItx0U/z8kCGgPw5E8i6b5pJ1CDUXseaS1QmJxWzC8upvEaYdH1eYUEufajJESsTo0bDDDrBoEZx5ZmhCadWqcrlu3eDTaKWCBx+E446rzShF6pKcO35OJMzwuQB4H7idkFh86u7Lcw5PRCRfttwyNJssWwZt21Zd7rDD4knGk08qyRDJs2xqMv5BSCo+cvclBY2qTKkmQ6TM/PADdOwYths1gt9+S5+UiEhVcu6TcYu7v5suwTCzLlmHJSJSLOusA927h+2lS+HZZ4sbj0gdk02S8YKZNanqpJltCryZe0giIrXosMPi208+Wbw4ROqgbJKMrsCjqU6Y2cbAUMIEXSIi5eOQQ+Lbb78dJvESkbzIJsk4BDjAzG5PPGhmGxD6aiwhjDwRESkfa64JO+0Utpcvh2eeKW48InVINku9vwacDJxuZn+DPyfkeisqsqu7T8p7hCIihZauyWTUKPjww9qNR6SOyGoyLnd/CLgE+LeZXUxIMBoDu7n79wWIT0Sk8A4+GBpEvw7ffTcMfx09GvbcE7beOsy5ce65UMMZkkXqqxpNK25mdwB/AaYBPd39y3wHVo40hFWkjO22W+iTAbD55mHq8eTfj+eeCzfeCJZytJ5IfZbdZFxmdnmam00H5hJm+jzE4v/h3N3/VdMIRUSK5rDD4knGmDGpy9x8c0gwbrhBiYZIBqqsyTCzmszi6e7eMLeQypdqMkTK2PTpYY2TxIXV9t0X/v1v+Ne/KnYIPf98uP56JRoicdmtwhqtVZI1d/+hJtfVBUoyRMrc3/4G114b1jS57jro2TMcX7IEDj+8YqJx8cVw9dVFCVOkBOV3qXepTEmGSB2wYAE0a1b5+JIl0L9/xVlB33gD9tij9mITKV25TStuZm3MbPM05zc3s5VrEpmISMlIlWAANG4MTzwBffrEj51yCszXHIQiVclmCOt1wIA05x8EVHcoInVX48Zw//3QunXYnzgR/vGPooYkUsqySTJ2BV5Mc/4FoNbqDc2ss5ndbWafmNlCM3Mz65jhtQ3N7Hwze93Mfjaz+Wb2pZn908xaFjh0ESlnq60WhrHG3HRTfLl4EakgmyRjDeDHNOcnR2VqSzdgP+A34P0sr20G/AOYCJwN9AEeAM4B3jKzKof2iohw/PFhXg0IU5GfdFLosyEiFWSTZMwD0o04WQdYlFs4WRno7h3cfX/S17CksgBY193/z92fdvdh7n49cCYheemd72BFpA4xg//+F5o2DfujR4caDRGpIJsk42Pg2FTNCdGxY4BP8hVYddy9JvN4xK5d5u4zUpwaET13qOm9RaSe2GADuPLK+P4VV8CXmvxYJFE2ScYNhC/fD8zsYDPbwMzWN7ODgQ+ic9cXIshaFFtFdlxRoxCR8nDeedC1a9heuDAMZ/3qq+LGJFJCsponw8z+D7iVsChaoiXAOe5+Tx5jy5iZnQPcTGgCmVTDe6wHjATGuHvPKsrMquY2rVq1aoXmyRCpR0aPDguoLVgQ9tu3hzffhC5dihqWSC3LbZ4MAHf/L7A+cAFwD/Bf4Dxg/UIlGBY0SnwU4DVWBV4m9Ds5Kt/3F5E6bMst4ZVXYMUVw/6UKWGm0M8+K2ZUIiWh5Gf8NLOewNtJhyvUWORSk2FmbQlL1rcDerj7NznEqhk/Reqr99+H3r1h7tyw37o1nHAC/Por/PwzTJ4Mq6wCF14I/fpp3ROpa8pzWvGoU+nGSYfHuPvihDLnUIMkw8zaEBKMNYBd3X18jrEqyRCpzz75BPbaC6r7HbD33nD77aHzaKLFi6FBA2ikUfRSdrJb6j3lHcK04ScC2wErU7m5xd199xqFVwV3n0voK5FX0Xt5E1iLPCQYIiJsuy289Rb06gUzUg1giwwZEvpsXHQRrL02jBgBI0eGJeYbN4bBg2HPPWsvbpECybgmI1qV9X3CX/2zgZWAmcSTjenAPHdftzChVoqnOWESLYB9gOOAvwDTgGnuPjyh7CQAd+8Y7TcDhgNbE+bGGJV0+8nuPrkGMakmQ0Tg++/hgQdCP40114QOHWDVVeHee+Guu6C637urrRaGw8amLxcpfbk1l5jZQKAvYZbNscBUwjTiHwF/B/oT+jRk/eVcE9EU4hOrOD08cYRIiiQj3bUAV7r7FTWISUmGiKQ3ciScdlp4TueUU8KEXyLlIeck4xfgSXc/N+osOQ3o5e5Do/PPEWoyjsxPvOVHSYaIZGTZMrjvPnjmGWjRArp1g222gV9+geOOi5d75x3YeeeihSmShZyTjEXAX9z9fjNbCZgF7O/uL0XnTwf+4e7t8hNv+VGSISI5cYe+feH558P+JpuEeThWWKGoYYlkIOd5MqYBbaLtucBCoGPC+SaEhcdERKQmzOCOO6BltHrDV1/BVVcVNyaRHGSTZIwHtoAwhISwTslfzGztqI/DKYDm0xURyUWHDnD11fH9q6+GL74oXjwiOcgmyXge2D4amQHwT2BDQgfK76Ptf+U3PBGReui002D77cP2kiVw8snVj0gRKUE5TcZlZt2AI4BlwGB3/yBfgZUj9ckQkbwZPz4svrZkSdgfNAgOPri4MYlUrTxn/CwnSjJEJK/++le44YawvckmMHasZgOVUpX7AmkiIlKLLr4YVlopbH/1FQwcWNx4RLJUbZJhZmuZ2dlmdpqZtUs49piZ/WZm88xsuJlpMLeISD61bQsXXBDfv+IKWLSoaOGIZCttc4mZbUKY0bMloSpkKrAL8CqwLmF68UbAisBiYEd3/7TAMZcsNZeISN7NnQvrrw/TpoX9W2+Fs85Kf820aTBnTrhOpHbUqLnkQsL8F+cAhxIm4HoGaA50d/eV3b0lsBchybg4T8GKiAiEOTMuuSS+/5//wB9/VF3+q69g003DCq8PPlj4+ETSqC7J6AH8z91vd/engXOBzsCN7v5JrJC7vwHcB6jJREQk3049FdZaK2xPnRpqM6ry17/C9Olh+29/U/OKFFV1ScYawJiE/bHRc6qZYcYBbfMRlIiIJGjaFP7xj/j+9dfDzJmVyw0fDi+9FN+fMgUefbTw8YlUobokYwVgQcJ+bHthirKLMrifiIjUxLHHwkYbhe3Zs+H88ytO0OUeajGS3XADLF9eOzGKJFFSICJSDho1gn//O74/YADcckt8f9AgGDEibK+wQljdFeDLL+HVV2srSpEKqhtdshx4DBgVHWoOXAncC3ybVHxroL+7NyxAnGVBo0tEpKDcw1LwDz8c9hs0CM0ju+8eOnt+/304/te/htqLG28M+z17wttvFyNiqT+yn/EzSjKy4UoylGSISAEtXAi77QYffhj2W7YMTSl33BH2V145JBt//AHrrQdLl4bjI0ZAt27FiVnqgxolGT2yfRV3H57tNXWFkgwRqRVTpsC228KPP1Y+d+ONcN55Yfuoo+IdPw87DJ54ovZilPpGa5cUmpIMEak1Y8bADjvAvHnxY+usA19/HfpkAIweHRZZg9C08v330LFjbUcq9YPWLhERqTM23xweewws4Xf7f/4TTzAAttwS9tgjbC9fDldeCd98A/Pn12qoUn+pJiOPVJMhIrXuvvvgssugd++w3SDpb8fXXoO996583corQ4cOsOaa8UeHDrDPPrDGGrUTu9Qlai4pNCUZIlJy3EOTyeefZ1a+efPQj+PAAwsaltQ5ai4REal3zMIcGiecADvvHPpkNG5cdfn586FfP7j22oqTfaWzbFleQpW6RzUZeaSaDBEpC8uXhzVQJk+Gn3+OP554AiZMiJc77jj473+hSZPK91i6FAYODP1AfvsN7r0Xjjii1t6ClBw1lxSakgwRKWvTp4dajHffjR/baaewQFvXrrDxxqHPxzPPhH4gX30VL9ekCXzwAWy9de3HLaVASUahKckQkbK3aFFIKgYMqHyuWTNo1w5++CH1tR07wqhRoVOp1Dfl0SfDzDqb2d1m9omZLTQzN7OOWd6jiZldaGbjo3vMMLNhZrZRQpmWZna9mQ01s9+j1zku3+9HRKSsrLACPPBA6JNhSd8bCxZUTDBWWgkuuig8A0yaBMccowXZ5E8ll2QA3YD9gN+A97O92MwaAS8C5wD/BfYCjgc+ApolFG0LnETIvl7JKWIRkbrEDC68ED75BC69tPKw1qZNw/ooEybANdfAgw/Gz730Elx3Xe3HLCWp5JpLzKyBuy+Pts8BbgbWdfdJGV5/PmERt83dfUKacubRmzezLYHPgOPdfUAOsau5RETqrqlTw6yhG20EbdtWPHf++XDTTWG7QQMYOjQszCb1RXk0l8QSjBycCQxKl2BEr1Na2ZWISKlr1w62375yggGhRmPHHcP28uVhrZSvv67d+KTklFySkQszWxtYB/g26tfxu5ktNrORZrZPHu4/K90DaJXra4iIlKXGjeHJJ2HVVcP+1Kmw665KNOq5OpVkALFGw4uAzYBjgAOBWcCLZrZXccISEakH1lwTnn02zBoK8OuvqRONpUvD4m2//17rIUrtKlqSYUGjxEcebht7P4uB3u7+oru/AuwL/AxclsvN3b11ugcwO6foRUTK3U47wSuvVEw0evaEL7+E996D008PnUhj826MHZvb682bl/nMpFLrilmT0QNYkvjIdqhqCjOi5w/cfW7soLsvBN4Gtsrx/iIiUp0ePeDVV2HFFcP+b79B585hWvO77oJp08LxadNgr71g4sTsX2P5crj88jAnR5cuMHNm/uKXvClmkvEpsE3S45cc7/k9UNUaxgZo8LaISG3YZZeKiUZVtQ2//gp77glTpmR+7zlzwgJu//oXLFkCX3wBV1yRa8RSAEVLMtx9rruPTHoszvGeSwlzZOxoZivFjptZM2BX4OPcohYRkYztvHNINFq2DPtt2sApp8Dbb8Nbb4WJvwC++y4sVT87gxbnb7+F7t3hxRcrHr/rrorTnEtJyEc/iLwys+ZAn2h3i+i5t5lNA6a5+/CEspMA3L1jwi0uB3oDr5nZdcAy4FygHXBY0mv1BlYEYtd3M7M/ons+nbc3JSJSX+28c0gMJk0K/TASF1t74gk46KDQ9PHZZ7D//nDssbB4cXgsWVJx9tCFC8NcHIlzEa22WmiOWbYMLrggTAYmJaMUJ+PqCFTVQDfc3XsmlJ0ElZIMzGwL4FpgR6Ah8Alwmbu/m1RuEmHIayXunnJikWpi12RcIiLZeOABOPHE7K9r2hTuuw823TQsyhb7LnvttdD8IrVNC6QVmpIMEZEauO66sAZKpjp0gOeei6/4euKJIVmB0MF09GhoVHIV9XWdkoxCU5IhIlJDDz4Y+mo0ahSaVBo3Do+GDeNlzKB9+7AIW2zSLwidRzfcMAxnBbj77rCSrNQmJRmFpiRDRKRI/vOfsJgbhATk22+hlSZhrkXlsXaJiIhI1s47D9ZeO2xPmwaX5TT3ouSJkgwRESl/zZrBtdfG92+/PaylIkWlJENEROqGww6D/faL759wQu7TlktO1Ccjj9QnQ0SkyGbPhm22CX0yANZfH0aMCNOPQ5hP48UX4fPPwxoqG24IG20Eq68eOpZKTanjZ6EpyRARKQHjx8N228VHm/TpE5pOHnooTOY1YULla5o3h002gc02iz823TSMZmncuHbjzyf32kqelGQUmpIMEZES8fTTcMgh8f1mzWDBgprda+WVw4iVVVcNc3OceCJsvnl+4iwkdzjjjLDa7VlnFfrVlGQUmpIMEZEScvHFFTuDxqy8MvTvH5pWvv02PLL9vd29e1iH5dBD44vAlRJ3OPNMuPPOsH/TTXDuuYV8RSUZhaYkQ0SkhCxbFppKXn897HfsGL5oTzgBWrSoWHb69NDMMnZseIwZExZumzGj6hVkAVZaKdSYHH449OxZcfKwqVPDQnA//QRHHAFrrpnvd5iaO5xzDtx2W/zYkUfCwIGFbDpRklFoSjJERErMwoXw8MPQrh3su2/2040vWwYzZ4aEYdKk8EX97LNh8bZkq68eajYAhg6FcePi51q3hnvvrdiEk8rkyaGp59VXw/TpN98cEplMucP554frYvr3D3EXdqp1JRmFpiRDRKQemDYtdCK99974KJZMHXtsmMOjZcuwv3w5fPMNDBkCgwbBBx9ULL/TTuFcJk0y7nDhhXDDDfFjhx4Kjz5aG2u5KMkoNCUZIiL1iDt8/DE89lgYvTJ1asXzjRuHvhs//gg//BA/vt56ofli5Ej46CP4/ff0r7PbbmEJ+2bNqi6zfHlYZC4xwTjoIHj88doaHaMko9CUZIiI1FNLl4b+F6+8Epah33XXUAux4oqhg+mZZ4Ymi+o0bBiSig02CAu9xey9d1h5doUVKl+zYAEcf3zFGU779g37tTf8VklGoSnJEBGRKj3+eFgdds6cisfbtoUddoD994cDD4RVVgnHr7kG/va3eLn99w9NKk2axI9NnQoHHBBqRGIOOACeeqpiucJTklFoSjJERCStSZNC8tCgQWhK2X77UGtR1aiPK66AK6+M77dtG2o69tgjzFZ64okwcWL8/Omnwy231EYfjGRKMgpNSYaIiOSVe6jNSDXfRyKzkFwUftKtKiNIdbDWUx0RERHJkBlcfTW0aQM33li5cymEfh+PP15xcbgSoZqMPFJNhoiIFIx7mHvjzTfD4513wiJvTzwBXbsWOzo1lxSakgwREamnUiYZDWo7ChEREakflGSIiIhIQSjJEBERkYJQkiEiIiIFoSRDRERECqJskwwzO8jMnjSzCWa2wMwmmtlDZtYxw+svMbORZjbDzBZF199rZmsVOHQREZF6oWyHsJrZx8BvwGBgItARuBRoC2zt7hOrvhrM7DpgJjAemAt0iq43oLO7V7MsXsp7agiriIjUR3Vrngwza+fuU5OOrQt8D9zs7ufX4J57A68Cx7r7wzW4XkmGiIjUR3VrnozkBCM6NhGYDnSo4W2nR89LahqXiIiIBHVq7RIz6wKsCozL4ppGQGNgY+AW4CvghSrKzqrmdq0yfV0REZG6rmxrMpKZ2QrA/cAM4J4Mr2lBqLWYD3xGSLp2c/d5hYpTRESkvij5mgwzM6Bh4jF3X5pUpiHwMLAlsK+7T8vw9vOBbYAmwCbARcAwM+vp7r8mF3b31tXEOgvVZoiIiADlUZPRg1Db8OcjcZiqmTUAHgT6AYe7+xuZ3tjdl7v7SHf/wN0fAHYljFK5OH/hi4iI1E8lX5MBfEqobUj0C/yZYDwAHAEc5e7P5vJC7v6LmU0GNsrlPiIiIlIGSYa7zwVGJh+PmlH+BxwNHO/uT+T6Wma2HrAO8Equ9xIREanvSj7JSOM24ARCovGNmXVPODfH3b+I7ZjZJAB37xjtrwM8AjwJfAcsBboA5wG/AzcWPnwREZG6rZwn45pEqHVIZbi790wqm5hktAJuBXYA1iAMYf0ZeAO4yt1/qGFMywFr1Up9P0VEpP6YPXv2j+5e6Tu5bJOMUmRmSwmdaefk8baxjGV2Hu8pUhfp/4pI9Qr1/2S2kowyFJsArLrhsyL1nf6viFSvtv+flMMQVhERESlDSjJERESkIJRkiIiISEEoyRAREZGCUJIhIiIiBaEkQ0RERApCSYaIiIgUhObJEBERkYJQTYaIiIgUhJIMERERKQglGSIiIlIQSjJERESkIJRklCAza2Fmt5nZr2a2wMxGmtn+xY5LpJSY2RVm5mY2Oun4sOh48uOJIoUqUqvMbEcze8vM5pnZHDN7xcw2q6JsLzP7KPqumWpm/zWz1vmKRUlGaRoMHAlcCuwDfAEMNrM+RY1KpESYWWfgImBKFUW+BbZPelxaO9GJFI+ZdQfeBhoRvkeOA1YB3jGzDZLK9gReAX4C9gMuAPYHXjazvOQHGsJaYqJE4mWgn7sPjo4Z8C7Q1t07FTM+kWKLfvl9AIwANgNau/uWCeeHJR8TqS/M7HWgC7C+uy+IjrUGJgCvuvuRCWU/ARoDW7v78uhYL+B1oL+7P5lrPKrJKD19gdnA87EDHjLBh4BNzGzTYgUmUiLOBToAfy92ICIlaHvgrViCAeDuswh/qB5oZg0BzGxNYBtgYCzBiMq+AfwMHJSPYJRklJ4uwBeJ/+iRMQnnReolM1sP+CdwhrvPSVN0YzP73cyWmtm3ZnapmTWupTBFiqkJsCjF8UVAc2C9aD/2XTIuRdmx5Om7RklG6WkLzExxfGbCeZF6J2o2/B/wmrs/l6bou4Tajr7AgcBwQmLyVIFDFCkFXwDdo/8vAEQJ9rbR7irRc+y7pKrvm7x81zTKx00k79J1lFEnGqmvTga6AWmbDN39sqRDL5nZFOASM9vJ3d8rVIAiJeB24H7gNjO7hlCZ8E9CEyNAci15Vd8pefmuUU1G6ZlB6gyyTfScKusUqdPMbBXgOuBqYJ6ZtY46szUCGkb7TdPc4qHoefvCRipSXO7+AHAxYVTJZOBHYGPghqjIL9HzjOi5qu+bvHzXKMkoPeOBTimGD8XGOKdqPxOp6zoArQhJxu8Jjx0Jbce/A1ekuT72/yn5rziROsfdryU0i2wGdHT3HQiJww/u/lNUbHz0nKrvxWbk6btGSUbpGQy0JoxZTnQM8LW7f1HrEYkU33fArikenwPfR9v3prn+mOj5owLGKFIy3H2Ru49z9x/MrCNwGHBHwvnJwEjgyMQ/as1sd2BN4Nl8xKF5MkpM1FlnKLA5cCEwETiW8EvyAHd/sYjhiZSU5DkxzGxnQlXxM8APwIrAAcDxwNPufmhxIhWpHWa2BaHD80jCiJItgb8Bo4De7r40oexuhDkxniEk6WsA1xKaWHZ092W5xqOOnyXG3d3MDgSuih6tCb2F+ynBEKnWr9HzPwnVxcuBr4HzCB3iROq6RcDuwNmEJHsCoT/GTYkJBoC7v2Vm+wJXEiaBnAs8B1yYjwQDVJMhIiIiBaI+GSIiIlIQSjJERESkIJRkiIiISEEoyRAREZGCUJIhIiIiBaEkQ0RERApCSYZILTCzjmbmZnZFkeNYxcweNrNfoniGFTOeQjKzntF7PK4EYmlqZpPM7D/FjqUcmVmz6Gf2H8WORbKjJEPqBTNb2cwWRl86RxU7niK6kTC98D3A0UCVX3oJiVHiY4GZjTezK82seU2DiBKAK6JFzmrMzLaM7tMxl/vUgvMIE+vdkHgw6bNdbmZzzWyCmQ02s+PNrFlRoi0x7r4AuAb4q5mtUex4JHNKMqS+OBJoQpim/cQix1JMvYDX3P2f7v6Iu7+RwTVvEBKSo4FLCIuRXU6YGbCmegL/IHzx5mLL6D4dU5x7B2gGDMzxNXISJQp/BR50999TFBlN+GyPAc4HHiOsHfEAMDaaJlrC8uUOnFvsQCRzmlZc6osTgbeB54FbzGx9d/++yDEVw2pkv4TzN+7+SGzHzG4jLDTWy8y2dvdP8xlgvrj7cmBhseMAjiAkUw9Xcf7nxM83cqmZHQI8CrxqZp2rSFAKzsxauvvcYrx2InefZ2bPAseZ2aXuvqjYMUn1VJMhdZ6ZbUX4i/chwi/tJYQFs1KVdTMbYGbbm9lwM5tnZtPN7D4za5GifA8z+zBqRvjNzG41s87Z9L8ws8PM7L2oqny+mX1sZgdn8f5WNLOrzex7M1sUxfGwma2TUOYKM3PAgGMTquiPy/R1YqI1DYZFuxsmxdLRzAaa2ZQolu/N7KrEphUzG0CofQCYmBDLFdH5NczsRjMbbWa/R81cX5jZRWbWMPE9AQ9Gu28n3GdAdD5ln4xMPq/k66Omi/FR+R/M7MIsPrJDgN/c/bMsrsHdBwHXAasDpyfFZmZ2mpl9Gv3MzDWzt81s1+T7mFlzM7vJzH6Nyn5kZrtHP+eeVHaYhb4j65nZ02Y2E5iTcH51M7vbzH40s8UW+knca2btUrxuKzO71sy+iz63aWb2uJmtl1SuafTz+XUU3ywzG2tm16f4WF4lrElT6X1KaVJNhtQHJwLzgGeiv4ZeJnzRXh79tZtsS+AlwhfYY4Sq/RMJi22dEitkZjsRVjD8ndBePAs4FNgx08DM7N/A34EhwGXRa/QFBpnZGe5+ZzXXNwJei17zaUKfiw2B04A9zaxbtKTzs4Tl0gcC7xJfFv2DTGNNsn70/GetSPQl/QnQCrgb+Ibw2f0N2NHMdo8WaPovsFL0Ps8Fpke3GBM9bw70AwYTlnFvDPQmfMbrAf8XlXuW8AV8CmExwS+j41XWUGXxeSU6FWhPqK6fBRwFXGtmk939sao/IoiSoh0ItWg1cR/h52Mf4N8JxwcCh0fv4UFgBUKT4Btm1s/dX0goOwjoQ2jeehNYl/DZTqziNVsAw4H3o9duF72XtYEPCc2O9xM+5w0In92u0Wc3OyrbivCztTah2Wc84d/qL8DHUdkfote7EziBUNNzM9CQ8G+yW4rYPoyeexL+z0ipc3c99KizD6Ap4YtwQMKxAwhtu71TlHfCF333pOMvE2pAWiQc+4RQHb9ewrHGhF/ODlyRcLxjimNbRceuShHHc4S/IFtW8/5Oju5xXdLxfaLjA1O8vwHp7pki5vsIfz2uAmxC6I/hwE/ACgnlH42O90m6z/XR8RMTjl0RHeuY4nWbES3emHR8ILAMWD3h2HHRfXqmKN8zOndcTT6vhOt/ISwnHzveHJgGfJjBZ7hudI+bqjjvwEvV3GMOMCNhv2903SlJ5RoRlveeGPv8CMmFA/9LKhs77knHh0XH/50ijueBqUCHpOPdgKVJP9u3AguALZLKrhO9n8T/jzOBVzL5mYzKLwFezLS8HsV9qLlE6rp+wMqEppKYlwm/LE+o4poP3f2jpGNvEX6JdwQws/bANsDz7j4hVsjdlxB+wWbiSMIv9IcsDC398wG8ALQEtq/mHn0JSdHViQfd/WVCh8IDzCzX/+cnEr5UpxFqC64k/GW+u0ft4tFr7A985u6vJF1/NfEammq5+wKPvk3MrImZtYk+k9cITbzdcngvNfm8HnT3WQll5xP6pGxI9VaNnrPtB5NoDqHmJ+YooiW5k35mWgMvEn5GY7HtFz3flHjD6N/oS6qWPAqmFbAv4edyYdLrTiLUku0ZlTXCz/Y7wM9JZecRPrs9E24/G+hsZl2q+RxiZhLVrkjpU3OJ1HWxL8jJZrZBwvE3gEPMbBV3n550zQQqmxE9t42e142ev05RNtWxVDoR+kh8laZM+2rusS7wi6fuFDie0PSzCiGpqqnngTuIV2NfCKwFJHa8W5VQzT4++WJ3n2lmvxKaOqoVNWlcTBhtsQHhM0q0cpbxJ6rJ51XVz0PbFMeTxfo8JL+HbKxEQr8Iws9NS2BKmmvaE5qr1iUkVd+lKPN1dK9k0xKTqsjGhATvRKoenRX7nFYlfDZ7Ev7vpZLYTHkOoZZqrJlNICSwLxJqK1I1Zxrxz1VKnJIMqbPMbF1CBzEj/MJN5SjglqRjy9LdNuk5F7Fflr3TvGalL+0q4imkye7+ZrT9mpm9Sug/8YSZ7RDVOuQzjpuAM4EnCfN4TCVUkW8FXEtuHdZrEme6n4fqxL5k29TkYgvzf7Qk3hcBwnuYRhi1UpVxCWUhuy/l+alCiZ4foWKtYKIFSWXfJPx7peXuz0fvsw/QA9iDkMi8a2Z7uPvipEtWpurkRUqMkgypy44n/MI7mdBhL9m/Cb/MbqnBvWN/tW2c4lyqY6l8C+wN/Oju6aqu0/ke2NvMWqf463NTwl/AyTU1OXH3783sBkLfjMMJnWOnEqrwOyeXN7OVCZ3+RifeJs1LHA284+79k+6zQYqy2f5FW9uf10/RPTNpWknlpOj55YRj3wIbAR+5+x/VXD+RkJRtSOXmkUx/TiHUhDjQJCHhrMo0wv+3lTIoC4TaLkIC80jU3HINocbsAELHVeDPpKsR8SRKSpz6ZEidFLWrHweMdff73P3p5AfwONDFzLbJ9v7uPoXQye6AxCF5ZtYYODvD28QmibrKEoZmJtwrk3bn5wj/jy9OurY30BV4oYoq51zdTGhL/4eZNYxe40Wgq5ntnVT24ijGwQnHYl+Oqf7CX0ZSjYOZrUjqSZjS3SeV56jFz8vDcN93ge2yvdbCPBkXEjqeJo4yepjwHq6u4rrEJrYXo+dzk8r0IXVTSUruPgN4BehnZt1TvKaZ2apR2eWETsDbWhVDsWM/22bW0JJmfY1qxmLDfZP/XWOvPTzT2KW4VJMhddWehH4D96cp8wxhlMOJwIgavMYFhL4dH5jZXYQv3UMJQ/ygmr+y3X2EhbUYrgRGm9kgwhfK6sDWhOrjJmluATAAOBa4KPor7x1CP4a/ENrsL8n6XWXA3WeZ2R2EIY5HEBKmSwgzij4XfR7fAbsQpjF/h4rV7LGOtdea2aOEUTrj3H0cYVjm/5nZk4Qq9/aETrozqGwEoX3/71GNyTxgort/XEXoA6j9z2sQsI+Zbevun6Q4v6bFp7pvRhj2uSewLeEz7JfU8fRpM3sQOMPCHDAvEWpfOhA6Cm9AvP/LK4QOsydHHS9jQ1hPITR5bZ7F+zgNeA94x8weJiQCDaLXOoCQ/FwRlf07YZjwU2b2FOHfezFhdEkf4FPCHwEtgV/N7IXoflOj+E4jDA2PJUkx+0TvtaZDgqW2FXt4ix56FOJB+MXuwGbVlPuaULXbLNpPOcSTKoZKEsbyf0T4kpxCGFmyXVT2woRyHUkawppwbh/CF8FMQmfKnwiTDp2W4XtdkfBX7QTCL/KphC/9dVKUrckQ1juqON+W0ETyLdAwOrZu9NpTo1gmEOawaJ7i+guj80sSPxvCENHrgR+iz/VbQs3D7iQNSY3KHwt8Eb3en++PFENYs/m8qro+OjeApOGfaT7HpoQE6fYq/j0SH38QmjieIyRWzdLc92hCLcmc6HOaRJg75LAU7/eW6OdzAfBx9HP7NDA/qewwYFKa11wl+rf5JnrNWcBYws/9pkllmxPmfhkbve5cQpPN/4DtojJNon+LT6LPaFH0Ph4ANkzxPv4Ars/n7wo9CvuIjaUWkTwxs4MIv8APd/cnih2PFJ+ZXUyYlGxdD/0Pis7MxgKN3X2TYseSCTM7m9AReCN3/6XY8Uhm1CdDpIaiduimSccaE1bcXEp86m2RWwjV/xfU9gtbipVczWwfoAuhua/kRf/PLiLUYijBKCOqyRCpoegX3w+ETm5fE5oPDiO0c1/r7henuVykVpjZ1YROrW8T+g1tSWiKmQNs6ZWnURfJG3X8FKm5JYShhQcQOmsaIdk43d3vKmZgIgneJXTC/CthXZmZhE7PlynBkEJTTYaIiIgUhPpkiIiISEEoyRAREZGCUJIhIiIiBaEkQ0RERApCSYaIiIgUxP8DIVOpEta4mPgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot angle vs BTE\n", + "fn.plot_unaware_bte_v_angle(un_mean_te)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "d7f282a8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAH0CAYAAAC3hr6iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABX40lEQVR4nO3dd3Rc1bXH8e9WtS3bkm2594orYNO76b2XkECoSUhI8pKXl04KCQnpvUAIEAhJ6DEldBNsmgEbMO4F994lW7LVZvb7494RsjwqI400kub3WWvWaM49987WtazZOtXcHREREZHaMlIdgIiIiLRNShJEREQkLiUJIiIiEpeSBBEREYlLSYKIiIjEpSRBRERE4spK5ZubWVfgduByoABYCPzQ3Z9q4Lxbge/HObTF3fs1I54qgsRpd1OvISIi0o50B6LuHjcfSGmSAEwDpgBfB1YB1wHTzOx8d3+2EeefDpTUeF3RzHgyAMvPz89v5nVERETavOLiYqinVyFlSYKZnQOcBlzi7tPCsleAEcCvgMYkCXPcvSiJYe3Oz8/PLypK5iVFRETapoKCAoqLi+tsPU/lmISLgWLgyViBB8s/3g+MNbPxqQpMREREUpskTAQWuXu0Vvm8GscbstjMIma2ycz+amZ96qtsZkX1PQB1M4iIiIRSOSahF7AsTvnOGsfrsgL4NvA+wTiE4wjGNZxqZoe5+65kBioiIpKOUj1wsb7dpeo85u4P1Cr6r5m9BbwIfB74UR3nFdQXjFoTREREPpLK7oYdxG8t6Bk+74xzrE7u/hKwCTimmXGJiIgIqU0SFgLjzKx2DJPC5wVNuGYGUHuMg4iIiDRBKpOEaQQLKJ1fq/waYKm7L0rkYmZ2BtAXeCsp0YmIiKS5VI5JeBZ4BbjHzHoRLKZ0LXA8cGGskpnNAE5yd6tR9j7wd2ApUAkcC3wV+BD4UyvFLyIi0qGlLElwdzeziwiWZb6doFVhEcHiSk83cPoS4GZgAJANrAPuBm5L8uJKIiIiacuC9YsEgtkNWnFRRETSRbjiYnFds/+0C6SIiIjEpSRBRERE4lKSICIiInEpSRAREZG4lCSIiIhIXEoSREREJC4lCSIiIhKXkgQREZEU21cR4ZP3vM3N/3yXqkjb2YIo1VtFi4iIpL0XFm7mteXbATh+1Ho+cdSQFEcUUEuCiIhIij0zf1P1179+aRml5VUpjOYjShJERERSaE9ZJTOXbat+vb2knLteXZnCiD6iJEFERCSF/rtkKxVVUXKyMrj2mKEA3PXqSrbuLktxZEoSREREUuo/84KuhpPG9Ob/zjyInnk57KuM8Jvpy1IcmZIEERGRlKnZ1XDupP5075TNl04dDcDDs9exbMueVIanJEFERCRVanY1nDquDwCfOGoIwwvziDr89LklKY1PSYKIiEiKPFOjq6Fbp2wAsjMz+MZZBwFBEvHmiu0pi09JgoiISAqUlFcxo0ZXQ01nTujH4UN7APDArDWtHluMkgQREZEkikador0VDdZ7efGWA7oaYsyMyw4bBMCbK3YQiXqLxNoQJQkiIiJJUlYZ4WN3zeKIH0/n8XfX11s31tVw4uiPuhpqOm5UIQDF+ypZsKE4+cE2gpIEERGRJHB3vvn4PGav3kVlxPnG4/N448P44wlqdjWcd3D/uHUG9+zCsF5dAHi9juu0NCUJIiIiSXD3a6t4Yu5GAHp0yaYq6nz2gXdZuvnAaYz1dTXUFGtNqCvZaGlKEkRERJrp1WXb+MlziwG4ePJAnvmfE+jbPZc95VVc/7d32BKunlhWGeHe11dx23+CunV1NcQcHyYJc1bvYl9FpIW/iwNpF0gREZFmWLOjlC8++D5Rh0kD8/nJJZPolJ3JvdcdwRV3zmJjcRk33DebS6YM4i8zV7B1TzkAOVkZfPakEfVe+5iRvTCDikiUOWt2csLo3q3xLVVTS4KIiEgTlZZX8em/z6F4XyWFXXP4yycPo1N2JgATBuTz56sPIzPDWLhxN7f9ZxFb95STk5nBJ48eysyvTeXwYT3rvX5BlxwmDcwH4PXlrd/loCRBRESkiZ76YCPLtpSQlWH8+arDGFDQeb/jJ43pzY8vmghAdqZx9dFDmPG1qdx20UT653eOd8kDxLocUjF4Ud0NIiIiTbR6eykAR4/oxZHD47cKXHnkEKYM7UFB52z6dO+U8HscP6qQP89YwcKNu9lZWkHPvJxmxZwItSSIiIg00cbiYEBi//z6P/zH9O3WpAQBYMrQHuRmBR/Xrb1Es5IEERGRJtpUtA+A/gWN6zpoik7ZmdWtFK09LkFJgoiISBNtClsSBjTQktBcsXEJry3fjnvrLdGsJEFERKQJIlFnc7j+QUu2JMBHiyptKNrH2p17W/S9alKSICIi0gTbS8qrN15q6ZaE8f2706NLsOhSa85yUJIgIiLSBBvD8QjQ8i0JGRnGsbGpkK04LkFJgoiISBPExiN065RF19yWX1EgNi6hNbeOVpIgIiLSBLGWhAGNXBSpuY6vsXX0wo2ts3W0FlMSERFpglhLQr8WHo8QM7hnF44a3pMhPbuQm5XZKu+pJEFERKQJNhWHLQkFrZMkADx80zGt9l6g7gYREZEm2VgUW22xdbobUkFJgoiISBPEWhIaWpK5PVOSICIikqDKSJSte8oBDtj5sSPRmAQREUl70ajz1Uc/YHtpBTccN4yTxvTGzOqsv3VPObHVkTtyS4KSBBERSXtLNu/h3+9vAODVZduYOLA7n586ijMn9CMj48BkYVPNhZQ0JkFERKTj+mB9EQCxfGDBht187p/vcfpvZvLuml0H1I9tEd2jSzadc1pnOmIqKEkQEZG0N3dtEQCnjO3Dv28+ltPG9QFgxbZSfv3S0gPqx1oS+nXgVgRQkiAiIsLcdUUAHDq4gClDenD3tUdw+8WTAJi3vphorWWQW2uL6FRTkiAiImmtpLyKZVv3AHDo4B7V5UeN6AnAnrIq1tTanjm2JHP/VlxIKRWUJIiISFqbv764eqbCpEH51eXDe+VVb9w0f8P+eyXEWhI68qBFUJIgIiJpLjZocWTvPPI7Z1eXZ2QYEwZ0B2B+WCcmFUsyp4KSBBERSWuxQYuHDC444NjBYcvCvPUftSSUV0XYXlIBqCVBRESkQ4sNWpwcJ0mYNCgoW7hxd/XgxS3F5dXHW2ub6FRRkiAiImlrc3EZm3cH4wtqDlqMOXhg0JJQUl7Fqh2lAGws/mghpb75ua0QZeooSRARkbQVa0XIycrgoH7dDjg+tFcXunUKBy+GXQ6x8QiFXXPIzeq4CymBkgQREUljsSRh4oDu5GQd+JFoZkwauP+4hHTYIjpGSYKIiKStD6oXUTqwqyEmNi1ywYb9WxI68sZOMUoSREQkLUWizrxwauMhg/PrrBdrSViwsZhI1NkUtiR05C2iY5QkiIhIWvpwawmlFREAJtfTknDwwAIA9lZEWLmtpHpzJ7UkiIiIdFCxroaeeTkM7ll3q8Dgnp2rF1mav6H4o+4GtSSIiIh0TO+HScIhg/IxszrrmVn1okrvrNpJ0d5KoONv7gRKEkREJE3NbcSgxZiJ4biE6Yu3VJelQ0tCVqoDEBERaUmVkSi3P7sYd7jx+OEM7tmFvRVVLNsS7PxY36DFmNiiSrHlmDMM+nTr2AspgZIEERHp4J6dv4m/vbEagH+8tYbLDhvEkcN7EgmXWT40znLMtdXcHRKgd7dcsjM7fmO8kgQREenQHn9vQ/XXVVHnodnreGj2OgCGF+ZR0CWnwWsMLOhMz7wcdpamx8ZOMR0/DRIRkQ5rZ2kFV941i9+/vDzu8S27y3h9+TYA/vDxydx20cT9pi42phUBgsGLsXEJ0PG3iI5RS4KIiLRbj727jrdW7uStlTs5e2I/Rvfdf/+FJ+duIOrQo0s2Z07oR05WBlccPohH56znteXbuOmkEY1+r4MH5vPqsiDhUEuCiIhIG/fa8u3VX/95xor9jrk7j78bdDVccMiA6r0ZcrMyufroofzlk4cztl/3Rr9XzXEJ6bCQEihJEBGRdqqsMsLs1TurXz/1wUbW7thb/Xrhxt0sDWcwXDJlULPf7+BBNbsb1JIgIiLSZr23dhdllVEgmG0QiTp3vvpRa8K/wwGLI3vn7fcB31T9unfisKE96JqbxWFDG15boSNQkiAiIu3SGx8GXQ3j+3fnCyePAuCxOevZXFxGZSTKUx8EScIlUwbVu6JiY5kZj9x0DO/ccip9u6u7QUREpM16/cMdABw/upCPHTGYwq45VESi/PW1lby2fBvbSyowg4snD0zae2ZmGF1y0mfMv5IEERFpd4r3VjI/3Ob5uFGFdMrO5Mbjg5kK/3p7Lfe+vhqAY0f2SpvxAy1BSYKIiLQ7s1buIOqQk5nBEcOC8QFXHz2E7p2y2FcZ4fWwK+KSyc0fsJjOlCSIiEi7ExuPMGVoQXXzf7dO2Vx37LDqOp2zMzlrYr9UhNdhKEkQEZF2J9ZScPyowv3Krz9uOF1yMgE4e2I/8nLTZ/xAS1CSICIi7cr6XXtZtb0UgONH997vWI+8HG69YAKHDe3BF04ZlYrwOhSlWCIi0q68Gc5q6NYpi0kDD1z/4IrDB3PF4YNbO6wOSS0JIiLSrsS6Go4d2YvMjOavfyB1U5IgIiLtRjTq1YMWa49HkORTkiAiIu3G0i172FFaAQTrI0jLUpIgIiLtRqwVYUB+J4YX5qU4mo5PSYKIiLQbsa2hjxtVmJT9GKR+ShJERKRd2FS8jzdXBEnCCWN6N1BbkiGlSYKZdTWz35vZJjPbZ2ZzzOyCBK9hZvZfM3Mz+20LhSoiIil27+urqIw4hV1zOWN831SHkxZS3ZIwDbgK+A5wLrAImGZm5yRwjU8DY1sgNhERaSOK91byr7fXAnD9ccPolJ2Z4ojSQ8oWUwoTgdOAS9x9Wlj2CjAC+BXwbCOuMRD4OXAj8FjLRSsiIqn0j7fXUFoRoWtuFlcfPTTV4aSNVLYkXAwUA0/GCtzdgfuBsWY2vhHXuAN41d0fb5kQRUQk1coqI/ztjVUAfOKoIeR3zk5xROkjlcsyTwQWuXu0Vvm8msfrOtnMPg6cDDQmmYidU9RAlQPX9xQRkZR67N31bC+pIDvTuOG44akOJ62ksiWhF7AzTvnOGsfjMrNC4HfALe6+rgViExGRNiASdf762koALp48kH75nVIcUXpJ9QZP3sRjvwdWAX9M6M3cC+o7HrY0qDVBRKSNeG7BJtbs2IsZfObEkakOJ+2kMknYQfzWgp7hc7xWBszsdOBjwClA91qLaeSaWQFQ4u5VyQtVRERam7tz58wVAJw+ri+j+nRNcUTpJ5XdDQuBcWZWO4ZJ4fOCOs6bQBD3DGBXjQfAZ8OvT0tqpCIi0upmrdjBgg27AfjsVLUipELCLQlm1gPoQ9AdsM3ddzVwSl2mEUxdPJ8aMxyAa4Cl7l7XoMXHgLlxyl8BHifogpgX57iIiLQjsS2hDx6Uz5QhPVIcTXpqMEkI/9K/ELgcOAnoV+v4ZoK/6h8FnoozW6EuzxJ8sN9jZr0IxhhcCxwfvl/s+jOAk9zdANx9PbA+TpwA6919RiPfX0RE2rDVO0oBGNeve4ojSV91Jglmlgl8DvgW0B8oBWYTfLjvAIxg/MAo4ALg48AmM7sduNPdI/W9sbu7mV0E3B4+CgimPF7i7k8367sSEZF2b9X2vQAM026PKVNfS8JCYDDwEPAAwaJFcVsJwtaGk4GrCVZA/AIwrqE3d/fdYd0v1FNnakPXCetpOzARkQ7C3VkTtiQML+yS4mjSV30DF58DRrj7je4+o75uBHePuvvL7n49MBJ4PtmBiohI+ti6p5y9FUGD9PBCzWpIlTpbEtz9f5tyQXffDDTpXBEREYCV20qrvx7aSy0JqZLUKZBm1i2Z1xMRkfQUG7Q4IL+TdnxMoaQkCWbW1cy+QzBDQUREpFlWbw+SBA1aTK3GTIHMIljLYDTBKohPuPv28FguQdfCVwlmOqxtuVBFRCRdrFKS0CbUmySYWU+CNRAmEEx5dOCXZnYaUEmweNEIYCXwDYJtnkVERJol1t0wvJeShFRqqCXhuwRbNj8BTCdYE+Fm4A5gEBABbgAeaGhdBBERkcaIRp01O7RGQlvQUJJwHvC0u18SKzCzFcAfCNZROLEZyzKLiIgcYNPuMsqrgln3WiMhtRoauDgYeLFWWWwNhF8rQRARkWSLDVrMMBjcU0lCKjWUJOTw0Q6LMUXhswYpiohI0sUGLQ7s0ZncLE1/TKXmTIFs7EZOIiIijVY9s0GDFlOuMVtF/5+ZXVnjdTbBLIcfm9n2WnXd3S9ERESkHuVVEV5atIUTx/Sme6fs/Y7FuhuGa9BiyjUmSZgcPmo7Ok6ZNy8cERFJB7dMW8Bj767nkikD+fUVh+53bNUOtSS0FfUmCe6e1GWbRURElm7ew+PvrQfgxYVbqKiKkpMVfNxURaKs2xlMf1RLQuopCRARkVb1ixeW4GG7c0l5FW+v2lF9bGNRGZWR4KDWSEi9hJIEM8s2s/Fmdkz4nN3wWSIiIoE5q3cyffFWALrlBo3Z0xdtqT4e62rIzDAG9ejc+gHKfhqVJJjZODN7hGD643zg9fC52MweMbPxLReiiIh0BO7Oz55fAsDBg/L57NSRAExfvBUPmxZigxaH9OxCdqYau1OtwX8BMzsfmA1cBuwAngH+BfwH2B6Wzw7riYiIxDVj6TZmrw6W3vnGWWM5fXxfADYU7WPxpj1AzemPWkSpLag3STCz4cBDBLs/nuvuQ9z9Anf/pLtf6O5DgHMIkoUHw/oiIpLGdpSU89A7a1m+ZU91WTT6USvCCaMLOW5UIaP7dGVIuKLi9MVBl0NsYyeNR2gbGpoC+TWgimCPhtXxKrj782Z2EvABwZbRn09qhCIi0q585ZEPmLlsGwDj+3fnwkMHkJWZwZLNQdLwtTMPAsDMOG1cX+59YxXTF2/hf04dXd2SoJkNbUNDScLpwH11JQgx7r7azO4Dzk1SXCIi0g6t27m3OkEAWLRpN4s27a5+fe6k/hw8qKD69Wnj+3DvG6uYt76YdTv3sn7XPkBrJLQVDY1JGETQQtAYHwADmheOiIi0Z4/MWQdA3+65PPrZY7jmmKH0zMsBICczg6+cMWa/+kcM60n3TsHfq/e/uZpINBjAqJaEtqGhloQyoGsjr5UHlDcvHBERaa+qIlEenRMsknT5YYM5YlhPjhjWk++eN57Zq3bSIy+Hkb33/0jJzszglLF9eGLuRh6aHSQYOZkZDCjQ9Me2oKGWhEUEAxMb4xxgcfPCERGR9mrmsm1s3l0GwMeOGFxdnp2ZwbGjChnXv3vc804LZzmUlFcBMLhnZzIzrIWjlcZoKEl4GDjdzG6sr5KZXQ+cQTATQkRE0lCsJeD4UYUM7tn4KYwnjulNduZHScHwwsY2YEtLayhJuJNgrMFdZvYvMzvFzAosUBC+/hdwd1jvzpYOWERE2p6tu8v475JgJcUrjxzcQO39de+UzdEjelW/Hl6oNRLaioY2eKows7OAx4ArgY/FqWbAG8Dl7l6R/BBFRKSte/Td9USiTo8u2dWLJCXitHF9eW35dkBrJLQlDa646O5b3f1E4ELgAeB9YEX4/ABwkbuf4O6bWzRSERFpk6JRr57VcMmUQeRmZSZ8jVPH9an+eoS6G9qMelsSzKyPu28FcPengacbqH+eu/8nifGJiEgb99aqHazZEWzvfOURiXU1xAzq0YXvnz+ejUX7OGp4z2SGJ83Q0BTIhWZ2s7s/Wl8lM8sH/gBcBSSeQoqISLv1cDhg8bChPRjdt1uTr3P9cVrZv61pqLthJ/CQmT1kZr3iVTCzc4GFwNXAX5Mcn4iItGFLN+/huQVBb/PHmtiKIG1XQ0nCIcAfgcuB+WZ2YeyAmeWb2f3AUwT7O5zh7p9tsUhFRKTNiEade15fxfl/fJ2KqigFXbI57+D+qQ5Lkqyh2Q1lwJfMbBrwN+DfZvZPgu2if0WwDPNfgf9z95KWDlZERFJvU/E+vvroB7zx4Q4AhvTswu+uPJQuOQ31YEt706h/UXefYWaTCNZBuCp8rCNoPZjegvGJiEgb8saH2/ncP95ld1mwOuKVRwzmO+eNp2uuEoSOKJF/1WOAEwnWRYgS7NUQd5yCiIh0TLf9ZxG7y6romZfDTy+ZxBkT+qU6JGlBDa6TYGZ5ZnYn8DxBgnAOcBywA/iXmT1qZoUtG6aIiKRaNOqs3F4KwM8uPVgJQhqoN0kws5OB+cBngH8AE939eXd/m2BQ4++AiwmmSl7a0sGKiEjqbN5dRkVVFNBWzumioZaE6UAn4EJ3v9bdi2MH3L3c3b8CnAzsAR4xswdbLlQREUml1TuCVgSzYKdG6fgaShIeAiaEqy3G5e6vAQcTDGq8PImxiYhIG7I2XFWxf/dOTVp6WdqfhqZAXtWYi7j7XuDzZvZYUqISEZE2Z3WYJAztpa6GdNHgwMVEuPsrybyeiIi0HWt3Bt0NQ3tpK+d0UWeSYGZjmnpRMzuoqeeKiEjbtHq7WhLSTX0tCQvN7F4zm9jYi5nZZDN7AFjQ/NBERKStcHfW7owlCWpJSBf1jUk4n2Dp5Q/MbB7BUsyzgRUEGz8Z0BMYDRwNnA2MBxYB57VgzCIi0sp2llZQUh6ssqgkIX3UmSS4+/Nm9hJwBXAz8G3A41S18HkGcCXwuLtHkxyniIikUGzQIqi7IZ00NLshAjwIPGhmfYGTCFoLehMkDNsIuhZmuvv2Fo5VRERSJDZosbBrjvZpSCON/pd29y3AIy0Yi4iItFGxQYtDeqqrIZ0kdQqkiIh0TB8NWlRXQzpRkiAiIg2KLcmsQYvpRUmCiIg0aO0OTX9MR0oSRESkXnvKKtlRWgGouyHdKEkQEZF6rak5/VEDF9OKkgQREalXLEnolptFz7ycFEcjralRSYKZdTWziJl9t6UDEhGRtmVNuEbCkF5dMLMGaktH0qgkwd1LgCJga4tGIyIibU5s0OIwjUdIO4l0N7xCsOKiiIikkdj0xyGa2ZB2EkkSvgYcb2Y/MLPuLRWQiIi0LdXTHzVoMe0ksgD3y0An4DvAd8xsG7C3Vh1395HJCk5ERFKrrDLCpt1lgKY/pqNEkoS1xN8FUkREOqj1u/bi4W9+LaSUfhLZ4GlqC8YhIiKtaHdZJX+ZuYILDhnIQf261VkvtrFTTlYG/bp3aq3wpI3QOgkiImnoF88v5U+vrODmf76Le92NxGt2frT7Y0aGpj+mm4Q3BTezkcCFwIiwaCXwpLuvSGZgIiLSMvZVRHhi7gYAVmwrZdbKHRw7sjBu3TXhzIZh6mpISwklCWZ2G/BNILPWoZ+b2e3u/r2kRSYiIi3iuQWb2FNWVf36H2+tqSdJiLUkaNBiOmp0d4OZ3QDcArwNXAyMDh8XAbOAW8zs+haIUUREkuih2esAKOyaC8ALC7ewubgsbt3qloRCtSSko0TGJHyeIEGY6u5PuvuK8PEUcDLwDvCFlghSRESSY+W2Et5ZtROAn106iV55OUSizoPvrD2gblUkyvpd+4BgTIKkn0SShHHAQ+5eVftAWPZQWEdERNqoh+cErQgDCzpz8kF9+NgRgwF48J21VEai+9XdVFxGVTQY1KglmdNTIklCBdC1nuPdwjoiItIGVUaiPP7uegCuOHwwGRnGJ44aghls3VPOS4u27Fd/xbYSADIzjIE9Ord6vJJ6iSQJs4GbzKxv7QNm1gf4DEF3hIiItEH/XbKV7SUVmMHlhw8CYFCPLpw6tg8AD8xaU1132ZY9fPPx+QCM7J1HdqZmzKejRGY33EawNPNiM7sHWBSWTwCuJ2hJuCq54YmISLI8HA5YPGlMbwYUfNQycPXRQ5m+eCuzVu7gw6172Flayafun83usiq65mZx24UTUxWypFgiKy6+amaXAH8E/q/W4bXAte7+WjKDExGR5NhUvI8ZS7cCcGU4DiHmxNG9GdqrC2t27OWbj89n3oZiKqqi9O6Wy33XH8GEAfmpCFnagITaj9z9aWA4cBRwJfBx4EhghLv/J/nhiYhIMjw2Zz1Rh8KuOZwydv9e44wM4+qjhgIwZ80uKqqiDC/M49+fO1YJQpprVJJgZl3NbIWZfdndo+4+290fcfeH3X2Ou0cbvoqIiKSCu1fParhkyiBysg781X/ZYYPIDcsPGZTPY589hsGa9pj2GtXd4O4lZtYLKGnheEREJMmWby2pXu/g0imD4tbpkZfDHVdP4YN1xdx00gi65CS8ar90QIn8FLwFHA7c3UKxiIhIC4gtnlTYNYcxfeueyX7K2L4HdEVIektkTMI3gSvM7Hoz01ZgIiLtxOzVQZJw5PCe6Ne3JCKRloRfA7sIWhJ+bmYrgL216ri7n5qs4EREpHncvbol4YhhPVMcjbQ3iSQJIwAnmO4IoDYpEZE2bv2ufWwKN29SkiCJSmSdhGEtGIeIiLSAWFdDt9wsxvXvnuJopL1JZArkf83sxpYOSEREkieWJEwZ2oPMDI1HkMQ0Kklw9xLgiBaORUREkiw2HuHI4epqkMQlMrthLkneCjpsofi9mW0ys31mNsfMLmjEeTea2Rtmts3MKsxsnZk9aGbjkxmfiEh7tr2knBXbSgElCdI0iSQJ3wc+bWYnJ/H9pxFsCvUd4FyCTaOmmdk5DZxXCEwHPg2cDnwXOBR428xGJTE+EZF2a07Y1ZCTlcHBg7S8siQukdkNVxPMbJhuZh8Ay4g/BbJR4xbCROA04BJ3nxaWvUIwi+JXwLN1nevuP6tVNNPM3gIWA58AftiYGEREOrJ3Vu0C4NBBBeRmZaY4GmmPEkkSrqvx9aHhozYHGju48WKgGHiy+mR3N7P7gbvMbLy7L6rz7ANtD58rEzhHRKTDig1aPGJ4jxRHIu1VIlMgE9oxshEmAovibA41r+bx+i5gZpkE38Mw4GfAFuD+euoXNRCT2uNEpEMoKa9i4cZiQOsjSNOlcgePXgRdFrXtrHG8IVtq1FsGnOzuG5MQm4hIu/buml1EHTIMDhuqlgRpmnpbB8xsgJl1asyFzKyvmZ2S4Pt7E4/FnAocQzD4sRh4xcwm1HlB94L6HuE1RETavdnh1MfxA7rTrVN2iqOR9qqhLoR1wCWxF2aWb2bzzOzIOHVPA15K4L13EL+1INYutjPOsf24+wfu/pa7/ws4hSCxuD2BGEREOqR3Vmu/Bmm+hpKE2stzZRGMFah7r9HGWwiMM7PaMUwKnxckcrFwwadFwJgkxCYi0m6VV0WYu64IgCOVJEgzJHswYiKmAQXA+bXKrwGWJjizATPrCRwCfJiU6ERE2ql564upqArGhB+uJEGaIZUDF58FXgHuMbNewCrgWuB44MJYJTObAZzk7lajbC7wALAUKCVoPfgfoAtwW+uELyLSNs1asQOAEYV59O6Wm+JopD1LWZIQrolwEcEYgtsJWhUWESyu9HQDp78FXA8MAToTzHKYCXzM3RPqphAR6Ug+3LqHO2euAOC4UYUpjkbau1S2JODuu4EvhI+66kyNU/bZFgxLRKRNi0adjDg7OpaUV3HTA++ytyJC//xOfPm00SmITjqSxiQJ15jZ0eHXnQhmEHwhbAWoSQMGRURa2B0zVvD7l5dz7bHD+PJpo+mUHSy37O5847F5rNhWSnam8eerptCrq7oapHkakyScET5quqiOuo1Z20BERJrosXfXsa8ywp0zV/Dy4i388vJDOGRwAfe8vopn5m8C4HvnjWfyEC2gJM3XUJIwvFWiEBGRBu2tqGLl9tLq18u3lnDJHW9y2ZRBPPbeegAunjyQq48emqoQpYOpN0lw9zWtFYiIiNRv8aY9eNhe+/cbjuRHzyxi2ZYSHp6zDoCD+nbjxxdPxOzA8QoiTZHKdRJERCQBi8INmwYWdObEMb15+ovH8/mTR5KZYeR3zubOTx5Gl5yUjkeXDkY/TSIi7cSiTbuBYD8GgNysTL525liuOWYYWRmmgYqSdEoSRETaiYUbgyRhQpgkxPTt3qh9+EQSpu4GEZF2oDISZcnmPQCM79+9gdoiyaEkQUSkjfjGY/MY993nWRx2K9S0cltp9X4MEwbmt3ZokqaUJIiItAE7Ssp5NFwD4eHZ6w44vjActFjQJZsB+epekNahJEFEpA14cdEWouH0xhlLtx5wPDYeYXz/7priKK0moYGLZnYMwT4Lo4FeQO2fVHf3kUmKTUQkbTy3YHP116t37GX19lKGFeZVl8VaEmoPWhRpSY1OEszsGuBvQCWwDFjbUkGJiKST4r2VvPnh9v3KZi7bVp0kuDuLqmc2aDyCtJ5EWhJuAZYCp7n7xhaKR0Qk7by8ZAtVUSc3K4OTD+rD8ws3M2PpVq49dhgA63ftY3dZFfDRGgkirSGRMQlDgTuUIIiIJFesq+GkMb05e1I/AGat3EFZZQT4aDxCblYGI2p0QYi0tESShPWAlvMSEUmi0vIqXl22DYCzJ/XjhNG9MYOyyihvr9oJfLTS4tj+3cnK1HhzaT2J/LTdCVxlZpktFYyISLp5ZelWyquiZGcap4ztS8+8HA4ZVAB8NMthkQYtSookMibhXeBS4B0z+xOwCojUruTuryYpNhGRDi/W1XDcqELyO2cDMPWg3sxdV8TMpdvg/P2nP4q0pkSShJdrfH034LWOW1imlgYRkUYoq4zwypKgteDsif2qy6ce1IffTl/Oyu2lfLCuiE3FZYBaEqT1JZIkXN9iUYiIpKHXlm9nb0WEDIPTx3+UJBw8MJ+eeTnsLK3gzzM+BCDDYGw/JQnSuhqdJLj7/S0ZiIhIunluwSYAjhrei555OdXlGRnGiaMLeWLuRl5YuAWAEb270jlHDbXSujRMVkQkBSqqokxfFCQAsWmPNU09qM9+r9XVIKmQUJJgZnlm9gMzm2dmJeFjnpndamaavCsi0khvrdxRvUDSmRMOTBJOHBNMhYxRkiCp0Ogkwcx6Au8A3wX6Ae+Hj77A9whmPfRsiSBFRDqaGUuDtREmDymgb/cDd3XsmZfDweFUSNByzJIaibQk/BAYS7DBU393P8HdTwAGAJ8HDgJuTXqEIiId0BvhXg0njCqss87UMb2rv9b0R0mFRJKEC4C73f3P7l69PoK7R9z9DuBe4KIkxyci0uFs3VPG0i17gGB9hLpcNHkgXXOzOG5UL3rUGNgo0loSmQLZl6B7oS7vAdc2LxwRkY5v1oodAHTOzmTykB511htemMfb3z6VnCyNMZfUSCRJ2AJMruf45LCOiIjU4/XlQVfDUSN6NpgA5OUm8mtaJLkSSU+fBm40s5vMrPo8M8sws88ANwBPJTtAEZGOxN2rxyMcN7LurgaRtiCRFPV7wOnAn4EfmNnSsPwgoDfwIfD95IYnItKxrNpeysZwmeX6xiOItAWNbklw9x3A4cBPgR3AEeFjO/AT4IiwjoiI1OGNcDxCr7wcxvbrluJoROqXUGeXu+8GbgkfIiKSoDfC8QjHjiokI8MaqC2SWhoyKyLSSiJR580VsfEIvVIcjUjD6mxJMLMTAdz91ZqvGxKrLyIi+1uwobh6KWaNR5D2oL7uhhmAm1lnd6+Iva6nvoXHtU2ZiEgcb4StCEN7dWFwzy4pjkakYfUlCTcQfOhX1notIiJNUD31Ua0I0k7UmSS4+331vRYRkcYrq4wwe/UuAI5XkiDtRCK7QH7PzCbWc3yCmX0vOWGJiHQsc1bvoqIqihkcM0KDFqV9SGR2w63AwfUcn4gWUxIRiev1sKthwoDu2qxJ2o1kToHsBFQl8XoiIh1CRVWUGUu3AhqPIO1LvYspmVl3oKBGUS8zGxKnak/gKmBd8kITEWn/NhTt4/P/fI8lm4OtoU8+qE+KIxJpvIZWXPxfgj0bIJjZ8NvwEY8BX09KVCIiHcDMZdv48kPvs2tvJWbw5VPHcLTGI0g70lCSMCN8NoJkYRowr1YdB0qAt9z9zaRGJyLSDpVVRrhjxgp+/9/luEOPLtn85mOHMlWtCNLO1JskuPtMYCaAmQ0F7nT3t1sjMBGR9mRzcRn/XbKVlxdv4Y0V2ymrjAJw6OAC/nTVFAYWdE5xhCKJa/QGT+5+fUsGIiLSHkWizmf+PoeXl2zdrzwzw7jmmKF86+xx5GRpmxxpnxLaBRLAzDKBsUAP4syO0N4NIpJO3lm1szpB6N4pi6kH9eHUcX04aUxvCrpoqqO0bwklCWb2DeCbQPd6qmnvBhFJGy8s3AwE6x888fnjyM5Uq4F0HImsuPgp4CfAXOA7BIMZfwv8AtgJzCHY30FEJC1Eo87zC4Ik4ZxJ/ZUgSIeTyE/0ZwlmMJwM3BWWPePu3yRYiXEYakUQkTQyd30Rm3eXAXDWxH4pjkYk+RJJEsYBj4Zfx3aDzAJw900EicOXkheaiEjb9kLYijCmb1dG9u6a4mhEki+RJCEClIZfx5571ji+GhidhJhERNo8d+e5MEk4a2L/FEcj0jISSRLWAsMB3L2cYAnmE2ocP4JgbIKISIe3eNMe1u7cC8BZE9TVIB1TIrMbXgXOBb4Vvn4U+LKZdSZINq4G7k1ueCIibdPzCzYBMLRXF8b175biaERaRiJJwu+AD8yss7vvI9gWegxwbXj8RYLpkSIiHd7z4dTHsyb0w8xSHI1Iy0hkxcWlwNIar0uBC8wsH4i4e0kLxCci0uas2FbCsi3BrzzNapCOLOEVF2tz9+JkBCIi0l7E1kbon9+JQwYVpDYYkRaUyGJKUTPbaGZH1nH8KjOLJC80EZG2KZYknDmhHxkZ6mqQjivR5cF6Aa+Y2WUtEYyISFu3bude5m8IGlDV1SAdXaJJwteAd4GHzOzbLRCPiEib5e784+01APTKy+GIYT0bOEOkfUt0TMJ24FSCqY4/MrPRwKfdvSrpkYmItCErt5Xw7WnzeWtlsBzMOZP6k6muBungEh646O6VwCfN7EOCaZDDzezipEcmItIGlFdFuHPGSv70yodURKIAnHdwf7521kEpjkyk5TV5doO7/yBMFO4G3gIeSlpUIiIpVlJexbT31nPvG6tZtT1YiX5gQWd+dPFETj6oT4qjE2kdzZoC6e7/NLM1wDSC7aNFRNq1D7eW8MCs1Tz+3gZKyoOe1MwM48bjh/Pl00bTJafZM8dF2o1EftrvB1bULnT3183saOBfgNJrEWm37pixgp89v6T6dafsDC46dCA3HD+cMX219LKkn0RWXLy+nmMrgKOSEpGISArsLK3gt9OXATCkZxeuOWYolx82mPwu2SmOTCR11G4mIgI8+M5ayquidOuUxXNfOoG8XP16FKnzf4GZ3Qs48Bl3j4SvG+LufmPSohMRaQWVkSgPzArWP7jyiMFKEERC9f1PuI4gSfgcEAlfN8QBJQki0q48t2Azm3eXkWFwzTHDUh2OSJtRZ5Lg7hn1vRYR6Sj+9sYqAM4Y34/BPbukOBqRtkMf/CKS1t5fu4v31xYBcP1xw1Iai0hboyRBRNLa395YDcD4/t05crj2YhCpqb6Bi99rwvXc3W9rRjwiIq1mc3EZz87fBAStCGbai0GkpvoGLt7ahOs5oCRBRNqFf7y1hqqo0ysvh/MPGZDqcETanPqShOGtFoWISCsrq4zwr3fWAnDV0UPplJ2Z4ohE2p76Zjesac1ARERa02+mL2NnaQXZmcbVRw9JdTgibZIGLopI2nlx4Wb+MnMlADceP4I+3TqlOCKRtinhZcXM7HCCfRp6cGCSoYGLItKmrd5eyv89+gEARw7vyVfPGJPiiETarkYnCWbWGfg3cAZgBIMUY0OBvUaZkgQRaZPKKiN87p/vsaesit7dcvnjJyaTlakGVZG6JPK/43sECcKPgZMJkoJrgbOB14DZwPhkBygikizffWIBizftJjPD+OPHJ6ubQaQBiSQJlwGPuvv3gAVh2QZ3fwE4Dcihcfs7iIi0uodnr+XRd9cD8PUzD+KoEb1SHJFI25dIkjAYmBl+HQmfcwDcvQp4ELgykTc3s65m9nsz22Rm+8xsjpld0IjzPmVmT5nZmvC85eF1eify/iKSHrbtKeeHTy8C4IzxffnMiSNSHJFI+5BIkrCHj8Yw7AGiQM3VR4qBfgm+/zTgKuA7wLnAImCamZ3TwHk/AHYD3wLOAn4NXAHMNrOCBGMQkQ7udy8vo7QiQkGXbH5x2SFaWVGkkRKZ3bACGAPg7hEzW0jQBXGvBf/jLgHWNfZiYSJwGnCJu08Ly14BRgC/Ap6t5/TJ7r61xuuZZrYImAF8EvhDY+MQkY7tw60lPPhO8Kvpf04ZTX6X7BRHJNJ+JNKSMB241Mxiy5L9BTjLzFYAywk+8O9J4HoXE7Q+PBkrcHcH7gfGmlmdgyBrJQgxs8PnQQnEICId3E+fW0Ik6gzt1YWrjx6a6nBE2pVEWhJ+CjxAOO3R3f9sZp2AqwnGKPwV+HkC15sILHL3aK3yeTWPJ3C9U8LnBXVVMLOiBq6Rn8D7iUgb99bKHUxfvAWAb5w1lpwsTXcUSUSjkwR3LwGW1ir7NcF4gKboBSyLU76zxvFGMbOewO8JWjQeaWI8ItKBRKPO7c8uBmDKkALOnpjokCkRaVSSYGZdgQ+AP7j7b5P4/t7EY9XMrAvwBNATONHdy+u8oHtBA9cqQq0JIh3C0/M2Mm99MQC3nDtOgxVFmqBRbW9hK0IvoCSJ772D+K0FPcPnnXGO7SdcBfIpYDJwjrvPa+AUEUkDZZURfv580PB59sR+HDa0ZwNniEg8iXTQvQUcnsT3XgiMM7PaMUwKn+scWwAQjod4EjgGOM/d30xibCLSjv3jrTVsKNpHVobxjbPGpjockXYrkSThm8AVZna9JafdbhpQAJxfq/waYKm71zlo0cxyCboYTgAudPeZddUVkfSyp6ySP73yIQBXHTWEYYV5KY5IpP1KZHbDr4FdwN3Az8Opj3tr1XF3P7WR13sWeAW4x8x6AasI9oI4HrgwVsnMZgAnuXvNxOQx4Ezgh0CJmR1d49g2d1/R6O9KRDqUe19fza69lXTOzuTzp4xKdTgi7VoiScIIgsGEa8PXfZvzxu7uZnYRcHv4KCCY8niJuz/dwOnnhc/fCx813Y/2kBBJS7tKK/jraysBuP64YdrASaSZEpkCOSzZb+7uu4EvhI+66kyNU6ZhyiJygDtnrqCkvIpunbK46cSRqQ5HpN3TyiIi0iFs2V3GfW+uBuCzJ43U8ssiSZBIdwMAZjYcOJWgu+Gf7r7azHIINnfa7O4VSY5RRKRBf/jvcsqrohR2zeG6Y4elOhyRDiGhlgQz+xnBKol3EQwajO232olgPMHNSY1ORKQR1u7Yy0PhJk43Tx1FXm7Cf/+ISByNThLM7Cbga8CfgDMI93CA6rEFT3HgdEYRkWbZW1FFZaT2Fi/7+/VLS6mKOgPyO/GJo4a0UmQiHV8iLQk3A9Pc/cvA+3GOzwMOSkZQIiIAW3eXcdqvZnLkj6fz5ortBxx3d37z0jKemLsRgC+dNppO2ZkH1BORpkkkSRgDvFTP8W1AYfPCERH5yC9fXMrG4jJ27a3k2nvf4d/vra8+5u789Pkl/O7l5QCcMb4vl07RTvEiyZRIklAG1Ld02VCgqFnRiIiEFm3czaPvBklBfudsKiPOVx75gN9NX0406tz61EL+MjNYE+G8g/vzp6umkJWpCVsiyZTI/6h3gIvjHQj3Ufgk8EYyghKR9Obu/OiZRbjD6D5dmfHVqRw7MtgP7jfTl3H6b2Zy/6w1AFx22CB+d+VkspUgiCRdIv+rfgEcY2YPAAeHZf3M7ExgBjAI+GVywxORdPTfJVt5c8UOAL597jh65OVw3/VHctlhQXfCim2lAFx99BB+funBZGZofTWRlpDIiovTzexzwO+AT4TFD4TPFcCn3X1WkuMTkTRTGYny42cXA3DC6EKmjukNQE5WBr+47GCG9erCXa+u5Oqjh/K1Mw8iOfvNiUg85u6JnWDWD7gcGEswDXI58Ii7b0h+eK3LzIry8/Pzi4qKUh2KSNq6/83VfP+phWQYPPulExjbr/sBddxdyYFIEhQUFFBcXFzs7gXxjie84oi7bwb+0NzARERqK95byW+nLwPgY0cMiZsgAEoQRFqJRvqISJtxx8wV7NpbSV5OJl85fUyqwxFJewm1JJjZMQQ7No4GelFj1cWQu7u2XhORhJVXRXhodrAT/adPHEHvbrkpjkhEGp0kmNk1wN+ASoL9G9a2VFAikn5eWrSFor2VZGYYnzhSSyuLtAWJtCTcAiwFTnP3jS0Uj4ikqYdnBxs0nXxQb/p075TiaEQEEhuTMBS4QwmCiCTb+l17ef3DYG+GKw4fnOJoRCQmkSRhPaBOQhFJusfeXY87FHbN5eSxfVIdjoiEEkkS7gSuMjNtsSYiSRONOo/OCfZouPSwgVpeWaQNSWRMwrvApcA7ZvYnYBUQqV3J3V9NUmwikgbeWLGdDUX7AHU1iLQ1iSQJL9f4+m6g9lKNFpappUFEGu2RsBXhyGE9Gdm7a4qjEZGaEkkSrm+xKEQkLRXtreCFhZsBuOIItSKItDWJbPB0f0sGIiLp54n3N1BRFaVrbhbnTOqX6nBEpJaE924QEWmKSNRZtb2EssoolZEolRHnwXeCtRHOP2QAXXL060ikrUl0WebBwA+AM4A+wFnu/l8z6w38jGAdhdnJD1NE2rsv/Os9nluwOe6xj6mrQaRNavRcIzMbDswhmOGwkBoDFN19G3A48KlkBygi7d/CjcVxE4QMg3Mm9eOQQfkpiEpEGpJIS8KPgSgwEdgHbK11/Fng/CTFJSLtRCTqzFy2ld37qrjgkAFkZBy4jfNdr64EYHSfrjx+87HkZGaQnZlBZpy6ItJ2JJIknAb8wd3XmVmvOMfXAIOSE5aItHVbd5fx0Ox1PPTOWjYWlwGwvaScT50wYr9663bu5T/zNgFw00kj6d4pu9VjFZGmSSRJ6A5squd4ToLXE5F2qHhfJd+eNp8XFmymKrr/cim/fmkZZ03sx6AeXarL7nl9FZGo0697Jy44ZEBrhysizZDI+qfrgAn1HD8a+LB54YhIW/fT5xbzzLxNVEWdHl2yuenEEfzni8fTp1sueysifOeJBbgHycPO0goemh3sKn/j8cPJydKSyyLtSSL/Y/8N3GBmE2uUOYCZXQpcDjySxNhEpI3ZUVLO4+9tAODmqSOZ9a1T+dY545g4MJ8fXBD8DTFj6bbq7oW/z1pNWWWUbp2y+PhRQ1IWt4g0TSJJwo8JdoJ8G/gHQYLwTTObRZAcfAD8KukRikib8cBba6ioipLfOZsvnDKKTtkfrcJ+1sR+nD6+LwA/eHohm4vLuP/N1QB88uihdM1Vb6RIe9PoJMHddwPHEOzbcDjBXg2nAwcBfwZOdveylghSRFKvrDLCA7PWAHDVUUMOWPzIzPjhhRPIy8lke0kFl97xJrv2VpKTmcF1xw1LQcQi0lwJdRC6+253/5K79wb6Av2AXu7+xTCJEJEO6sm5G9hRWkF2pnHtscPi1umf35mvnzUWoHpnx0sPG0ifbp1aK0wRSaImjyJy923uvtVjI5REpMNyd+5+bRUQLKHct3vdH/pXHz2UQwcXAGAGn641JVJE2o8GOwnNrD/g7r45fN0JuDlO1XXu/miS4xORNmDmsm0s31oCBLMU6pOZYfzy8oP5wr/e55SxfRih7Z9F2q16kwQzOwhYAHyHYG8GgDzglwQDF2sul1ZlZnPdfXlLBCoiqXPP60ErwrEjezFhQMNLKI/q043nv3xiS4clIi2soe6G64GdwG/iHPsqcHL4OBXYA9yQ1OhEJOWWbN7Na8u3A/CpE+pvRRCRjqWh7oZTgKfcvSLOsQ/cfWbshZk9TJAsiEgH4O6s27mP300PGgdH9M5j6pg+KY5KRFpTQ0nCaOD+Rl5rCXBl88IRkVTasruMv8xcyYINxSzetJs95VXVxz51/Ii4mzeJSMfVUJKQB5TUKtsFTAJW1SrfHdYXkXbqtv8sql4tMSY3K4MTRhdyyZSBKYpKRFKloSShCOhfs8Ddo8DCOHX7AcXJCUtEWlvx3kpeXLgFgIsnD+TksX0Y3787wwvztKWzSJpqKEmYD5wB/LQR1zojrC8i7dDT8zZSEYnSJSeTH100kTwtoyyS9hqa3fA4cJKZXVBfJTO7CDgJeCxJcYlIK3v8vfUAnD2xvxIEEQEaThLuAZYCj5jZD81saM2DZjbUzG4DHgIWA/e2TJgi0pJWbCvh/bVFQLCMsogINNDd4O7lZnYe8AzBgkq3mNlugkGK3cOHEcxsOM/dy1s4XhFpAf8OWxEGFnTm6OG9UhyNiLQVDe7d4O4rgcnAl4DXgQjBYMYI8BrwP8AUd1/dcmGKSEuJRp1p720A4JIpAzXNUUSqNarjMdwC+g/hQ0Q6kFkrd7CxONjl/ZIpg1IcjYi0JU3eBVJEOobH3w26Gg4b2oPhhVrqREQ+oiRBJI2VlFfx3ILNAFyqVgQRqUVJgkgae27+JvZVRsjJyuDcg/s3fIKIpBUlCSId1EuLtrB0855668TWRjhjfF/yO2e3Rlgi0o4oSRDpgJ5fsIlP/30OV/xlFrvLKuPWWb29lLdW7gTg0sPU1SAiB1KSINIB/eXVlQAU76vkwbfX1ltnYEFnThhV2GqxiUj7oSRBpIN5d82u6tUTAe55fRXlVZH96mzZXVY9q+EzJ44gK1O/CkTkQPrNINLB3PN60EIwojCPrAxj655ynnh/Q606q6iIROmVl8MVhw9ORZgi0g4oSRDpQNbt3Mvz4ZTGL502mgsOGQAEXQvRqANQtLeCf7y1BoAbjh9O55zM1AQrIm2ekgSRDuTeN1YRdeif34lzJvXnppNGArByWykvLtoCwP1vrmFvRYRuuVlcffTQ+i4nImlOSYJIB1G8r5JHZq8D4Lpjh5GdmcFB/bpxytg+ANw5cwWl5VX87c1VAFx9zFBNexSReilJEOkgHp69ltKKCF1yMrnyyCHV5Z8NWxPmriviq49+QNHeSnKzMrjhuOGpClVE2gklCSIdQGUkyn1vrAbgisMH79dCcMSwHkwZUgBQvQTzFYcPpne33NYOU0TaGSUJIu1QVSRK8d5KNhTtY/mWPdz/5mo2FpeRYRzQQmBm1WMTADIzjM+cOKK1QxaRdqhRW0WLSNtQGYly92ur+NMrH1JSXnXA8TMn9GNIry4HlJ8+ri8je+exYlspFx4ygME9D6wjIlKbkgSRdmLe+iK+8fh8Fm/aHfd4QZdsvnjK6LjHMjKMO64+jCfnbuAzJ4yMW0dEpDZz91TH0GaYWVF+fn5+UVFRqkMRqba3oopfvbiMv4XTG83g2mOGcdlhg+iam0VebhZ5uZl0zs7EzFIdroi0IwUFBRQXFxe7e0G842pJEGnDKqqiXH7nLBZuDFoPDurbjZ9cOokpQ3qkODIRSQdKEkTasL++tpKFG3eTYfC/p43hppNGkpOl8cYi0jqUJIi0Uet27uUP/10OwHXHDueLp8YfbyAi0lL0J4lIG+Tu3PrUQsoqo/Tr3omvnDEm1SGJSBpSkiDSBr24aAsvL9kKwPfOH0/XXDX6iUjrU5Ig0saUlldx61MLAThpTG/OntgvxRGJSLpSkiDSxvzu5eVsKi4jNyuDH144QdMaRSRl1IYpkkKl5VXM31DM5uIyNhbvY1NRGf96Zy0Anz95FEN75aU4QhFJZ0oSRFJky+4yLv7TG2wsLjvg2IjCPG46SfsriEhqKUkQSQF351v/nl+dIBR2zaV/fif65XdiYEFnrj56KLlZmSmOUkTSnZIEkRR4/L0N/DecvfCHj0/m/EMGpDgiEZEDaeCiSCvbVLyPHzwdzF44Z1I/zju4f4ojEhGJT0mCSCtyd775+Hz2lFXRKy+H2y6cqNkLItJmKUkQaUWPzFnHzGXbAPjRRRPp1TU3xRGJiNQtpUmCmXU1s9+b2SYz22dmc8zsgkacd7yZ3Wtmc82s0sy037W0eau3l3LbfxYDcP4hAzh7kroZRKRtS/XAxWnAFODrwCrgOmCamZ3v7s/Wc96pwFTgPaASOLxlwxRpGndnzppd3P/map5fsJmqqFPYNZcfXjAh1aGJiDTI3FPzR7iZnQM8A1zi7tPCMgNeA3q5+7h6zs1w92j49W+BL7l7szt2zawoPz8/v6ioqLmXkjQXiTpPvL+Be15fxaJNu6vLe+Xl8IePT+bYUYUpjE5EJFBQUEBxcXGxuxfEO57KloSLgWLgyViBu7uZ3Q/cZWbj3X1RvBNjCYJIW/Ta8m38+JnFLNm8p7rskEH5XHvsMM6Z1J9O2Vr/QETah1QmCROBRXE+8OfVPN66IYk03fIte7j92cW8snRbddn5hwzghuOGMXlIjxRGJiLSNKlMEnoBy+KU76xxPKnMrKiBKvnJfk/p+ErLq/jVi8u4f9ZqItGg++6o4T35zrnjmTRIP1Ii0n6leuBifQMiNGNB2rxXlmzlO08sYEPRPgCG9erCt84Zxxnj+2r9AxFp91KZJOwgfmtBz/B5Z5xjzVLXwIyYsKVBf/pJg7btKeeH/1nE0x9sBCA3K4P/OXU0nz5hBDlZWn5ERDqGVCYJC4FLa85UCE0KnxekICaRBr22fBtffPB9ivZWAnDMiF7cfskkhhdqW2cR6VhSmSRMA24EzqfGDAfgGmBpXTMbRFLpgVmrufXpRUSiTn7nbG45dxyXHzZIXQsi0iGlMkl4FngFuMfMehEspnQtcDxwYaySmc0ATqq5DoKZ9QZOCl+OCssuC1+vdvc5LR69pJWqSJQf/mcRf5+1BoAJA7rz12sOZ0BB5xRHJiLSclKWJIRrIlwE3B4+CgimPF7i7k83cPoE4NFaZbHX9xOs3CiSFNtLyvnfh+fy2vLtAJw5oS+/+dihdMlJ9bhfEZGWlbIVF9sirbiYftbv2sv89cVURKJURpyqSJR9lRHW7NjL8q17WL6lhK17yqvr3zx1JF894yAyMtS9ICLtX1tecVEkZSqqotwxYwV/fGU5lZGGE+XO2Zn86KKJXHrYoFaITkSkbVCSIGnn/bW7+Obj81m6JVg2uXN2Jl07ZZGdYWRnZZCdmcHAgs6M6duV0X26MapvVw7q2428XP13EZH0ot96kjaK91Xy+5eXc+8bq3CHDINPnTCC/z1tDJ1ztJ+CiEhtShKkw9tQtI97X1/FQ++spbQiAsDYft34+WUHc/CggtQGJyLShilJkA5r6eY93DHjQ56et6l6T4W8nExuPnkUnzlxBNmZWhlRRKQ+ShKkQ5q1YgfX3vsOFZFgMc8+3XK5/rjhfOKoIeR3zk5xdCIi7YOSBOlwlmzezWcemENFJMqgHp35n1NHc+GhA8jN0rgDEZFEKEmQDmVj0T6uu3c2e8qq6NMtl4dvOoaBWhVRRKRJlCRIu7OpeB/3vxksj3zWxH4cMigfM6N4byXX/e0dNu8uo2tuFvddf6QSBBGRZlCSIO1GWWWEu15dyR0zVrCvMpilcOfMFQws6Mw5k/rxwbpilm0pITvT+MsnD2P8gO4pjlhEpH1TkiBtnrvz3ILN/PiZxWwo2gdAYddcenTJZvnWEjYU7eOvr62qrv/Lyw/huFGFqQpXRKTDUJIgbVppeRX/+/BcXly0BYDsTOOG44fzhZNH0a1TNsu37OGZ+Zt4dv4mPtxawi3njufCQwemOGoRkY5BGzzVoA2e2pZNxfu48b45LNq0G4BTx/bhO+eNZ3hhXtz6FVVRcrK09oGISGNpgydpl+avL+ZTf5/Nlt3lZGYYP7hgAlcfPbTec5QgiIgkl5IEaXNeWLiZLz80l32VEbrlZvGnq6Zw4pjeqQ5LRCTtKEmQVjPt/fX85NklHDWiF98+Zyz98/efnrinrJJfvLCUB95agzsM6tGZe687gjF9u6UoYhGR9KYxCTVoTELLcHfunLmSnz2/pLqsc3YmXzx1FDceP5zcrExeXLiZ7z25kM27ywCYMqSAu645nMKuuakKW0Skw2toTIKShBqUJCRfJOrc9p9F3PfmagAOGVzAhl372F5SDsCIwjxG9O7K9MXB7IVO2Rl85fQx3HDccLK0AZOISIvSwEVJmbLKCF95ZC7Pzt8MwHkH9+dXVxxCeVWU3760nPtnrWbl9lJWbi8F4ITRhfz4okkM6dUllWGLiEhILQk1qCWhadydx95dz4PvrKWkvIrKiFNRFaWkvIrifZUA3Hj8cG45ZxwZGVZ93pLNu/nRfxazanspXz1zDBcdOhAzq+ttREQkydTdkAAlCYlbtmUP35m2gHdW76yzzi3njOPTJ45oxahERKQx1N0gLWJvRRW/e3k597y2iqpokGieO6k/RwzrQU5WJtmZRk5WBmP6dmNcf+2hICLSHilJkEbbW1HF68u3M33xFl5evJUdpRUADOvVhdsumsgJo7WWgYhIR6IkQeq1dU8Z0xdtZfriLbzx4XbKq6LVx3KyMrh56kg+e9JIOmVnpjBKERFpCUoS5ACrtpfy3IJNvLRoC3PXFVFz2EpmhnHksJ6cOq4P50zqz4CCznVfSERE2jUlCVKtrDLCr15cyt2vr9ovMeiWm8XUsX04bVwfpo7pQ36X7NQFKSIirUZJQgdWvK+Sor0V5GZl0jk7k9zsDHKzMuJOM3x3zS6+9tgHrNwWrFnQr3snTh/flzMm9OWo4b20eZKISBpSktBBbCjax4sLN7NsSwkrtpWwcltp9aqGNWUYDOrRhbH9ujG2f3fG9evG++uKuPu1lUQdsjKML5wyis+fPIpsrXgoIpLWlCS0MWWVEf4+azUrtpZSXhWhIhKloiqKOxzUrxuTh/Tg0MEF9O6Wy76KCC8s3Myj767jzRU7aMySF1GHtTv3snbnXl5ctGW/Y+P7d+eXlx/C+AGasigiIkoSWk006ry1cgf/XbKVAQWdufzwQXTrtH/f/pzVO/n6Y/Oqlymu7eUlW6u/HtSjM8V7K9lTXlVdVtg1h8OG9mBE766M7N2Vkb3z6N0tl/KqKGWVEcoqI5SWR1i5rYQlm/ewZPMelm7eg+N89qSRaj0QEZH9aMXFGlpixcXlW/bw7/c38OT7G9hYXFZd3i03i48fNYTrjh1GQZdsfv78Uu6ftRoPm/zPmNCXvJwscrIyyM3KpCoaZf6GYhZu2E1F5KNpiNmZxmnj+nLZYYM4cUzvhD/ko1En6q7NlERE0pCWZU5AMpOE4r2VXH3P28zfULxf+YQB3Vm5rZR9lREgSAh65OWwbU8wfmDiwO784rJD6lylsLwqwuJNe5i7dhfZWRmcPbE/PfNymh2viIikHy3LnCLdO2dRES48NLhnZy4+dCAXTR7IiN5dKdpbwT/fXst9b65m255ytu0pJyczgy+fPprPnDCi3r/qc7MyOXRwAYcOLmil70RERNKVWhJqSHZ3w6vLttE5J5PDh/aIO+2wvCrCk3M3Mm99EdcdO4xRfbol5X1FREQaQ90NCdAukCIikk4aShI0Wk1ERETiUpIgIiIicSlJEBERkbiUJIiIiEhcShJEREQkLiUJIiIiEpeSBBEREYlLSYKIiIjEpSRBRERE4lKSICIiInEpSRAREZG4lCSIiIhIXEoSREREJC4lCSIiIhKXkgQRERGJS0mCiIiIxGXunuoY2gwziwKWn5+f6lBERERaXHFxMYC7e9xGAyUJNZhZFUHryu4kXTKWbRQn6XpSN93r1qX73Xp0r1tPOt7r7kDU3bPiHVSS0ILMrAjA3QtSG0nHp3vdunS/W4/udevRvT6QxiSIiIhIXEoSREREJC4lCSIiIhKXkgQRERGJS0mCiIiIxKUkQUREROJSkiAiIiJxaZ0EERERiUstCSIiIhKXkgQRERGJS0mCiIiIxKUkQUREROJSktACzKyrmf3ezDaZ2T4zm2NmF6Q6rvbMzE41s/vMbKmZ7TWz9Wb2bzObFKfu6Wb2Vnjvt5rZX8ysIAVhdxhmdquZuZnNjXNM97uZzGyqmb1oZkXhz/ciM/tMrTq6z0lgZpPN7Akz22hmpeG9/qaZ5daqp/uNkoSWMg24CvgOcC6wCJhmZuekNKr27bPAEOA3wNnAV8LXs83s6FglM5sKPAusA84HvgpcADxjZvp5bwIzmwB8A9gS59hUdL+bxcyuBaYDK4ArCe7jn4CcGnWmovvcbGY2FngTGAZ8meBe/hv4MfDXGvWmovsNaApk0oWJwDPAJe4+LSwz4DWgl7uPS2V87ZWZ9XH3rbXKCoBVwH/d/dKw7B0gGzjM3aNh2enAi8CV7v5wqwbezoW/EN8EZgOTgAJ3P7TGcd3vZjCzwcBS4FZ3/3k99XSfk8DMbgW+D4xy9xU1yh8gSNC6uHul7vdH0iojaiUXA8XAk7ECDzKx+4GxZjY+VYG1Z7UThLCsCFgODAIws4HAEcADsf/YYb2XgA3Apa0SbMfyvwT395baB3S/k+LG8PkPdVXQfU6qyvC5uFZ5cXgsovu9PyUJyTcRWFTzhys0r8ZxSQIz601wPxeERbF7uyBO9fno3ifEzEYAPwS+4O6741TR/W6+E4HFwCXheJtION7mp2YW627QfU6eB4CdwB1mNtzMupvZhcC1wK/C39u63zUoSUi+XgQ/hLXtrHFcminswrmL4Gf4l2Fx7N7Wdf917xspvL9/BV5w9yfqqKb73XwDgNEELQm/B04F7gX+D/hbWEf3OUncfS1wNDAeWEnQgvAE8Ht3/25YTfe7hqxUB9BB1TfQQ4NAkuMXwEXA9e6+uNaxuu6x7n3jfRo4nOCXaUN0v5suA+gGfNzdHwrLZphZZ+CrZvb9GnV1n5vJzIYCTwObCbqGi4CTgG+ZWbRGogC634CShJawg/iZZs/wOV52Kgkwsx8T/KX1JXe/r8ahHeFzXfdf974RzKwQ+DnwE6C0xrSvLCAzfF2G7ncy7CBoSXihVvlzBCPqp6D7nEw/JUjKJrv7vrBsRtBwxvfM7B50v/ej7obkWwiMizNNJjafP14/lzSSmf0Q+DbwdXf/fa3DC8PneH2Gk9C9b6xBQD5BkrCrxuM4gnu7C7gV3e9kmF9HuYXPUXSfk2kywZixfbXK5xB8Ho5F93s/ShKSbxpQQDC3tqZrgKXuvqjVI+ogwqbX7wLfdfdf1D7u7usJ/rNfVTNJM7NTgYEE86GlYR8CJ8d5fEAwl/9k4C7d76SI3aPaa6icQ9CsPVv3Oak2AhPNrEut8mPC5w263/vTOglJFg74ehk4GPg6wTz+awmShAvd/ekUhtdumdn/EQxQ/A/Bwic1lbv7+2G9UwjmMj9OMLBxAPAzYC1wnLtHWi3oDsbMZnDgOgm6381kZs8CxxLM318InELwu+Mud785rKP7nARmdhHBH3KvA78lGLg4leB+z3T308N6ut8x7q5Hkh9Ad+CPBINjyoD3gItSHVd7fgAzCP6yivdYXavuWcDb4b3fRjBKv0eqv4f2/gj/DebGKdf9bt59zSNIgDcAFQQtOd8EMnSfW+R+n0awwuUWoJQgMfsukKf7feBDLQkiIiISl8YkiIiISFxKEkRERCQuJQkiIiISl5IEERERiUtJgoiIiMSlJEFERETiUpIg0sGZ2TAzczO7NcVxFJrZ381sYxjPjFTG05LMbGr4PV6X6lhEmkNJgkgLM7MeZlYWfmhcnep4UuhXwMeAO4FPcuDKmdVqJDY1H/vMbKGZ/SDOsrqNFn6A31pj46qmXufQ8DrDmnMdkbZMu0CKtLyrgByCJbpvBP6R2nBS5nTgBXf/YQLnvAT8Pfy6N3Ap8D2CtfbPaGIcUwmWQL6PYKvgpjo0vM4MYHWtY68CnYHKZlxfJOWUJIi0vBuBV4Angd+a2Uh3X5HimFKhH4lvs7vM3auTKjP7PfAWcLqZHebu7yYzwGRx9yjBcr4i7Zq6G0RakJlNIfiL837gnwR/WV5fR103s/vM7Bgzm2lmpWa23czuNrOuceqfZGazwmb4zWb2OzObkMj4AzP7mJm9bmZ7zGyvmb1tZpcl8P3lmdlPzGyFmZWHcfzdzIbWqHOrmTnB9sfX1ug+uK6x7xPjwcY6M8KXo2vFMszMHjCzLWEsK8zs9ppdE2Z2H8Ff/wCrasRya3h8gJn9yszmmtmusJtokZl9w8wya35PwN/Cl6/UuM594fG4YxIac79qn29m14fdLOVmtsbMvp7ofRNpKrUkiLSsGwk2kXnc3UvN7BmCD8rvhX9t1nYowU6XfwP+RdA0fiMQBT4Tq2RmxxPsUrcL+ClBs/kVwHGNDczMfgTcAjxPsMFNFLgYeNTMvuDuf2rg/CzghfA9HyMYczAa+Bxwhpkd7sG2u/8m2LToAeA1gl31AN5sbKy1jAyfq1slwg/Zd4B84A5gGcG9+xZwnJmd6u5VwF8INmC7GPhfYHt4iXnh88HAJQQ7Ba4AsoGzCe7xCOCmsN6/gf4E/ya3A4vD8jpbiBK4XzV9FugL3EPwb3w18DMzW+/u/6r7FokkSap3mNJDj476ADoRfJDdV6PsQoKdK8+OU98JPqiPrlX+DEELRNcaZe8QNGePqFGWDbwRXufWGuXD4pRNCctujxPHE8BuoFsD39+nw2v8vFb5uWH5A3G+v/vqu2acmO8GCsPHWILxCA6sA3Jr1P9nWH5Orev8Iiy/sUbZrWHZsDjv2xmCje9qlT8ARID+NcquC68zNU79qeGx65pyv2qcv5Fge+5YeReCHQlnpfrnW4/0eKi7QaTlXAL0IOhqiHkG2ArcUMc5s9z9rVpl/yVo9RsGYGZ9gSOAJ919ZaySu1cCv2tkbFcRfAjdH05NrH4ATwHdCAYH1udigqTmJzUL3f0ZYC5woZk193fMjQQfitsI/lr/AcH4jlPdvRwgfI8LgPfd/dla5/+Ej1pIGuTu+9zdw+vmmFnP8J68QNA9e3gzvpem3K+/uXtRjbp7CcZkjEakFai7QaTlxD7g1pvZqBrlLwGXm1mhu2+vdc5KDrQjfO4VPg8Pn5fGqRuvLJ5xBGMEltRTp28D1xgObHT3XXGOLSToOikkSIqa6kngj0AmwQfj14HBQHmNOr2BruF77sfdd5rZJoKuggaFXQLfBK4BRhHco5p6JBh/TU25X3X9PPSKUy6SdEoSRFqAmQ0HTib4kFlWR7Wrgd/WKovUd9laz81hhN0e9bznAR+6dcTTkta7+/Tw6xfM7DmC8QMPmdmx4V/9yYzj18AXgYcJ1nHYStDVMwX4Gc0b7N2UOOv7eRBpcUoSRFrG9QQfCp8m/lz8HxG0NPy2CdeO/XV5UJxj8criWQ6cBax198UNVa7DCuAsMyuo2SQeGk8wrqF2S0mzuPsKM/slwdiEjxMM7twK7AEm1K5vZj0IBhjOrXmZet7ik8Cr7n5lreuMilO3vuvE0+r3S6S5NCZBJMnCfuXrgPnufre7P1b7ATwITDSzIxK9vrtvAeYQ9GFXN6ObWTbwpUZe5oHw+faaU/tqXKtPI67xBMHvkG/WOvdsYDLwlMefwdFcvwGKge+bWWb4Hk8Dk83srFp1vxnGOK1GWUn43DPOtSPU+ovfzPIIZkLUVt914nmC1NwvkSZTS4JI8p1B0G9+Tz11HicYZX8jMLsJ7/FVgrENb5rZnwk+NK8gWNkRGvgr191nm9n3CQYCzjWzRwlG0vcHDgPOqXGtutwHXAt8w4KliV8l6Me/GdgCfDvh76oR3L3IzP5IMH3zEwQJz7cJVnR8IrwfHwInEiwD/Sr7Dx6NDQz9mZn9k2CWyAJ3X0AwNfEmM3sYmE4wLuMGPhoXUtNsgoGIt4QtFqXAKnd/u47Q7yMF90ukOdSSIJJ8N4bP/66rQviBtAy40sw6J/oG7j6ToLtgNcGHy7cJWhe+EFbZ14hr/BA4jyA5+DLwJ4J5/7k0okUinE1xJsEaAkcSdJ1cDTwKHOXu6xr/HSXsNwR/yX8vbE1YAxwVvndsrMeRBDMJzvZgjYRY3G8A3yBYb+GvBK06sQWkvgL8Ejga+APBh/pd1PrrP7zOWoIEojPB2gwPEqx5EFeK75dIk1g420dEOgAzu5Tgr+GPu/tDqY5HRNo3tSSItEMW6FSrLJvgL+EqPlq6WESkyTQmQaR9ygXWhH3qSwnmzX+MYFnhn7n75lQGJyIdg5IEkfapkmD1xgsJBhsaQbLweXf/cyoDE5GOQ2MSREREJC6NSRAREZG4lCSIiIhIXEoSREREJC4lCSIiIhKXkgQRERGJ6/8Bh/oqIFKHRuwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot angle vs generalization error\n", + "plt.figure(figsize=(8,8))\n", + "plt.plot(angle_sweep, un_mean_error[:, 1])\n", + "plt.xlabel(\"Angle of Rotation\")\n", + "plt.ylabel(\"Generalization Error (XOR)\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "73e9b106", + "metadata": {}, + "source": [ + "### 500 task samples" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "94037dc5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAH4CAYAAADn6v8xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABp9UlEQVR4nO3dd5iTZdbH8e+h90FRsAtYaYq9i4rsig2xd1FXd111ra9t1951bbvWtWHvIGJdREXsAosKKCjFAigIDiAg9bx/3E9MJmQyyUwySWZ+n+vKlafcz5OTMEzO3NXcHREREZFca1DoAERERKRuUpIhIiIieaEkQ0RERPJCSYaIiIjkhZIMERERyQslGSIiIpIXRZlkmFkrM/uXmc00s8VmNsrMDszgul3N7CEzG2tmy8ys0vG5ZraWmd1lZlOi15hqZvea2Tq5fTciIiL1U6NCB1CJwcDWwAXAVGAAMNjMDnD3V9Nc1xvYAxgDLAO2TVXIzJoAI4DVgcuAL4EuwFVAbzPr7u5LcvJORERE6ikrtsm4zGxf4BXgYHcfHB0zYCTQzt27pLm2gbuvjLZvB85yd0tRbg/gbeBP7v5gwvGTgQeAPd39nRy9JRERkXqpGJtL+gPzgCGxAx4yoUeAzc2sa2UXxhKMDCyLnuclHY/tqxZDRESkhoqxuaQ7MCFFwvB54vkavsZHwCfAFWY2DfgK2By4AngX+DjVRWZWXsV92wDfu/uGNYxPRESk5BVjktEOmJTi+NyE8zXi7ivMrDfwGPBpwqnXgcOyqBFJZmVlZRsAxdUGJSIikl+rdE2A4kwyIP2XdI2/wM2sMfAkoVbkJOAbQsfPy4EhZraPuy9Lvs7d21Zx33KgrKbxiYiI1AXFmGTMIXVtxerR89wU57J1EnAA0NPdP4uOjTSzicA7wFHAozl4HRERkXqrGDt+jge6mFlybD2i53E5eI2tgGUJCUbMqOi50s6lIiIikpliTDIGA20JNQ2JjgcmuntNO30CzAAam9lWScd3ip6n5+A1RERE6rVibC55lTCHxYNm1o4wGdcJwK5Av1ghM3sH6JU4D4aZrQn0inY3jo4dGu1Pc/dYTcVA4FzCBF/XAJMJtReXAj8R+muIiIhIDRRdkuHubmYHAddFj7aEIasHu/vQKi7vBjyXdCy2/whh5lDc/Tsz257Q0fMfQAdgJmESsCvdfU6N34iIiEg9V3QzfpYyMysvKysrKy8vL3QoIiIitSnlENZi7JMhIiIidYCSDBEREckLJRkiIiKSF0oyREREJC+UZIiIiEheKMkQERGRvFCSISIiInmhJENERETyQkmGiIiI5IWSDBEREckLJRkiIiKSF0oyREREJC+UZIiIiEheKMkQERGRvFCSISIiInmhJENERETyQkmGiIiI5IWSDBEREckLJRkiIiKSF0oyREREJC+UZIiIiEheKMkQERGRvFCSISIiInmhJENERETyQkmGiIiI5EXJJxlm1srM/mVmM81ssZmNMrMDM7huVzN7yMzGmtkyM/PaiFdERKS+KPkkAxgMHAP8A9gPmAAMNrN9q7iuN7AH8A0wNo/xiYiI1EvmXrp/wEeJxCvAwe4+ODpmwEignbt3SXNtA3dfGW3fDpzl7lbDeMrLysrKysvLa3IbERGRUpPy+7PUazL6A/OAIbEDHrKmR4DNzaxrZRfGEgwRERHJj1JPMroDE1IkDJ8nnBcREZECaFToAGqoHTApxfG5CedzxszKqyhSlsvXExERKWWlXpMBkK5TSel2OBERESlxpV6TMYfUtRWrR89zU5yrNndvm+58VNOh2gwRERFKvyZjPNDFzJLfR4/oeVwtxyMiIiKRUk8yBgNtgQOSjh8PTHT3CbUekYiIiACl31zyKvA28KCZtQOmAicAuwL9YoXM7B2gV+I8GGa2JtAr2t04OnZotD/N3UflPXoREZE6rKSTDHd3MzsIuC56tCXM+Hmwuw+t4vJuwHNJx2L7jwADchaoiIhIPVTSM34WG834KSIi9VSdnPFTREREipSSDBEREckLJRkiIiKSF0oyREREJC+UZIiIiEheKMkQERGRvFCSISIiInmhJENERETyQkmGiIiI5IWSDBEREckLJRkiIiKSF0oyREREJC+UZIiIiEheKMkQERGRvFCSISIiInmhJENERETyolG2F5jZakB7wIHZ7v5LzqMSERGRkldlkmFmDYB+wGFAL2CtpPM/Au8AzwEvufvK3IcpIiIipcbcPfUJs4bAacDFwNrAQuBTYDIwBzBgdWBjYFugJTATuA64191X5Dv4YmNm5WVlZWXl5eWFDkVERKQ2WaqD6WoyxgPrA08DjwHvVlZLEdV27AkcC9wEnAF0qUm0IiIiUtrSdfx8Dejs7ie7+zvpmkHcfaW7D3f3E4GNgNdzHaiIiIiUlkqbSyR7ai4REZF6KmVzSU6HsJpZ61zeT0REREpXTpIMM2tlZv8ApubifiIiIlL6MhnC2gg4ANgEmAu86O4/R+eaAucA5xNGmnyXv1BFRESklKRNMsxsdcIcGN0I7S0O/NPM9gaWAS8AnYEpwIXAI/kMVkREREpHVc0llwLdgSGEYal3AM2AewgjSJoBJwGbufuD7r48j7GmFDXV/MvMZprZYjMbZWYHZnjtRmb2opnNM7MFZvaqmXXNd8wiIiL1QVXNJfsDQ9394NgBM5sM/Jswj8buRTCt+GBga+ACQp+QAcBgMzvA3V+t7CIzaw+MBGYBJwDLgX8AI8xsK3f/Id+BZ80dhg2DmTPh0EOhZctCRyQiIlKpqmoy1gf+m3QsNgfGrYVOMMxsX2Bv4E9RTcpbhIThQ+CWKi4/H1gN2NfdX3T3l4H9gKbA3/MYdvXddhv88Y8wYABstRV8/HGhIxIREalUVUlGEyA5kSiPnouhk2d/YB6hOQcADxN/PAJsXkXTR39gmLvPSLh2DjAUOLjSqwpl8GA4//z4/tdfwy67wOWXw7JlhYtLRESkElmvwpqgGBZC6w5MSDEb6eeJ55MvMrPmhJlJn0txz8+Bo82svbvPSrquvIp4yjIJOlsvX3YZ+9x4I42SJ05bsQKuuoqfH32USb164WZYVGbD1VZj3aVLWTF5Mgu++IIWv/zCb61bM2+ttZi/1lqstv32rHPAAczbdFMGv/jiKq+50047sdlmm/Hzzz/z8ssvr3J+9913p3Pnzvz444+8/vqqE7z27t2b9ddfn++//57hw4evcn6fffZhrbXWYsqUKbz77rurnN9///1ZY401mDhxIh9++OEq5/v3709ZWRnjxo1j1KhRq5w//PDDadGiBWPHjmXs2LGrnD/mmGNo3Lgxn376KePHj1/l/IABAwD44IMPmDRpUoVzjRs35phjjgFgxIgRTJ1aceR2ixYtOPzwwwF48803+eGHii1vbdq04eCDQx77+uuv8+OPP1Y4365dOw444AAAhg4dypw5cyqcX2uttdhnn30AGDRoEPPnz69wfr311mPvvfcG4Nlnn2XRokUVznfq1IlevXoB8MQTT7AsKUnddNNN2XnnnQEYOHAgybp168Z2223HsmXLeOKJJ1Y537NnT3r27MmiRYt49tlnVzm/7bbb0r17d+bNm8fgwYNXOa+fvQGAfvb0s5e/n73alEmScZ6ZHZmw35gwyuRaM/s5qay7e7+cRVe1dsCkFMfnJpxPZTXCaJm5Kc4lXjsrxfnaNW0ave+4g0ZLlwIwv317RvzlL+zx0ku0jn6I1pg2jTWmTUt5eUOgbbTdZPFi2syaBZ9/Dv/9L1xzDU1uuAE6dMj3uxARkXoo7bTiZpZtbYW7e8OahZQ5M5sETHT3A5KOb0JIPk5z93tTXLcOMB04391vSTp3CvAfoIu7f5VlPLmdVry8PDSJTIgqY1ZfHT78EDbdNNRi3Hor/OMfECUg1dK+PXz7LTRrlpOQRUSkXsp6FVbcPafTjufBHFLXVqwePaeqqYDQz8SreW3tWLYMDjssnmA0aQIvvhgSDICGDeH//g/69oWHH4Z588AsPABatICOHeOPddeFH3+ESZPC41//CvuzZsHjj8Of/lT771FEROq0mvTJKAbjgUPMrEFSv4we0fO4VBe5+2Izm0Los5GsBzA7uT9GrfvoI3jnnfj+Qw/BbrutWq57d7ilqoE0kTXXhB7RR9OkSbwj6S23wEknQYNizylFRKSUZPWtYmaNzayrme0UPdduD5JVDSZ0OTgg6fjxhGaUVTp9Jl3bx8zWih2IZjg9ABiU4zizt9tu8PrrUFYGV10FUWevnDnlFGjTJmx/9RW8WumUIiIiItWSUZJhZl3M7FnC8NUvgPei53lm9mwBZ8l8FXgbeNDMTjKzPc1sILAr8H+xQmb2jpkldz75J2H466tm1s/M9gNeIUzKdV2tRF+V3r1h3LjQ7yLX2rSBU0+N7//znxXP//ornHwy7LEHTJyY+9cXEZE6L23HTwAzOwB4CmgB/ACMJXw5twG2AtYDFgNHuvvQfAZbSXxtCEnBoYRajQnAVe7+YkKZd4Be7m5J125CSDb2JCRcIwmdQVcdV5ZZLLnt+Jlv338PnTvD8mg2+E8+ge22CwlG377w3nvh+M47w/vvFy5OEREpdik7flY1uqQToV/DHODP7v5aijL7APcROlH2cPd6u9x7ySUZAMcdFzp+AhxxBDzwAOy7L4wcWbHce++FkS4i+bZyJSxaFPoNNW4c78wsIsWsWknG3cAxwJbuPi1NuY7AZ8Dj7n56jcIsYSWZZIwdG6YohzBiZdttU09XfuCBMGTIqsdFcmnixNBMOH16/FjjxmGI9XrrQadOofatUyfYay/o2bNgoYpIBdVKMr4GXnX3s6q8u9kdwH7uvnG1QyxxJZlkAPTpA2++uerxM8+Ef/87vj9+PHTVIrWSR/36wUsvZVbWLPx8nl5v/64RKSYpk4yqOn6uR6ihyMRnwDrZRCRFInFNlJibbw5zafTrV/GYSL588UXFBKOq6Y/d4ayz4K238huXiFRbVUnGb0CrDO/VElhSs3CkIP7wB9hyy/j+TTfFE48LLogff+IJSFoLQSRnbrghvn3wwWEm25UrYckSmDMHxoyB558Pye4WW4RyK1aESeum1tGuYF99BaedBkNrvU+9SE5U1VzyPrDA3fep8kZmrwFl7r5zDuMrKSXbXAIweXKYpnzPPeHQQyue2223+EiT885bdbirSE1Nnhxms10Zzan36aehf1Blpk8P52MLfPXoAR98AK1S/E20aFH4kn7qqVBmzTVhs83ij912g402yv17qqkVK0Lz5KRJoU/K9OlhaQGR4lStPhl/A24DTnX3B9OUOxF4ADjH3f9Vw0BLVkknGekMHRo6fkL4Jf7999C2bUFDkhK0fDm8+y40bw477VTx3J//DP/5T9ju0ycs4FeVDz8M87jE1u455BB49lmYOzfUbEyeDC+/HKbjX7iw8vs0agT33FN8U+sPGQIHHRTf/+CDVT83keKRehiYu1f6AJoAY4AVwJPAXoS5KCx63is6viIq1yTd/er6AygvKyvzOmfFCveuXd1DK7j7ddcVOiIpJbNmhZ+ZDTaI/wz97W/uy5aF8z/84N6kSfzc229nfu8HH4xfB+7Nm1fcz/TRsKH7sGGr3n/8ePettnJfZx33Y45xf/zx8H5qQ69eFWN8+unaeV2R6kn5vZjJZFztgecJs2imKmzA+8Bh7v5jNmlPXVNnazIABg6EE08M2x06wJdfwmqrFTQkKRK//RY6bD73XOg70bZt/DFrVjieaqXgvn3h6afhyitDUx2Ev9Tffz+7uTH+9reKo6BS2WwzOOqoUNuxeHEYKjtxYujj8VW02HJZWVgzaPPNw/4HH8D++8Mvv1S8lxlss02YiTexY3SyBQtCzV915vkYMya8RqKbb07dSVukOGTfXFKhYJj58xDComJtgPmEiboGuXuGY87qtjqdZCxdGtqtYx0/994bXnstVDVL3TVvHgweHKruFy8O/SY23zx8aTdpAk8+GRKFTH/mmzULSUlMt24wbVq8OWPo0PDFno1ly0KzQmz9nVatwjwaHTuGBQQPOyzMp5Hqy376dNh+e5gxI+xvtFGYJ+b998PkdImxJjMLr7lPUpc19zD8+667wrmhQ7P/f5I4SV7MmWeGEV8ixalazSXt051PUX7/bMrXtQd1tbkk5vnnK1bfnnFGoSOSfFiyxP2FF9wPOcS9adPqNT8kP7bf3v3RR90XLXK/5JLUZbbYwn3lyurFvHy5+6RJ7rNnZ3+PUaMqNrNsvrl7gwbx/fbtw+dx7bXuu+4amlZi59q2Da+b6IILKr6vf/0ru3imT3dv1GjVz6dfv+zuI1K7sm8uMbPZwF/d/bm06YtZGfBv4Bh3b1itHKgOqNM1GTFXXBGqt2PuuQf+8peKZWbPDlXlVc1zIMVn9uzw1/eYMdld17kzHH98WOdm/vxQs1FeHmrA9t47rImT6LHHQkfLxGaUp56CI4+s6TuonkGDQlNKso02gjfeqDj6ZPp02HHHeK1e166hmaV1a7j9djjnnIr3aNMmNM2stRYZ+fvf4bpojcZ27UITFMDWW8Po0Vm9LZFaVK2ajImETp1PA+0qKbMfYeG0lcC96e5X1x/U9ZoM99AJ9LDD4n9dNWzo/uab4a/BSy4JfwXG/ipdvLjQ0Uo2fvzRvVu3Vf+C7tnT/aabwl/z11/vPmCA+447um+yiftJJ7m/+271aiDee899zTXDa2y5ZbwjaKFcf33F97311uEzSeXTT92bNYuXPegg9yefrHi9WXz7uOMyi2HhQvfVV69YCxLbXmON3L1XkdxL/b1Y2QkPX5rNgDuiRGMG0C/hXBnwSHRuGrB3unvVh0e9SDLcwy/CbbZZ9cso+fHSS4WOVDI1c6Z7ly7xf7sGDdwvush9woT8vu7s2e7PPBOeC23lyjDqJdY0MX9++vKPPlr5z/7OO7sPGVLx2IgRVcdw773x8h07ui9d6t64cfzYwoU5easieZDyezGjjp9mtgfwMLAB8ATwCnALYRrx+4Hz3P3XLKpV6qR60VwSM316qAKfObPyMmecUXWvf6ldr74aOmpusEHo8LjdduHra6+9QpU+QIMGodPhUUcVNtZCWbo0dGrNxLnnwm23VTzWtWtYxXj11eHww8PoGgidXP/3v8qbEVeuDNfG/h1uvTU0vXTqFDrHQhgJs9lmWb8lkVpQ49ElrYB7gdhvnu+BP7l7ipW16qd6lWQAjBoVvpwWLAh9MA48MPTov+qqcH6zzeLDA6XwZswIfSeWJM3+37Rp/FjDhmHEyOGH1358pWj58tCHZfjwsL/uumGSsPXXD/s//BBG48RGz9xyS0hMUnnppfiQ2Natw7Vt2kCvXmESM4Bhw0IfF5HiU60F0hLtBOwe3cgJa5W0q3lcUrK23Tb81fXJJ2E+hEcegYsuCl9aEM59911hY5S4Rx5ZNcGA+LFGjeCZZ5RgZCP2mfXvH5KBYcPiCQaE5ekvvzy+f/nlFZexj1mxInT4jDnllJBgQKh1itH/JykxVSYZZtbSzO4FXickGPsCuwBzgCfN7DkzWyO/YUrRWnvtUOUeqwJu3hx23z1+ftiwwsQlFbnDQw/F9w88EHbdNfx7QZi/4rnnUo+wkPTatQujU955B7p0WfX8WWfFj//6a1iaPrkG+amnYNy4sN2yZcWFCZVkSAlLm2SY2Z7AF8CpwONAd3d/3d0/BrYkdArtD4w3M/12kqBPn/i2koziMHIkfPNN2G7TJnypjRwZhpuOHx/W+khcJ0Nyp0kTuPvu+P6QIaFJKmbpUrjssvj+OeeEWXVjEmtGvv8+f3GK5EFVNRlvEkaY9HP3E9x9XuyEuy9x93OBPYEFwLNm9lT+QpWS8Yc/xLfffDO+sqYUzoMJ6xsefTS0aBG2GzUKnQ0zncNBqmePPcKS7TFnnhmfZfSBB+JL1a+++qpTh6smQ0pYVUnG00A3dx9aWQF3HwlsQegUelgOY5NS1aMHtG8ftufMCT3qpXDmzYuPcAA4+eTCxVKf3XRT6BgNYT2UP/85dAiNdZQGuPjisIZKIiUZUsLSJhnufoy7/5KuTFRukbufDvSpqqzUAw0aVOwBryaTwnr66bDuCMAWW6y68JbUjlat4OGH4/svvxxGpvz0U9hfd93QXyNZYnPJd9+t2p9DpIhlM7qkSu7+di7vJyUssclESUZhJTaVnHxy9VYFldzYY4/QVBLz3nvx7csvj3fETVRWFh9p8ttv8WnGRUpApUmGmW1a3ZuamWaLqe8SazLeew8WLSpcLPXZF1/Ap5+G7SZN4JhjChuPwPXXV1wLBcLqtieeWPk1ajKREpWuJmO8mT1kZt0zvZmZbWVmjxGWgJf6bN11wwyHEHrPxyYTktqVWIvRv38YbimF1bIlDBxYsUbp6qvTLwevJENKVLok4wBgB+AzM/ufmV1jZv3MrLuZrWNm65pZDzM72MxuMrMvgFFAT2D/Wohdip2GshbWkiVhtdMYdfgsHrvuGqYNb9kSjjsODj00fXkNY5USVWmS4e6vE0aNHAv8ClwCDAI+I0wp/h0wFngeOB+YDRwJbOnub9QkKDPrYGaPmNnPZrbQzEaa2c4ZXnuAmT1uZl+a2Qozm1ZJudZmdrOZDTezX8zMzWxATeKWJKmSjHnzwsyGa68Nhx0Gy5YVJrZSNn9++ILackvo2zdM8JTKkCEwd27Y3nBD6N279mKUqp19dvi3e/TR0Fk6HdVkSIlKUz8H7r4CeAp4ysw6AL2ArsCahKnFZxOaRka4+8+5CMjMmgHDgVbAmYSZRc8GhpvZzu5e1XjIg4BtgdGEJKppJeXaAX8C/ge8Chxd09glSa9eYSbQZctC34BrroE77oCfox+V558PicippxY2zlLx3Xfh87v//rBeDMDnn4djiVNSx9x3X3z7xBOr/iKT4qUkQ0pUxguk1RYz+ytwF7CNu4+JjjUFvgQmunvfKq5v4O4ro+0XgZ7u3jFFOfPozZtZT0KycaK7D6xB7PVrgbRM7LlnmG65MuutB19/Haa1lspdfDHcfHNY4yLZeuuFyZwS2/S/+io+lXWDBmEVz8QqdyktI0aEkSkAO+0EH3xQ0HBEUqjxAmm1pT/wRSzBgDC7KKFGpY+ZtU53cSzBqIoXW3ZVVyUOZY3ZcENYI1ru5ocf4D//qd2YSs2338INN1RMMDbbLMwOCeEzHJo0X96998a3DzxQCUapU02GlKhiTDK6k3p0yudAQyDFCkS1w8zK0z2AsqruUe8cfHD8L+y2beGf/wx/ZV96abzMdddpiGs6o0bFtzt1CpM4TZgQZoyMSVwbY+HCMHohJnE6aylN664bH40yY4b6MknJKMYkox0wN8XxuQnnpVRstlloLrnvPpg8Gc47LzSNnHpqqOaHMOPhXXcVNMyiNmZMfPvQQ2G//UITyF/+Eu9n8eabMHFi2H766dDBFmDjjSvOWSKlqUmT+Poy7qmXixcpQgVLMixolPhIOJ2uKaNgzRzu3jbdA5hX1T3qpV12CUlFrHofQqKRWJtx441h1ISsKnHtl623jm9vsAEccEB8/+67wxdQYq1GYiIipS2xyUTDWKVEFPK3Ty9gWeLDzDoSRpOkqq2IfUOlquWQUnTiidC5c9ieMyeMkpBVJSYZW21V8dxf/xrfHjgQ3n47XvPRrBkMGJDv6KS2qF+GlKBCJhmjge2SHjOA8YR+Gcl6ACuAr2orQMmzxo3hssvi+7fcElanlLiZM+HHH8N2y5awySYVz++9d/zY/Plw1FHxc0ccoRk+6xIlGVKCMk4yzOyYaChpTrj7AncflfRYCgwGekTDSmOv3QQ4CnjT3VWnXpccc0zotwGhH0FiE4pUrMXo2XPVpo8GDSrWZsyaFd9OPC6lT7N+SgnKpibjMWCmmf3bzLaqsnT1PUiYE2OQmR1hZn0IM42uA1SYccjMpiXP6GlmG5rZoWZ2aHRNi9i+mXVNKts3KhfrGbdtwrVSGxo1giuvjO/fdVfFPgX1XWKnz+SmkpgBA1ZdvXObbWC77fIWlhSAajKkBGWTZBwJfAKcBowys9Fm9hcza5PLgNz9N2Av4H3gHmAI0Bbo4+6jM7jFnsBz0WM7wuyksf3Dk8reEx2/Odo/PaGs1JbDDoN+/eL7Z54ZhmlK5Z0+E7Vtu+rqqqedpiXd6xolGVKCsp7x08zWA04CBgAdgcWE9UsedPd6vdSmZvysgYULw+ygsWXJW7QIK7dus01h4yq0Tp3CbJ0QEo6ePVOXGzs2XtNRVhaGOLZsWQsBSq2ZNQs6dAjbZWWg3zNSXFL+VVOjacXNbG/gZMJ6IU2AbwjNHQPdfVaaS+skJRk19NNPsOOO8S/VtdaCjz4KM4TWR7/8Eh/226RJWK+kSZPKy992Gzz7LFx+OeyzT+3EKLXHPTSLLVkS9ufNgzY5rUgWqYncJxkAZrYd8H9AYj+GpYRk40J3r2SJyLpHSUYOfPkl7Lxz/K+01VYLy2LvsANsv314lNWTiVXffhv22itsb701jM6ktVDqtE03DWv9AIwbB926FTYekbjcrV1iZqub2d/M7DPgI2B/4HFgd2AH4FngL8D91YtV6q0uXeDFF8PwVgh/zQ8dCv/4R1gHpX17eOyxgoZYazLp9Cn1i/plSInJKskwsz5m9jQwHbidkLmcDazj7se7+3vu/qm7Hw9cB+yb43ilPujVK1T7t2+/6rmlS8PU5PVhrZNMOn1K/aJhrFJispknYxrwOqHW4mlgF3ffwt3/7e7lKS4ZB6RdMVWkUgcdFBaCGj8eHn44jJaITSw1ezbcXw8qyVSTIclUkyElJpuajHnA3wi1Fie6+4dVlB8KdKp2ZCING0LXrmEeiLvvhquuip+7+eZ4B7i6aOHC+IJnDRrAFlsUNh4pDolJxjffFC4OkQxlnGS4+5buflemM266+yJ3/7b6oYkkOemk+EqU06fDI48UNp58+vxzWLkybG+2mYajSpA4hPm998KIE5Eilk1zyVZmdnqa86cnTgUuknPNmsH558f3b7gBli8vXDz5pP4YksqWW0LrqBV6+vT4cG+RIpVNc8nlwH5pzvcFLktzXqTm/vzn+NwRU6fCU08VNp58SbfyqtRfjRrBLrvE99+t1/MfSgnIJsnYDhiR5vwIYPuahSNShVat4Jxz4vvXXRdvVqhL1OlTKrP77vFtJRlS5LJJMtYA5qY5Xx6VEcmvM86Iz3T41VcwaFBh48m1pUvDREsxSjIk0W67xbdHjixcHCIZyCbJmAWkm16uO+mTEJHcaNs2JBox11xTtzrATZgQEg2Ajh3DrKciMdttB02bhu2vv4aZMwsbj0ga2SQZbwJ/MrNVEo1oCfWTozIi+Xf22WERNYDPPoMR6VrySow6fUo6TZuGNX5iVJshRSybJOMaYAXwqZndaWZ/MrOTzexOYBSwHLg6H0GKrGLNNeGEE+L7zzxTuFhy7aOP4ttqKpFU1C9DSkQ282RMBnoDU4C/Av8hrE3yV2AysLe7f52PIEVSOuqo+Pbzz9eN4ayLF4cp1WN23bVwsUjxUpIhJaJaq7BG82FsQli7ZKK7f5bjuEqSVmGtZStXhhkQp08P+2+8ERZRK2WPPQbHHx+2O3cObe4NqrWOodRlCxeGvknLl4MZ/PxzfGi3SGHkbhVWdx/r7s+5+7NKMKRgGjSAww6L79eFJpPENVlOOUUJhqTWsmW8v447vP9+YeMRqUR1l3pvYWbrm9kGyY9cByiS1hFHxLcHDYqPyihFX34Z78TXqFFYs0WkMmoykRKQzbTiDczsIjObDiwApgFTUzxEas8OO8CGG4bt8nIYNqyg4dRIYi3GgQfG12kRSUVJhpSARlmUvQE4HxgPvADMyUtEItkwg8MPD6uyQmgy2S/d7PdF6rff4NFH4/unnlq4WKQ07Lpr+Pl3h9Gj4ddfw4y4IkUk446fZjYDGOvu++Y3pNKljp8FMno0bLtt2G7dGmbNCouplZKnnoKjjw7bG24IU6aoP4ZUbcstw4q9EGrx9t67sPFIfVbjjp+rAUNyE4tIDm29NWy0UdhesABef72w8VTHf/4T31aHT8mUmkykyGXTXPIFsHa+AhGpNrPQAfS668L+M8/AQQeF7R9/DPNOzJ4Ny5aFx9KlYbjfX/8KHTrkLo4JE+DEE0PC88AD8RlJE61cCS+9FLb32CMMQ5w0Cd55Jxxr2DDcQyQTu+0Gd94ZtpVkSBHKprlkP+BBYDt3/z6vUZUoNZcU0Oefh6pjCF/ub78N994LTzxR+YiTAw+EITmqnHMPUz1/8knYv+ACuPHGVcudcw7cfnvYbtgwdFxt1Cj+BdGvH7z4Ym5ikrpv5kxYZ52w3bQpzJsXX9dEpHalbC7JJsm4DNgP6AoMJowkWZFUzN293k4triSjgNyhW7cwDDRTDRuG/hu5mMTorbegd+/4fqNGYU2Vrl3jx95/P/zlme7/3CuvwL7q9iRZ2HhjmDw5bI8erfVupFBq3CfjCmA7oCVwLHBpdCz5UWNm1sHMHjGzn81soZmNNLOdM7iuoZmdZ2b/NbPpZrbIzL40s6vMrHVS2W3N7B4zG2dmv5rZj2b2hplpHudSFGsySWWHHeDyy0Nzys03Q5cu4fiKFfGmi5q64YaK+8uXh5ViYwnFb7/Bn/4U32/XLsScaIMN4I9/zE08Un8kJrJfa2UHKS7Z9MnolLcoEphZM2A40Ao4kzBU9mxguJnt7O7/S3N5c+By4CnC2io/ExKjS4G+ZraTu8cWuDgS2JbQBDQWaAOcAbxrZoe6+6AcvzXJt2OOgWuvDf0uGjSA/v3h3HNh56T81D00ZwC88ELNJ70aPTo+P0eDBiF5WLEiNNk8/XRYY+Xaa+Grr0KZVq1gzJjQrDN8eJgOfc4c+PvfQ+2KSDY23TS+rSRDiky11i7JJzP7K3AXsI27j4mONQW+JKyT0jfNtQ2Btu4+J+n4CcBA4EB3Hxoda+/us5LKNQbGAb+6+zbViF3NJYU2YgR8+ikcfHBY+yOVyZNDFTNAkyZh3YfWrVOXzcRhh4UF2iAkFGutBbfdFvbXXhueey508owt4HbnnXD66dV/PZFE990Hf/lL2D7uuIrzrYjUntytXWJmG5vZLmZWVrOYUuoPfBFLMADcfQmhdqJPcrNHIndfkZxgRD6NntdLKDsruZC7LwM+SywnJaZXLzj//MoTDAijP2KdRJcuDf0gqmvSpFAbEnPhhXDFFSG5gNAxb6+94gnGLrvAaadV//VEkqkmQ4pYVkmGme1vZpOBicC7wDbR8fZm9o2ZHZqDmLoTahOSfQ40BLpU4557Rc+p7vu7qMZk58rKmVl5ugeQj6RL8uGQQ+LbiUlCtm66Kd7Pom/fkLy0aQO33BIvExvd0qRJGNqqOTAklzbZJL6tJEOKTDZrl+xBGFUyF7iShKqRqFZgMqGfQ021i14j2dyE8xkzs87AVcAIdx9ZRfEbgXWAa7N5DSlBiUnGq6/C4sXZ32P69IpV0xdfHN8+8kjYc8+K5S+9FDbfPPvXEUlnnXWgefOwPWcOzE3161OkMLL5k+oyQlPCDoQ+E8k+BDIeO2VBo8RHwul0HUUy7kRiZmsCrwALCSNi0pU9EzgLuNLd30r5wu5t0z2AeZnGJgXWtWv8C3/RotD5Mlu33RY6mULoXLprwsAks9D3okmTsL/FFvHOpiK51KCBajOkaGWTZGwLPOHuKys5/wOQzbKRvYBliQ8z60gYTZKqtiI2mUFGabqZtQPeBNoCvd39hzRlTwXuAG5z9yszjF9K3cEHx7ezbTL5+efQ4S7mootWHZLatWtYuv3GG8M8GrGEQyTXEpOMSZMKF4dIkmyGsDYElqQ5vwZQydSKKY0mDC9NNIOwymv3FOV7ECb/+qqqG5vZ6oRhsGsDe7p7pf/rzOxPwL3A3e5+bmahS51wyCHxqciHDg19JzJNBG64Iax6CWESsMpWft1++/AQySd1/pQilU1NxpfAbmnO709oTsmIuy9w91FJj6WEfh89zKxnrKyZNQGOAt509/np7mtmqxFqMNYH9nb38WnKnkiYT+MBwpwcUp9stRV07Bi2580LtQ2Z+OGH+HoRAFdeqc6cUlhqLpEilc1vxgeBQ83s5ITr3MxamNm/gJ0IX9g19SAhoRlkZkeYWR9gEKFD5t8TC5rZNDOblrDfHHgD2JIwAVcLM9sx4bFeQtnDCMnFKOBhYIfEsjl4H1LszKo3yuSqq2BJVKm37bYVm11ECiGxJkPNJVJEspqMy8weB44G5gOtgdmE/hMNgYfd/eScBGW2FnAzYa2UZsAY4CJ3fy+p3DQAd+8Y7XckrKlSmSvd/Yqo7EDghMoKunvKiUWqiFuTcZWaDz4Ic1cArLFGmNeiUZpWxEmTQl+LFdGyPf/9L/Tpk/84RdKZNSu+onDr1qFmLrmPkEh+1WyBtN8vMOtPGKmxeXTTr4FH3b0Gkw3UDUoyStDKlbD++jBjRtjfe+8wLDU2mVayo44KU4VDGKI6fLh+mUvhuUPbtjA/ak2eOTPMPCtSe3Iz46e7D3b3Q9y9m7t3dfd+SjCkZDVoEJ+SGeDNN8OEWq+/vmrZsWPjCQaETqNKMKQYmKnzpxQl9VYTufjisDhZLGGYPTvM3nneeWEhs7lzw1+Kf0/oEtSvH+yorjtSRDSMVYpQpY3PZnZ8tPmYu3vCflrurtV5pLQ0agTXXBPWGDn22FDVDHDrreEBYeXU2JBVs1BepJioJkOKULp5MgYSZtd8mjD/RWw/Xf2wA0oypDTttRd89llY+v3VVyueiyUYEBKR7qmmchEpIA1jlSKULsnYEyCau+L3fZE6bc014eWX4aGHYNAg+PZbmDYNFi4M59u3h6uvLmiIIilpGKsUoaxHl0jlNLqkjnIPC09Nnw6dOoVVVkWKTXk5rLZa2G7WLCTGmiROak9uRpeI1DtmYQ6N2DLuIsWobdvwcwrw229hZlqRAstmqfcrzWxcmvNfmNk/chOWiIhkTZ0/pchkU5PRHxiW5vx/gUNrFo6IiFSbhrFKkckmyehE+hVQJ0ZlRESkEFSTIUUm2z4ZbdOcW42whomIiBSChrFKkckmyRgP9Et1wswMOJD0NR0iIpJPGsYqRSbbpd53NLOBZrZm7GC0/RCwY1RGREQKYeON49tTpsDy5YWLRYTqL/XuwMzoeR3C+Nhn3P2ofARZKjRPhogU3LrrxlcV/vrriomHSP7UfJ4Mdz8WOBJ4GZgHLABeAg6v7wmGiEhRUOdPKSLVWer92Wh599hS7/3d/fl8BCciIlnSMFYpIprxU0SkLlFNhhQRLfUuIlKXdO4c3/7uu8LFIYKWehcRqVvat49vz55duDhEyG6p970ISYSIiBSrNdeMbyvJkAJLl2RsCLwb23H3d/IejYiI1ExiTcasWYWLQ4T0HT8fBnaO7ZjZCjM7Ov8hiYhItbVtC42ivx8XLAjLvosUSLokYyHQImE/XV8MEREpBmZqMpGika65ZDxwppnNBn6Jjm1uZrunu6G7v5vuvIiI5Nmaa8LMmWF79mxYf/3CxiP1Vrok4xLgBWBQtO/A36NHKhaV0UqsIiKFpH4ZUiQqTTLc/W0z6wxsB6xNGML6H+DDfAdlZh2Am4D9gObAGOBCd/8gg2svAQ4GOgGtgBnAMOBqd/8+RfmewOXA7kBL4AfgUXe/KidvRkSktqm5RIpEusm4NgBmu/uwaP9K4FV3fymfAZlZM2A4IUE4E5gDnA0MN7Od3f1/VdyiLfA8oblnAdAF+Aewv5l1c/dY0w9m1gcYCrwInBiV34iw6JuISGnSXBlSJNI1l0wFjgOejPanETqD5ttJQDdgG3cfA2BmI4AvgeuAvukudvcLkg69Y2ZTgdeAA4gmCzOzlsBjwEPu/teE8m/n4k2IiBRMYk2GmkukgNKNLlkGNE7Y7wV0yG84APQHvoglGADuvgR4CuhjZq2rcc+fo+dlCccOI7yfG6sbqIhIUVJziRSJdEnGVOBAMytLOFYbM352B8alOP45oVNpl0xuYmaNzKx51OfiduArwrL0MbsDc4HNzGysmS03s1lmdq+ZtanknuXpHkBZqutERGqVOn5KkUiXZPybUKsw18xWEBKMx6NJuSp7LM9BTO0IX/7J5iacT8vMWhFqLRYB/yM0C+3l7onNPesQ5gF5HngG2JtQq3Ec8KqZaV4QESlNqsmQIpFudMndZjYB6EMYXXIC8B4wJRcvHH2JVxju6u6xJCVdjUkmtSmLCKNimgCbAxcS+mbs4e7R4HEaAM2AK939hujYO2b2G3An0Bt4Mym+tuleVLUZIlIUVJMhRSJdx8/YeiXvAJjZAOA+d38yzSXZ6EVSJ0sz60QYTZKqtmL16DlVLUcF7r4SGBXtfmBmrxOafy4CzoqOz4me30i6/LXoeWuSkgwRkZKgmgwpEmmTjCSdgFz+tI4m1DYkmkEYeto9RfkewApC34qsuPsMM/sB2DTh8BfAkSmKx5pJVmb7OiIiRaGsDBo3hmXL4NdfYfFiaN680FFJPZSuTwZmtrOZtQNw92/dfVGasp3N7KRMX9jdF7j7qKTHUmAw0CPqsBm7dxPgKOBNd5+f6WskxkZYVfabhMODCU0v+yYVj+1/nO3riIgUBa1fIkUibZIBjAT+GNsxs9XNbH4l65fsBNyfg5geJMyJMcjMjogmzBpE6KhZYUpzM5tmZtMS9jc0s5FmdoaZ7WNme5vZ2YQmn1+AW2Jl3f1L4D7gUjO71Mx6m9kFhM6fr7n7yBy8FxGRwlC/DCkCVTWXJI+wMMJMnNk0s2TF3X8zs72Am4F7CJ0zxwB93H10FZeXA5OBvxGSksbAdEI/i+vc/duk8mcSphE/GbgU+InQ6fOynLwZEZFCUU2GFIG8JQs14e4/EoaSVlWuY9L+PGBAFq+zHLg2eoiI1B2aWlyKQFXNJSIiUoo0tbgUASUZIiJ1kZpLpAhUN8mojenFRUSkutTxU4pAJn0yzjOz2HwSjQkJxrVm9nNSuXVzGpmIiFSfajKkCGSSZGwVPRLtWElZ1XCIiBQD1WRIEahqWnH12RARKUWqyZAioCRCRKQuUk2GFAElGSIidVHr1tCkSdhetCg8RGqZkgwRkbrITBNyScEpyRARqas0IZcUmJIMEZG6Sp0/pcCUZIiI1FXq/CkFllGSYWbNzex4M9sh3wGJiEiOqCZDCizTmowlwP2sOimXiIgUK9VkSIFllGS4+0rge6BNfsMREZGcUU2GFFg2fTIeAY4zs6b5CkZERHJINRlSYJmsXRLzAXAwMNbM7ga+BlaZ3cXd381RbCIiUhOqyZACyybJGJawfQerLoZm0bGGNQ1KRERyQJNxSYFlk2ScmLcoREQk9zQZlxSYuWt19lwxs/KysrKy8vLyQociIgLu0Lw5LFkS9n/9FVq2LGxMUldZqoOajEtEpK5KXr9EtRlSy7JKMsxsfTN7yMx+MLOlZrZXdHzN6Ph2+QlTRESqRZ0/pYAyTjLMrBMwCjgEGE9CB093nw1sC/wp1wGKiEgNqCZDCiibjp/XAiuB7sBiIPmn9VXggBzFJSIiuaCaDCmgbJpL9gbudvfvWXX4KsC3wHo5iUpERHJDNRlSQNkkGW2AmWnONyG7mpFKmVkHM3vEzH42s4VmNtLMds7w2oFm5ikeHyWVa21mN5vZcDP7JSozIBfxi4gUDdVkSAFlkxR8D3RLc35H4JuahQNm1gwYDrQCzgTmAGcDw81sZ3f/Xwa3+RXok3RsQdJ+O0Ifkv8RmnqOrkHYIiLFSTUZUkDZJBmDgL+Y2YPEazQcwMwOAQ4DLs9BTCcRkplt3H1MdP8RwJfAdUDfDO6xwt0/qqLMt+6+WnT/nijJEJG6SDUZUkDZNJdcC/wAfAw8TkgwLjKzD4Fngc+AW3IQU3/gi1iCAeDuS4CngD5m1joHr4FrFjIRqQ+UZEgBZZxkuPt8YCfgAcJwVSM0SWwG3A3s6e6/5SCm7sC4FMc/Jwyb7ZLBPVqZ2U9mtsLMvjWzW8ysVQ5iExEpLWoukQKqtLnEzHYHvozmwAB+TzTOAs4yszUJicbsHNcKtAPmpjg+N+F8Op8BYwmJSkNCInQmsJuZ7eLuy6obmJmVV1GkrLr3FhHJi+SaDPcwE6hILUjXJ+Nt4DjgSQAzmwKc7e4vwe8TcFWbmRlJK7a6+/LYZppL0yY07n5b0qE3zGwi8B/gCEJTj4hI/dCyZVi/ZPFi+O23sH5J65y0OotUKV1zyRKgacJ+R8KIj1zpBSxLfJhZR8JoklS1FatHz6lqOaryOGEisZ2qce3v3L1tugcwryb3FxHJOTOtxioFk64mYxJwgpmNAX6JjrUzsw3S3dDdv8vwtUcDyWudzCBMWd49RfkewArgqwzvnyhWN7iyGteKiJS29daD76JfzdOmwUYbFTQcqT/S1WRcA+wMjAGmEpopbo+20z0y4u4L3H1U0mMpMBjoEQ0rBcDMmgBHAW9G/UKydSzhvVY1rFVEpO7ZdNP49sSJhYtD6p1KazLc/Xkz+wzYA1ibMAfGi4RRHvn0IHA6MMjMLiY0j5wFrAMcnljQzKZFsXaM9jcEHiMMd51M6POxN3AG8CHwTNL1fYGWhKYggG3N7Nfons/n+o2JiBREYpIxaVLh4pB6J+1kXO7+NfA1gJldAbzg7k/mMyB3/y1aQv5m4B6gGaE2pY+7j67i8vnAz8CFQAdCM8kU4AbghoSOpTH3ABsm7J8ePSDexCIiUto22yy+rSRDapFpTqrcMbPysrKysvLy8kKHIiISN24c9OgRtjt3hsmTCxuP1EUp/zDPeDIuM2tnZl2SjnUys3+b2RNm9seaRigiInmw0UbxuTGmTYMlSwoajtQf2UwrfgfwSGwnmkFzJKF54SjglWgCLxERKSbNm8OGUcvwypUwZUph45F6I5skYyfgtYT9IwidMfeNnr8ELshdaCIikjMaYSIFkE2S0QFInAOjLzDK3V939x+BgcBWOYxNRERyRSNMpACySTKWAc0T9nsBIxL2y6l6XRERESkEjTCRAsgmyZgEHGLBgYRpvocnnF+f6k35LSIi+abmEimAtPNkJLmL0CTyC9CCMP9EYpKxO/BFziITEZHcUXOJFEDGSYa7P2pmK4H+hIXArostm25m7QjLnN+dlyhFRKRmNtgAmjYNw1dnzYLycmjbttBRSR2nybhySJNxiUhR69EjTMwF8PHHsP32hY1H6pKaTcYlIiIlTk0mUsuy6ZNBtMz7n4FNCCNJkjMXd/feOYpNRERyKXGEiTp/Si3IOMmIViwdDDQBFqCRJCIipUU1GVLLsqnJuJ6wwulB7j4qT/GIiEi+KMmQWpZNn4zNgduVYIiIlKjkCblWrixcLFIvZJNkzAaW5isQERHJs3btYPXVw/aiRTBjRmHjkTovmyTjMeCQfAUiIiK1QE0mUouySTIGAk3MbIiZ7WVmncxsg+RHnuIUEZFc0AgTqUXZdPz8CnDCsNX905RrWKOIREQkf1STIbUomyTjKkKSISIipUpJhtSibNYuuSKPcYiISG1Qc4nUIk0rLiJSn2y8cXx76lRYqkGDkj9ZTSsOYGYNCXNmrEaKJMXd381BXCIikg/Nm4cVWb/7LsyTMWUKbL55oaOSOirbtUsuBC4C2qQppo6fIiLFbLPNQpIBoclESYbkScbNJWb2J8LU4mOBfxBGmdwO3ExYx2QUcFLOIxQRkdxS50+pJdn0yfgL8JG77wn8Jzr2irtfBGwBdES1GCIixS8xyfjqq8LFIXVeNklGF+C5aDs2lLURgLvPJCQeZ+UuNBERyYsttohvv/GG1jCRvMkmyVgBLIy2Y8+rJ5yfBmySg5gwsw5m9oiZ/WxmC81spJntnMX1TczsAjMbb2a/mdkcM3vHzDZNKtfNzF4ys3nR67xrZrvn4j2IiBStXXaJr2EyfTp8/HFh45E6K5sk4zugE4C7LwG+B3ZLOL8doW9GjZhZM2A40As4E+gPLACGm9lWGVzfCBgKnA3cB/wROBH4CGieUK4z8D7QGTgVOIKQPA3LJqERESk5jRtD//7x/eefL1wsUqeZe2aTeJrZ3cCu7r5FtP9Pwhf5o4Rk5VjgIXc/tUYBmf0VuAvYxt3HRMeaAl8CE929bxXXnwdcCWzh7lPSlPtPFPNGUXNPLEGZAMx2912qEXt5WVlZWXl5ebaXiojUrtdfh77Rr9MNNoBp08CsoCFJSUv5w5NNTcYdwF1mFqsNuBx4FTgBOA4YRhjeWlP9gS9iCQb8XnPyFNDHzFpXcf2ZwHPpEozITsCYWIIRvc5y4DVgZzNbu1rRi4iUgt69YbXVwvZ338GnnxY2HqmTMk4y3H2iu9/n7ouj/YXufiChX0aZu/d19xo3lwDdgXEpjn9OGL3SpbILo1VgNwS+NrN7zOwXM1tqZqPMbL+k4k2AJSluEzvWPcX9y9M9gLKq356ISBFo3Bj69YvvP/dc5WVFqimjJMPMWpnZQ2Z2WPI5d5/n7r/mMKZ2pO7bMTfhfGXWiZ4vBHoAxwMHAeXAUDP7Y0LZCcCWZtYi6R6xZpI1Mg9ZRKQEHZbwK/355yHD5nORTGWUZERJxJGkn+kzKxY0SnwkvmS6cNKci72fpUBfdx/q7q8SlqafDlyaUPZOQi3Mo2bWORrRci2wQ3R+lTFd7t423QOYl/ZNi4gUk733hrKoAnbaNBgzJm1xkWxl0ydjAmHCrVzpBSxLfJhZR2AOqWsrYsNl0zXJzImeP3D3BbGD7v4b8DawdcKx4YRRJ3sAk4EfCbUesURkRjZvRkSk5DRpoiYTyatskoybgNOS55qogdGEYa+JjxnAeFL0hyA0f6wA0k1PNxlYVMk5I6l2wt0fAdYCugKbuHu3qNyiKD4Rkbrt0EPj22oykRzLZoG0zQlzY3xhZi8DX7PqF7q7+9WZ3CyqaRiVfNzMBgN3mllPdx8bHWsCHAW86e7z09xzuZkNBfY2szaxstGImD2BVWaciUaUfBmVa0uYM+Nhd68sWRERqTv69IHWrWHBApg8GT77DHr2LHRUUkeknSfDzKYAZ7n7UDPLZN5Zd/carV8STcY1BmgGXExoHjkL6E2Yp2N0Qtlp0Yt2TDi2KfApoXnnJkLtxzmEDp17uvv7Ubm1o/t+APxKGLVyAaGT6G7pkpk0sWueDBEpPcceC088EbYvuQSuvbaw8UgpqtY8GR2B2LwUnTJ4dK5plFH/ib0Is3HeAwwB2gJ9EhOMNNdPAnYndMJ8FHia8OZ7xxKMyDJCH40HgdeB86Ky1UowRERKVmKTyXPPqclEcqaqmoyVwLHu/mTthVS6VJMhIiVp8WJo3x5+jWYjmDQJNsnJUlRSf9R4xk8REamLmjeHrbeO73/3XeFikTolk46f7aKZNDPi7vrpFBEpNR06xLd/+qlwcUidkkmScXv0yIRneE8RESkmSjIkDzJJCN4DqlpsTERESpmSDMmDTJKM+9TxU0SkjlOSIXmgjp8iIqIkQ/JCSYaIiFRMMn78sXBxSJ2iJENERGCtteLbqsmQHKmqT8aeROt6iIhIHZZYkzFrFqxcCQ30d6jUTNqfIHcf4e6zaisYEREpkGbNoE2bsL18OfzyS2HjkTpBaaqIiATq/Ck5piRDREQCJRmSY0oyREQkUJIhOaYkQ0REAiUZkmNKMkREJFCSITlW6RBWMzu+Ojd090erH46IiBSMkgzJsXTzZAwkrKpqCcc8YdtSHANQkiEiUooSJ+TSrJ+SA+mSjD2T9hsDNwLtgHuBCYREoyvwZ+Bn4MI8xCgiIrVBNRmSY5UmGe4+InHfzK4EmgE93H1BwqkhZnYX8BGwGzA8H4GKiEieKcmQHMum4+eJwMNJCQYA7j4feDgqIyIipSh5anFPbg0XyU42ScaaQMM05xsC7WsWjoiIFEyLFtCqVdheuhTKywsajpS+bJKMr4BTzGy15BNmtjpwClpMTUSktKnJRHKoqlVYE10BDAImmtlDwETCyJIuhGaS1YFDcx2giIjUog4dYPLksP3TT7D55oWNR0paxkmGuw8xs0OBO4ALkk7/ABzh7i/mMDYREaltqsmQHMqmJgN3H2xmQ4BtgM6EIayTgdHuvjIP8YmISG1SkiE5lFGfDDNrZWaTzexsd1/p7p+6+zPu/nS0ndMEw8w6mNkjZvazmS00s5FmtnOG1zYws/8zs0lmtsTMvjezm8ysRVK5bc3sHjMbZ2a/mtmPZvaGme2ay/ciIlJSEpMMTcglNZRRkuHuvxIm4fo1v+GAmTUjzLXRCzgT6A8sAIab2VYZ3OIO4AZgMLA/cAtwGvBMUrkjgW2BB4EDCBOKNQDeNbODa/5ORERKUOKsn6rJkBrKprnkI8KX8gN5iiXmJKAbsI27jwEwsxGEkSvXAX0ru9DM1gf+Cvzb3WOzjw4zs1+AgWbWx92HRcdvcvfzk65/FRgH/J3QyVVEpH5Rc4nkUDZDWC8CDjezE83Mqixdff2BL2IJBoC7LwGeAvqYWes0125PeE8vJx1/KXr+ffSLu89KvtjdlwGfAetVL3QRkRKnJENyKJuajFuBXwg1GTeZ2WRgUVIZd/feNYypO/B2iuOfEyb86gJ8Usm1TaLnJUnHlybcu1Jm1hTYmVCbkep8ebrrgbIqzouIFDclGZJD2SQZnQnzYnwX7XdIU7Ym2gFzUxyfm3C+MhOi552BkQnHY51G16jitW8E1gGqtcy9iEjJS04y3CGvlddSl2UzT0bHXL5w1ORSYZpyd18e20wXSqUn3D8zs3eBi83sG0IH0m7APcAKoNJRMGZ2JnAWcIW7v1XJ/dumiStW06HaDBEpXa1ahenFFy2CJUtg/nwo0681qZ5s+mTkWi9gWeLDzDoCc0hdW7F69JyqliPRYcAHwPOE5p23ou2xwIxUF5jZqYRRKbe5+5XZvAkRkTpHTSaSI1lNxpVjo4Htko7NAMaTuu9ED0JtxFfpbhp16NzXzNoDawHfAouB0wnDWSswsz8B9wJ3u/u5Wb4HEZG6p0MHmDo1bP/0E2y6aWHjkZKVVZJhZhsB5wA7AKuxak2Iu/tGmdwrWjJ+VIrXGAzcaWY93X1sdKwJcBTwZrSsfCb3nwXMiq4/h9A082DSa50I/IfQmfXMTO4rIlLnaUIuyZGMkwwz6wG8BzQlLI7WmVDr0I5QYzCZsIZJTT1IqHUYZGYXE5pHziJ0yDw8KaZpULG/iJn9hVDj8Q2hiWVfYABwirt/n1DuMEJyMQp4GNghcWSuu3+Ug/ciIlJ61FwiOZJNTcZVhKGg2xP6TcwCznL3t8zsFMJEWf1qGpC7/2ZmewE3EzpsNgPGAH3cfXQGtzDgXGBDQl+PUcAf3H14Urn9CDUx2xH6cKS6j4hI/aNZPyVHskkydgX+4+4TzSzWMdMA3P1+M9uNMJ33gTUNyt1/BI7LoFzHFMfuISQnVV07gFDDISIiiVSTITmSzeiS1oQmEYhPbtUy4fz7hERERERKmZIMyZFskoyfCH0vYp02FwKJXY5XI2neCxERKUFKMiRHsmkuGUvFIacjgLPM7BNCsnIGYd0PEREpZUoyJEeyqcl4EmhnZs2j/UsJs1u+TZhZsy1wSU6jExGR2pdqanGRajCvwQ9PtLR6f8KQ0dfcfUquAitFZlZeVlZWVl5eXuhQRESqzz1MLf7bb2F//nxonW4BbJHUIzJrNONnNO/Ev2pyDxERKTJmoTbj22/D/k8/KcmQasm4ucTMzjezrfIZjIiIFAnN+ik5kE1Nxk2ARyuNjiAsPPaWu09Ie5WIiJQedf6UHMgmyegK9Ab2AnYHDiIkHbMInT9jSUe97pchIlInaNZPyYGMkwx3/4qwAupdAGbWE9gzeuwLHAF4NvcUEZEipZoMyYFshrAm+wmYTVjAbAGhZ+mKXAQlIiIFpiRDciCbVVjbEmotekePTQk1F/8jzKHxFjAy9yGKiEitS2wu+fTTMKzVtG6kZCfjeTLMbBmh5uNLov4XwDvuXp636EqM5skQkTpj5kzo1AmWLAn7zz8PhxxS2JikmKXMQLNpLmlIqLlYDCyKHktqHpeIiBSdtdeGM86I7198MSxbVrh4pCRlk2SsA5wAfA4cDrwO/GJmI8zscjPbzczU6VNEpK645BIoKwvbX38NDzxQ2Hik5FR7WnEz60QYztob2APoACxy93o7LZyaS0SkzrnxRrjoorDdoQN88w20alXYmKQY1bi5JFmTpIcBLWpwPxERKTZ/+xust17Y/uknuPXWwsYjJSWbjp8bEmou9iKMMlmbkFjMA94ldAQd7u7j8hNq8VNNhojUSQ8/DCedFLZbtYLJk6F9+8LGJMUmZU1GNknGSuIdP98nPsJktLuvzFGQJU1JhojUSStWwJZbwvjxYf/00+HOOwsbkxSbGicZlxOSio/cXV2MU1CSISJ11ssvwwEHhO1GjWDMGOjRo7AxSTGpcZ+M2919ZLoEw8y6Zx2WiIgUv/32g169wvby5TBggIa0SpWySTJeMrMmlZ00s67AmzUPSUREio4Z3HsvNG0a9seMCSNPRNLIJsnYCngi1Qkz2wwYTpigS0RE6qLNN4err47vX3UVfP554eKRopdNknEY0M/M/p140Mw2JvTVWEYYeSIiInXVuefCjjuG7WXL1GwiaWWcZLj7G8ApwOlmdjH8PiHXW1GRPd19Ws4jFBGR4tGwYRjSGms2+d//4IYbChuTFK2sJuNy90eAS4BrzOwiQoLRGNjL3SfnIb5KmVk3M7vHzD4xs9/MzM2sY4bXNjSz88zsv2Y23cwWmdmXZnaVmdXbGUtFRDKS3Gxy9dXw2WeFi0eKVtYzfrr7DcA9wHWEGT73cveJuQ4sA9sCBwA/EubtyEZz4HJgKnAWsC/wEHA28JbWYBERqUJys4lqMySFSr9MzeyyNNf9DCwgzPR5mNnvw2Pd3a+u9KrceiyqWcHMzia7/iCLgU7uPifh2DtmNgsYCPQFhuYoThGRuqdhwzDF+M47h/0xYwobjxSldH+xX5HB9YdEjxgHaiXJqMkso+6+ApiT4tSn0fN61b23iEi9seWWYWire1g4bcmSeF8NEdInGZ1qLYriEasNSbn+ipmVV3F9WU6jEREpZi1aQKdOMGUKrFwJkyZpFlCpoNIkw92/rc1ACs3MOgNXASPcfWSh4xERKQldu4YkA2DCBCUZUkHGHT/NbHUz2yLN+S3MbLXchFXhvmZmjRIfeXiNNYFXgIXAsZWVc/e26R6EFWlFROqPrl3j2xMmFC4OKUrZjC65idApsjIPA9fXKJrUehEm+vr9kelQ1UyYWTvCdOhtgd7u/kOu7i0iUucpyZA0sqkV2BN4PM35l4DjahZOSqOB7ZKOzcjFjc1sdcJ06GsTJhOblIv7iojUG0oyJI1skox1gO/SnP8hKpNT7r4AGJXr+0ZNO28C6xMSjPG5fg0RkTpv883j25MmhTkzGjcuXDxSVLJJMhYCG6Y5vyGwpGbhZM7MWhAm0QLYMnrua2azgdnuPiKh7DQAd+8Y7TcH3oiuOxNoYWY7Jtz+BzWbiIhkoHVr2GAD+O67sAT8N99Aly6FjkqKRDZJxsfACWZ2c1S78LtoKu7jgU9yGVwV2gPPJR27O3oeAeyR5toOxJtg7kpx/koymydERES6dg1JBoQmEyUZEsmm4+c/CZNUfWBmh5rZxma2kZkdCnwQnbs5H0Gm4u7T3N0qeeyRVLZjrBYjg2vN3a+orfchIlLy1C9DKpFxTYa7v21mfwXuAJ5JOr0MOMPd38xlcCIiUgISk4wvvyxcHFJ0sppzwt3vM7OXgcOBjQEDJgLPu/v0PMQnIiLFTjUZUglz90LHUGeYWXlZWVlZeXl5oUMREak95eWwWjQXY9OmsHBhWEBN6hNLdTDrpd5FREQqaNsW1l47bC9ZAlOnFjQcKR5ZNZdEc0ucDOwArMaqSYq7e+8cxSYiIqWia1eYOTNsT5gAG29c2HikKGScZJjZhsD7hAm35gFtgLnEk42fCXNpiIhIfdO1KwwfHrYnTIADDyxsPFIUsmkuuYZofQ9gE0L7yxGEZON6YAGwW47jExGRUqDOn5JCNklGb+B+d38biPUWNXdf5O5/B74Absx1gCIiUgKUZEgK2SQZ7YBx0fay6Ll5wvlhQJ9cBCUiIiUmea6MlSsLF4sUjWySjNnA6tH2AuA3oGPC+SZUTDpERKS+WGMNWHPNsL1oUXyacanXskkyxhMtROZhco1PgL+a2QZm1hE4Ffgq5xGKiEhpUJOJJMkmyRgC7BStYApwFaED6FRgcrR9dW7DExGRkqEkQ5Jks3bJ3cRXOcXd3zKznYCjgRXAYHf/IPchiohISVCSIUmymowrmbuPAkblKBYRESllSjIkiaYVFxGR3EhOMrQ2Vr1XZZJhZuub2VlmdpqZtU849qSZ/WhmC81shJlpIi4RkfqsQ4f4QmkLFqg2Q9InGWa2OWGSrVuBu4DPzWxT4B3gSKApsJIw0+cwM9smr9GKiEjxMoOttorvH3AA/PBD4eKRgquqJuMCwvwXZwOHA+XAC0ALYEd3X83dWwN/BJYCF+UtUhERKX5XXRWWe4ewGutee8UXTpN6p6okoxdhKvF/u/vzwDlAN+AWd/8kVsjdhwEPoLVLRETqt112gUGDoHHjsP/117D33jB7dmHjkoKoKslYB/g8Yf+L6DlVQ9s4wtTjIiJSn+27LzzzDDRsGPYnTIA//AF++aWwcUmtqyrJaAosTtiPbf+WouySDO4nIiL1Qf/+8Pjj0CD6Whg7Fo46Smua1DNKCkREJD+OPBIeeii+/8YbcOedhYtHal0mk3Hta2ZrRdstCMu8H2ZmPZPKaWSJiIhUdMIJMG4c/POfYf+CC0Jn0O7dCxuX1ArzNJOlmFm29Vru7g1rFlLpMrPysrKysvLy8kKHIiJSPJYsgR13DE0mAFtsAZ98Eh+FInWBpTxYRZLRK9tXcfcR2V5TVyjJEBGpxIQJsM028FvUpe/cc+GWWwobk+RS9klGIZhZN+AMQvPLFoTOp53cfVoW94jN7XECsBGwkDAy5lR3nxSVaQ1cBmwdPdoCJ7r7wBrEriRDRKQyd94JZ54Z3x82LAxvlbogZZJRjB0/twUOAH4E3s/2YjNrBAwlJBn3ESYKOxH4CGieULQd8CfCB/NqjSIWEZGqnX469O0b3z/hBM2fUccVY01GA3dfGW2fDdxGFjUZZnYecCWwhbtPSVPOPHrzUSfW/6GaDBGR/PrxR+jRA37+Oez37h1GnTSst9356orSqMmIJRg1cCbwXLoEI3qd4squRETqg7XWgkceie8PHw6XXlq4eCSvii7JqAkz2wDYEPjazO4xs1/MbKmZjTKz/XJw//J0D6Cspq8hIlLn7bsvXHZZfP/66+HFFwsWjuRPnUoyCNOgA1wI9ACOBw4iLOw21Mz+WJiwRESkgssug332ie+fcAJMmlS4eCQvCpZkWNAo8ZGD28bez1Kgr7sPdfdXgf2B6UCN6uTcvW26BzCvRtGLiNQXDRvCE09Ax45hf/58OOQQWLiwoGFJbhWyJqMXsCzxYWYda3jPOdHzB+6+IHbQ3X8D3iYMVRURkWKw+urwwgvxSbnGjYNjjoHlywsbl+RMIZOM0cB2SY8ZNbznZGBRJecM0Mo8IiLFZOut4Z574vtDhsApp2ghtTqiYEmGuy9w91FJj6U1vOdywhwZu5hZm9hxM2sO7Al8XLOoRUQk5048Ec4/P74/cCCcdx4kDwKcNSvUdkjJKLqOn2bWwswONbNDgS2jw32jY72Syk4zs2lJt7gMaAy8YWb9zexAwmRb7aNzidf3jV4nNuXctgmvLSIiteWmm+Dkk+P7t98O114bmk5efhn69YN11glzbJx3XsHClOwU42RcHYGplZwe4e57JJSdBuDuHZPusSVwI7AL0BD4BLjU3UcmlZtGGPK6CndPObFIFbFrMi4RkepasQKOOCL004hp3z7UYCQbMgQOPLD2YpOqlMbaJaVMSYaISA0tWQL77w9vvpm+3BprwOefw9pr105cUpXSmPFTRETqsaZNYfBg2GGH+LH27eGCC+Cjj2DddcOxn3+GAQPUQbTIqSYjh1STISKSIwsXwuOPh2nI+/aFJk3C8bfeCiu3xr67br8dzjqrYGHK79Rckm9KMkREasEFF8DNN4ftpk3h009Dh1ApJDWXiIhIHXD11bDVVmF7yRI4+ujwLEVHSYaIiJSWpk3DlOTNmoX9cePgjjsKG5OkpCRDRERKT5cucMMN8f2rr4YffyxcPJKSkgwRESlNp58OXbuG7V9/hUsuKWw8sgolGSIiUpoaNQqjS2Iefjh0ApWioSRDRERKV58+FWf+POusVdc8kYJRkiEiIqXtn/+Exo3D9ocfwlNPFTYe+V2jQgcgIiJSI5tsAmefHZ8744ILoFUrmDIFvvkmPC9dGib0atw4PFq1gi23hO23D8NhW7Qo6FuoqzQZVw5pMi4RkQKZPz8kG6kWU6tKw4bQrRscc0xY4bVhw9zHV/dpMi4REamj2rSB66+v3rUrVoTF1i68MDwkZ1STkUOqyRARKaCVK+Hcc+GNN2C99WDjjcNjo42gZUtYtiw8li6Fn36CUaPgk0/gq68qdha99174858L9z5Kk9YuyTclGSIiJWj+fDj+eBgyJOw3bAivvRZGrkim1FwiIiKyijZtwjTlW28d9lesgEMPhfHjCxtXHaAkQ0REpGVLGDoU1l037M+fD/vtBzNnFjauEqckQ0REBGCddeDll0PCAfDtt2GNlOuvh0WLChtbiVKSISIiEtOzJzzzDDSIvh7nzQtromy8cegQumxZQcMrNUoyREREEu23X2g62WST+LGZM+G002CzzeCWW2Du3MLFV0KUZIiIiCTbd9/Q8fO++2DttePHp06F888PQ2RPOQXGji1YiKtYvhymTy+qtVuUZIiIiKTSuDGcemqYmvyGG2C11eLnFi+GBx4IU5IfcEDqkSjLlsELL8Cll4Y5OfJp8WLYa6+Q/AwYEOYMKQKaJyOHNE+GiEgdtmhRWHztzjtXrcFo0ABOOgmuvDLMs3H//aEPx/Tp8TK77QbnnBNWjW3YMNQ4fPttSEC+/hqWLAkThcUezZvDmmvGHx07Qteuq8blHl574MD4sb//Ha65Jg8fQqU0GVe+KckQEakH3MNqr//6Fzz7bMXmiebNQ7NFug6inTuHWUhHj86+b8e++8KTT0JZWfzY/feHGpdkTzwBRx+d3f2rT0lGvinJEBGpZz77LKx38sYbqc936AA77ACvvhqSj1zo1i0Mte3YMdSC7LJLqPmAkHzMmxe2mzaFd96BHXfMzeumV7eSDDM7BDgc2A5YG/gReBe43N2nZXD9JcDBQCegFTADGAZc7e7fVzMmJRkiIvXRsGFhiflYM8pOO8EZZ4SZQ5s0Cc0md90VmlB++SV+Xdu2sM02Ydn51q1D2diS9L/+CrNnh8fMmfD22/Hr2rcPzSOnnRaaXAC22CIkO3vtBV9+GY516BDWZ9lgg3x/AnUuyfiYkFgMBqYCHYF/AO2Abdx9ahXX3wTMBcYDC4Au0fUGdHP3X9JcXtk9lWSIiNRXK1fCu+9Cu3bQo0fqMgsXhkRg+fKQXHTuDJby+3lVjz8OJ58cr7VI1KZNaH7ZeGOYPDnUnsyZE85tuSW89x60alW995WZOpdktHf3WUnHOgGTgdvc/bxq3HMf4DXgBHd/tBrXK8kQEZH8GTkS+vePJxAxL74I/frF90eMgL33jjfRHHQQDBqUeUKTvbq1QFpyghEdmwr8DKxXzdv+HD1rSjcRESk+u+0GH30Em24aP3bRRRUTDIBevULTDITml/7985lgVKpRrb9iHplZd2BNYFwW1zQCGgObAbcDXwEvVVK2vIrblVVxXkREpGY23jiMbrn1VlhjDTjzzNTlTj459AXp3Tt0Di2Akm0uSWZmTQkdPzcCurj77AyuaUXojxHzMdDf3VMuu5dJklFWVoaaS0REpJ5JWU1S9DUZZmZAw8Rj7r48qUxD4FGgJ7B/JglGZBFhdEoTYHPgQuAdM9sjVaLh7m2riLUc1WaIiIgApdEnoxehj8TvDzPrGDtpZg2AhwnDUY9y92GZ3tjdV7r7KHf/wN0fAvYkjFK5KHfhi4iI1E9FX5MBjCbUNiSaAb8nGA8BRwPHuvugmryQu88wsx+ATassLCIiImkVfZLh7guAVVaWiZpR7geOA05096dr+lpm1hnYEHi1pvcSERGp74o+yUjjX8BJhERjkpklzps6390nxHbMbBqAu3eM9jcEHgeeAb4BlgPdgXOBX4Bb8h++iIhI3VbKScYB0fMp0SPRCGCPNNeWEybt+huwDmEI63TCRFzXufu3uQxURESkPqozQ1iLgWb8FBGReqpuzfgpIiIixU1JhoiIiOSFkgwRERHJCyUZIiIikhdKMkRERCQvlGSIiIhIXmgIaw6Z2UrAysq0RpqIiNQf8+bN+87dN0w+XsqTcRWjlUCDefPmzc/hPWMZy7wc3lOkLtL/FZGq1er/E9VkFLlo+fgql5kXqe/0f0WkarX9/0R9MkRERCQvlGSIiIhIXijJEBERkbxQkiEiIiJ5oSRDRERE8kJJhoiIiOSFkgwRERHJC82TISIiInmhmgwRERHJCyUZIiIikhdKMkRERCQvlGSIiIhIXijJKEJm1srM/mVmM81ssZmNMrMDCx2XSDExsyvMzM1sbNLxd6LjyY+nCxSqSK0ys13M7C0zW2hm883sVTPrUUnZPmb2UfRdM8vM7jOztrmKRUlGcRoMHAP8A9gPmAAMNrN9CxqVSJEws27AhcBPlRT5Gtgp6fGP2olOpHDMbEfgbaAR4XtkALAG8K6ZbZxUdg/gVeB74ADgfOBA4BUzy0l+oCGsRSZKJF4BDnb3wdExA0YC7dy9SyHjEym06JffB8CnQA+grbv3TDj/TvIxkfrCzP4LdAc2cvfF0bG2wBTgNXc/JqHsJ0BjYBt3Xxkd6wP8FzjS3Z+paTyqySg+/YF5wJDYAQ+Z4CPA5mbWtVCBiRSJc4D1gL8XOhCRIrQT8FYswQBw93LCH6oHmVlDADNbF9gOeCyWYERlhwHTgUNyEYySjOLTHZiQ+I8e+TzhvEi9ZGadgauAM9x9fpqim5nZL2a23My+NrN/mFnjWgpTpJCaAEtSHF8CtAA6R/ux75JxKcp+QY6+a5RkFJ92wNwUx+cmnBepd6Jmw/uBN9z9xTRFRxJqO/oDBwEjCInJs3kOUaQYTAB2jP6/ABAl2NtHu2tEz7Hvksq+b3LyXdMoFzeRnEvXUUadaKS+OgXYFkjbZOjulyYdetnMfgIuMbNd3f29fAUoUgT+DTwI/MvMbiBUJlxFaGIESK4lr+w7JSffNarJKD5zSJ1Brh49p8o6Reo0M1sDuAm4HlhoZm2jzmyNgIbRfrM0t3gket4pv5GKFJa7PwRcRBhV8gPwHbAZ8M+oyIzoeU70XNn3TU6+a5RkFJ/xQJcUw4diY5xTtZ+J1HXrAWWEJOOXhMcuhLbjX4Ar0lwf+/+U/FecSJ3j7jcSmkV6AB3dfWdC4vCtu38fFRsfPafqe9GDHH3XKMkoPoOBtoQxy4mOBya6+4Raj0ik8L4B9kzx+AyYHG3/J831x0fPH+UxRpGi4e5L3H2cu39rZh2BI4A7E87/AIwCjkn8o9bMegPrAoNyEYfmySgyUWed4cAWwAXAVOAEwi/Jfu4+tIDhiRSV5DkxzGw3QlXxC8C3QEugH3Ai8Ly7H16YSEVqh5ltSejwPIowoqQncDEwBujr7ssTyu5FmBPjBUKSvg5wI6GJZRd3X1HTeNTxs8i4u5vZQcB10aMtobfwwUowRKo0M3q+ilBdvBKYCJxL6BAnUtctAXoDZxGS7CmE/hi3JiYYAO7+lpntD1xJmARyAfAicEEuEgxQTYaIiIjkifpkiIiISF4oyRAREZG8UJIhIiIieaEkQ0RERPJCSYaIiIjkhZIMERERyQslGSK1wMw6mpmb2RUFjmMNM3vUzGZE8bxTyHjyycz2iN7jgCKIpZmZTTOzawsdSykys+bRz+zlhY5FsqMkQ+oFM1vNzH6LvnSOLXQ8BXQLYXrhe4HjgEq/9BISo8THYjMbb2ZXmlmL6gYRJQBXRIucVZuZ9Yzu07Em96kF5xIm1vtn4sGkz3almS0wsylmNtjMTjSz5gWJtsi4+2LgBuD/zGydQscjmVOSIfXFMUATwjTtJxc4lkLqA7zh7le5++PuPiyDa4YREpLjgEsIi5FdRpgZsLr2AC4nfPHWRM/oPh1TnHsXaA48VsPXqJEoUfg/4GF3/yVFkbGEz/Z44DzgScLaEQ8BX0TTREtYvtyBcwodiGRO04pLfXEy8DYwBLjdzDZy98kFjqkQ1iL7JZwnufvjsR0z+xdhobE+ZraNu4/OZYC54u4rgd8KHQdwNCGZerSS89MTP9/IP8zsMOAJ4DUz61ZJgpJ3Ztba3RcU4rUTuftCMxsEDDCzf7j7kkLHJFVTTYbUeWa2NeEv3kcIv7SXERbMSlXWzWygme1kZiPMbKGZ/WxmD5hZqxTle5nZh1Ezwo9mdoeZdcum/4WZHWFm70VV5YvM7GMzOzSL99fSzK43s8lmtiSK41Ez2zChzBVm5oABJyRU0Q/I9HViojUN3ol2N0mKpaOZPWZmP0WxTDaz6xKbVsxsIKH2AWBqQixXROfXMbNbzGysmf0SNXNNMLMLzaxh4nsCHo523064z8DofMo+GZl8XsnXR00X46Py35rZBVl8ZIcBP7r7/7K4Bnd/DrgJWBs4PSk2M7PTzGx09DOzwMzeNrM9k+9jZi3M7FYzmxmV/cjMekc/555U9h0LfUc6m9nzZjYXmJ9wfm0zu8fMvjOzpRb6SfzHzNqneN0yM7vRzL6JPrfZZvaUmXVOKtcs+vmcGMVXbmZfmNnNKT6W1whr0qzyPqU4qSZD6oOTgYXAC9FfQ68Qvmgvi/7aTdYTeJnwBfYkoWr/ZMJiW6fGCpnZroQVDH8htBeXA4cDu2QamJldA/wdeB24NHqN/sBzZnaGu99VxfWNgDei13ye0OdiE+A04A9mtm20pPMgwnLpjwEjiS+L/kGmsSbZKHr+vVYk+pL+BCgD7gEmET67i4FdzKx3tEDTfUCb6H2eA/wc3eLz6HkL4GBgMGEZ98ZAX8Jn3Bn4c1RuEOEL+FTCYoJfRscrraHK4vNK9BegA6G6vhw4FrjRzH5w9ycr/4ggSop2JtSiVccDhJ+P/YBrEo4/BhwVvYeHgaaEJsFhZnawu7+UUPY5YF9C89abQCfCZzu1ktdsBYwA3o9eu330XjYAPiQ0Oz5I+Jw3Jnx2e0af3byobBnhZ2sDQrPPeMK/1V+Bj6Oy30avdxdwEqGm5zagIeHfZK8UsX0YPe9B+D8jxc7d9dCjzj6AZoQvwoEJx/oR2nb7pijvhC/6HZOOv0KoAWmVcOwTQnV854RjjQm/nB24IuF4xxTHto6OXZcijhcJf0G2ruL9nRLd46ak4/tFxx9L8f4GprtnipgfIPz1uAawOaE/hgPfA00Tyj8RHd836T43R8dPTjh2RXSsY4rXbU60eGPS8ceAFcDaCccGRPfZI0X5PaJzA6rzeSVcP4OwnHzseAtgNvBhBp9hp+get1Zy3oGXq7jHfGBOwn7/6LpTk8o1IizvPTX2+RGSCwfuTyobO+5Jx9+Jjl+TIo4hwCxgvaTj2wLLk3627wAWA1smld0wej+J/x/nAq9m8jMZlV8GDM20vB6Ffai5ROq6g4HVCE0lMa8QflmeVMk1H7r7R0nH3iL8Eu8IYGYdgO2AIe4+JVbI3ZcRfsFm4hjCL/RHLAwt/f0BvAS0Bnaq4h79CUnR9YkH3f0VQofCfmZW0//nJxO+VGcTaguuJPxl3tujdvHoNQ4E/ufuryZdfz3xGpoquftij75NzKyJma0efSZvEJp4t63Be6nO5/Wwu5cnlF1E6JOyCVVbM3rOth9MovmEmp+YY4mW5E76mWkLDCX8jMZiOyB6vjXxhtG/0ZdULnkUTBmwP+Hn8rek151GqCX7Q1TWCD/b7wLTk8ouJHx2f0i4/Tygm5l1r+JziJlLVLsixU/NJVLXxb4gfzCzjROODwMOM7M13P3npGumsKo50XO76LlT9DwxRdlUx1LpQugj8VWaMh2quEcnYIan7hQ4ntD0swYhqaquIcCdxKuxLwDWBxI73q1JqGYfn3yxu881s5mEpo4qRU0aFxFGW2xM+IwSrZZl/Imq83lV9vPQLsXxZLE+D8nvIRttSOgXQfi5aQ38lOaaDoTmqk6EpOqbFGUmRvdKNjsxqYpsRkjwTqby0Vmxz2lNwmfzB8L/vVQSmynPJtRSfWFmUwgJ7FBCbUWq5kwj/rlKkVOSIXWWmXUidBAzwi/cVI4Fbk86tiLdbZOeayL2y7Jvmtdc5Uu7knjy6Qd3fzPafsPMXiP0n3jazHaOah1yGcetwJnAM4R5PGYRqsi3Bm6kZh3WqxNnup+HqsS+ZFevzsUW5v9oTbwvAoT3MJswaqUy4xLKQnZfyotShRI9P07FWsFEi5PKvkn490rL3YdE73NfoBewNyGRGWlme7v70qRLVqPy5EWKjJIMqctOJPzCO4XQYS/ZNYRfZrdX496xv9o2S3Eu1bFUvgb2Ab5z93RV1+lMBvYxs7Yp/vrsSvgLOLmmpkbcfbKZ/ZPQN+MoQufYWYQq/G7J5c1sNUKnv7GJt0nzEscB77r7kUn32ThF2Wz/oq3tz+v76J6ZNK2k8qfo+ZWEY18DmwIfufuvVVw/lZCUbcKqzSOZ/pxCqAlxoElCwlmZ2YT/b20yKAuE2i5CAvN41NxyA6HGrB+h4yrwe9LViHgSJUVOfTKkTora1QcAX7j7A+7+fPIDeArobmbbZXt/d/+J0MmuX+KQPDNrDJyV4W1ik0RdZwlDMxPulUm784uE/8cXJV3bF9gKeKmSKueauo3Qln65mTWMXmMosJWZ7ZNU9qIoxsEJx2Jfjqn+wl9BUo2DmbUk9SRM6e6TyovU4uflYbjvSGCHbK+1ME/GBYSOp4mjjB4lvIfrK7kusYltaPR8TlKZfUndVJKSu88BXgUONrMdU7ymmdmaUdmVhE7A21slQ7FjP9tm1tCSZn2NasZiw32T/11jrz0i09ilsFSTIXXVHwj9Bh5MU+YFwiiHk4FPq/Ea5xP6dnxgZncTvnQPJwzxgyr+ynb3Ty2sxXAlMNbMniN8oawNbEOoPm6S5hYAA4ETgAujv/LeJfRj+Cuhzf6SrN9VBty93MzuJAxxPJqQMF1CmFH0xejz+AbYnTCN+btUrGaPday90cyeIIzSGefu4wjDMv9sZs8Qqtw7EDrpzmFVnxLa9/8e1ZgsBKa6+8eVhD6Q2v+8ngP2M7Pt3f2TFOfXtfhU980Jwz7/AGxP+AwPTup4+ryZPQycYWEOmJcJtS/rEToKb0y8/8urhA6zp0QdL2NDWE8lNHltkcX7OA14D3jXzB4lJAINotfqR0h+rojK/p0wTPhZM3uW8O+9lDC6ZF9gNOGPgNbATDN7KbrfrCi+0whDw2NJUsx+0Xut7pBgqW2FHt6ihx75eBB+sTvQo4pyEwlVu82j/ZRDPKlkqCRhLP9HhC/JnwgjS3aIyl6QUK4jSUNYE87tR/gimEvoTPk9YdKh0zJ8ry0Jf9VOIfwin0X40t8wRdnqDGG9s5Lz7QhNJF8DDaNjnaLXnhXFMoUwh0WLFNdfEJ1flvjZEIaI3gx8G32uXxNqHnqTNCQ1Kn8CMCF6vd/fHymGsGbzeVV2fXRuIEnDP9N8js0ICdK/K/n3SHz8SmjieJGQWDVPc9/jCLUk86PPaRph7pAjUrzf26Ofz8XAx9HP7fPAoqSy7wDT0rzmGtG/zaToNcuBLwg/912TyrYgzP3yRfS6CwhNNvcDO0RlmkT/Fp9En9GS6H08BGyS4n38Ctycy98VeuT3ERtLLSI5YmaHEH6BH+XuTxc6Hik8M7uIMClZJw/9DwrOzL4AGrv75oWOJRNmdhahI/Cm7j6j0PFIZtQnQ6SaonboZknHGhNW3FxOfOptkdsJ1f/n1/YLW4qVXM1sP6A7obmv6EX/zy4k1GIowSghqskQqaboF9+3hE5uEwnNB0cQ2rlvdPeL0lwuUivM7HpCp9a3Cf2GehKaYuYDPX3VadRFckYdP0WqbxlhaGE/QmdNIyQbp7v73YUMTCTBSEInzP8jrCszl9Dp+VIlGJJvqskQERGRvFCfDBEREckLJRkiIiKSF0oyREREJC+UZIiIiEheKMkQERGRvPh/C0fmnG8PZzoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# number of times to run the experiment, decrease for shorter run times\n", + "mc_rep = 100\n", + "# samples to use for task1 (xor)\n", + "task1_sample = 500\n", + "# samples to use for task2 (rxor)\n", + "task2_sample = 500\n", + "# we will use the same angle_sweep as before\n", + "angle_sweep = range(0, 90, 1)\n", + "\n", + "# call our function to run the experiment\n", + "un_mean_te, un_mean_error = fn.unaware_bte_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep)\n", + "# plot angle vs BTE\n", + "fn.plot_unaware_bte_v_angle(un_mean_te)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "d2f0ba45", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAHyCAYAAABh312/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABQB0lEQVR4nO3dd5zcVb3/8ddn+262pW06pDdCExBQhFAVRJoFvaiI2PX+9Hq9lisi1nvtXuwNQRS4toBeEAUkgCAlQIAUEpKQnmyyyfZk28zn98f3O5vJZrbM7szO7M77+XjMY7Lf75nvfPJlyXzmnM85x9wdERERkZ7yMh2AiIiIZCclCSIiIpKQkgQRERFJSEmCiIiIJFSQ6QCyiZl1ESROTZmORUREZBhUAlF3T5gPmGY3HGJmUcCqqqoyHYqIiEjaNTY2Ari7JxxZUE/C4ZqqqqqqGhoaMh2HiIhI2lVXV9PY2Nhr77lqEkRERCQhJQkiIiKSkJIEERERSUhJgoiIiCSkJEFEREQSUpIgIiIiCSlJEBERkYSUJIiIiEhCShJEREQkoYwmCWZWbmY3mtkuMztoZivM7JIBvO4GM/MEj93DEbeIiEguyPSyzMuAVwCfBF4G3gUsM7M3uPs9A3j9+UBL3M8dKY9QREQkR2UsSTCzi4DzgCvcfVl47EFgNvAtYCBJwgp3b0hbkCIiIjksk8MNlwONwF2xAx5sSXkLsNDMFmcqMBEREclskrAEWOPu0R7Hn48735+1ZhYJaxp+ZmY1fTU2s4a+HoD2iBYREQllsiZhPLA+wfH9ced7sxH4T+BZgjqEVxPUNZxrZie5e30qAxUREclFmS5c9MGcc/dbexz6u5k9DvwN+DDw5V5eV91XMOpNEBEROSSTww37SNxbMC583p/gXK/c/T5gF3D6EOMSERHJSl2RniP06ZXJJGE1sMjMesZwbPi8ahDXzAOG9w6KiIgMg65IlEXX38srv3I/z24dnlH1TCYJy4Bq4A09jr8TWOfua5K5mJldAEwCHk9JdCIiIllkb0s7nRFnT3M7FSWFw/KemaxJuAd4EPiFmY0nWEzpauAM4NJYIzNbDpzl7hZ37FngV8A6oBN4FfAJYAPwg2GKX0REZNjsamzr/vOUqpJhec+MJQnu7mZ2GfDV8FENrCFYXOnP/bz8ReBDwFSgENgG/Bz4khZXEhGR0WhXQ5AkVJYUMKZ4eD6+Mzq7wd2bgI+Ej97aLE1w7G1pDEtERCTr7Go8CMCUqtJhe0/tAikiIjIC7A6HG6ZUD89QAyhJEBERybhI1PnE757jv//yYq9tYjUJw1WPAJlfTElERCTnPbO1nt8/vR2Ad58xk5qKIxMBDTeIiIjkoBd3N3f/edv+AwnbxIYbJg9jT4KSBBERkQxbt7up+89bEyQJkahT29wODO9wg5IEERGRDFu/u6X7z9v2Hzzi/N7mdiLRYEsjDTeIiIjkCHfnxbiehETDDbF6BNBwg4iISM6obWqnqa2r++dEww2xmQ0VJQWUD9NCSqAkQUREJKPiexEAttcfOdwQSxKmDuNQAyhJEBERyah1cTMbIBha6Og6fEPjXQ1B4jCcQw2gJEFERCSj1tUGScLxM6oBiDrsbDi8N2FX0/AvpARKEkRERDIq1pOwdP5E8vOCDY+31R9el9C9JLOGG0RERHJDJOq8tCeY/njM1MrunoKe0yBjww3qSRAREckRm/e1dtcfLJhcwYyxZcDhMxziF1JSTYKIiEiOWB8ONZQW5jNjbBlHjQuShPjhhrqWQwspTR3GHSBBSYKIiEjGxPZsmD+pnLw8Y8a4oOZge1xPQnwR42TVJIiIiOSG9eHMhgWTKwCY0d2TcCgx2J2hhZRASYKIiEjGrOvuSTg8Sdjf2kFLe7AK467GzEx/BCUJIiIiGdHWGWHzvlYAFk6uBOguXIRDezjE9m0Y7qEGUJIgIiKSERv2tBDWIzJ/cjkAE8qLKC3MB+KThNiSzOpJEBERyQmxoYZxY4qYWF4MgJkxfWzQY7C1R5Iw3NMfQUmCiIhIRsSWY14wqQIz6z4emwYZ2+hpt2oSREREckusJyE2syGme4bD/gPBQkpNmVmSGZQkiIiIZERvSUL8cENdSztdYeGCehJERERyQOOBTnaHPQSx6Y8x8cMNhy+kpCRBRERk1IvVI0Cw2mK82HDDwc4Iq3Y2AVBRXEBFSeHwBRhSkiAiIjLM1u0OPvynVZce8eEfSxIAnnx5P5CZXgRQkiAiIjLsYj0JC3vUIwCUFxcwtixIHJ58eR+gJEFERCQnNBzo4G+rawFYOOXIJAEO1SXUNgVbRE/NwMwGUJIgIiIyrD7/p9XsaW6nrCift55yVMI20+OGHEA9CSIiIqPePS/s4q6VOwG47vWLD6s/iBe/hwPA1GolCSIiIqPW3uZ2PrvsBQCWLpjI2145o9e2Rx3Rk6DhBhERkVHJ3fnMH1+g/kAnVaWFfO2Nxx22FHNPM8YdnhRkYiElgIKMvKuIiMgosGFPM1ff9BRjivM5ddZ4Tp09jlNnjWdiRfFh7f7wzA7uXxsUK37x0mOYVNn3h37P4QYlCSIiIiPMHU9uY0e4KuL62hZufXwLAJMrS8jPMyJRJ+pO/YEOAC46djKXHD+13+tOrS7FDNyDKZGZWEgJlCSIiIgM2pObg8WOTpk5lsL8PJ7ZWk9bZ7R7yeV4E8qL+dKlS/ocZogpKshjalUpOxoOZmxmAyhJEBER6dWepjbGlxeTn3fkB3tLexerdjQC8OGz57J0QQ0dXVGe397Apr2tmEF+npGfZ+SZcdLRYxlfXnzEdXozfWyQJGRqqAGUJIiIiCR06+Nb+Nydq/jAWXP49IULjzj/9JZ6og55BicdPRYIegBOnjmOk2eOG/L7L5pSyRMv72duTXn/jdNESYKIiEgPzW2dfOtv6wD436e28h+vXXBEb0JsyeRjplalpWbgY+fNY/GUSi44ZlLKrz1QmgIpIiLSwy8f3UzDgU4A6g908szW+iPaPLEpqEd45ayh9xokUl1WxFtOmUF1WVFarj8QShJERETiNB7s5GePbDrs2P1rag/7ua0zwnPbGwA4NU1JQjZQkiAiIhLnF49sormtizFF+bzjtKMBuG/t4UnCs1sb6Iw4AKekoP4gWylJEBERCdW3dnDTo5sBePcZs3jzydMB2LS3lY17W7rbPflyMNSwYFIFY8dkbjgg3ZQkiIiIhH76yCZa2ruoKCngPWfMZsnUKiZVBtMWH4jrTXhyc1C0mK56hGyhJEFERASoa2nn5rAX4b2vmU1VWSF5eca5i4LZBfev2QNAR1eUp7cEhYynzlaSICIiMur95KGNHOyMUF1WyDWvntl9/PwwSVixZT/7Wzt4YUcjbZ1RAF45iusRQOskiIiI0NzW2b3vwvvOnH3YugenzxlPaWE+BzsjPPjiHvY0twMwa8IYavrZqGmkU0+CiIjkvNU7m7p7B6469ejDzpUU5nPm/AkA3L+2tnsRpdHeiwBKEkRERFi7qwmAo8aVUVV65OqJ54VDDg+t38uKzblRjwAabhAREelOEhZNqUh4/pyFNZjBgY5I97HRPrMB1JMgIiLC2l3NQLCpUiLjy4s56aix3T9Pqy5l+tiyYYktk5QkiIhITuuKRFlXGyQJi3tJEgDOW3xoo6Vc6EUAJQkiIpLjXq5rpaMrKFrsrScBDtUlwOjeryGekgQREclpa8J6hIqSAqaPLe213ZyJY7jk+KksmFTBa4+ZPFzhZZQKF0VEJKfFkoRFkysxs17bmRk3vu3E4QorK6gnQUREctqhosXEMxtymZIEERHJabHpj4un9l6PkKuUJIiISM7a29zO3nCZ5b6KFnOVkgQREclZsV6EPIP5kzTc0JOSBBERyVmxJGH2xHJKCvMzHE32UZIgIiI569ByzBpqSERJgoiI5KzYzIa+VlrMZUoSREQkJ7V1Rti4twXQ9MfeKEkQEZGctGFPC11RB9ST0BslCSIikpNiKy2OH1PExIriDEeTnZQkiIhIToovWuxrOeZcpiRBRERy0qEkQfUIvVGSICIiOcfdD81s0HLMvVKSICIiOWdXYxuNBzsBrZHQFyUJIiKSc9bsDIYaivLzmDOxPMPRZC8lCSIiknNi9Qhza8opzNdHYW90Z0REJOes3qnlmAdCSYKIiOQUd2fFlnoATjyqOrPBZDklCSIiklO27DtAXUs7AKfMHJfhaLKbkgQREckpT23eD0BlSQHzalS02BclCSIiklNWbA6GGk6eOY68PK202JeMJglmVm5mN5rZLjM7aGYrzOySJK9hZvZ3M3Mz+26aQhURkVHiqS1BT8LJM8dmOJLsl3SSYGZjzWyBmc03s6He4WXAVcB1wOuBNcAyM7soiWu8F1g4xDhERCQH7GtpZ9PeVkD1CANR0F8DM8sDLgXeDJwFTO5xfjewHPgd8Cd3jw7kjcNE4DzgCndfFh57EJgNfAu4ZwDXmAZ8HbgW+P1A3ldERHJXbFZDUX4ex06rynA02a/XJMHM8oEPAp8BpgCtwFMEH977AAPGAXOBS4C3AbvM7KvAj9090s97Xw40AnfFDri7m9ktwE/NbLG7r+nnGj8CHnb3P2gHLxER6c+KsGjxuOlVlBTmZzia7NdXT8JqYAZwB3ArwYdxwl6CsLfhbODtBN/sPwIs6ue9lwBrElzz+fjzvb3YzN4Wvufift4n/jUN/TRRWikiMoo9FVe0KP3rqybhL8Bsd7/W3Zf3NYzg7lF3f8DdrwHmAPcO4L3HA/sTHN8fdz4hM5sA/A/wWXffNoD3EhGRHHewI8KqHY0AnKKixQHptSfB3f9tMBd0993AQF/rgzx3I/Ay8P2BxgXg7tV9nQ97GtSbICIyCq3c1kBXNPhoOeloJQkD0W/hYjLMrMLdmwfYfB+JewtifUCJehkws/OBK4FzgMoetQjFZlYNtLh71wDjEBGRHPB0OPVx/qRyqsuKMhzNyJCSdRLC9Q6uI/h2P1CrgUVhPUO8Y8PnVb287hiCuJcD9XEPgA+Efz4viThERCQHqB4heQOZAlkAvAGYR/Dt/k53rwvPFRMMLXyCoAdgaxLvvYxg6uIbiJvhALwTWNfHzIbfAysTHH8Q+APBEMTzCc6LiEiOikSdZ8Lpj6pHGLg+kwQzG0fwjf0YgimPDnzTzM4DOgk+lGcDm4BPAbck8d73EHyw/8LMxhP0QlwNnEGwLkMshuXAWe5uAO6+HdieIFaA7e6+PIkYREQkB6zb3UxzezAKffLR6kkYqP56Ej5HMBXxTuB+gjURPkSwPsF0IAK8G7h1AOsiHCZcE+Ey4Kvho5pgyuMV7v7nZK4lIiLSlxVhPcKkymKmjy3NcDQjR39JwsXAn939itgBM9sIfI+gpuBMd6/v7cX9cfcmgjUVPtJHm6UDvJZWUxIRkYTi6xG0+N7A9Ve4OAP4W49jsTUQvj2UBEFERGQ4uDtPvRz0JJyiqY9J6S9JKOLQzIGYhvA5mSJFERGRjNjRcJDdTW2AZjYkayhTIAe0kZOIiEgmPbqhDoCKkgIWTq7IcDQjy0AWU/p3M3tr3M+FBLMcvmJmdT3aurtfioiISJZ4aP1eAM6YO4GC/JQsD5QzBpIknBg+ejotwbG+llIWEREZVl2RKP94Kfg+e+b8iRmOZuTpM0lwd6VcIiIyYj23vYGmtmB9BCUJyVMSICIio9ZD64NehLk15Uyr1voIyUpqgyczKyRYnrkKaARecvfOdAQmIiIyVLF6hLPUizAoA+pJMLNFZvZbgumPLwD/CJ8bzey3ZrY4fSGKiIgkr761g+e3NwAaahisgWzw9AbgdqCMYM+ElQS9CJUEBY1vAl5vZm/VcsoiIpItHtlQhzsUF+Rx6iytjzAY/W3wNAu4A9gHvNnd/5KgzeuAnwC3m9mx7p7MdtEiIiJp8XA41HDq7PGUFOZnOJqRqb/hhv8Augj2aDgiQQBw93uBswg2e/pEasMTERFJnrt3JwmqRxi8/pKE84Gb3X1zX43C8zcDr01JVCIiIkPw4u5m9jS3A3DW/AkZjmbk6i9JmA48N8BrPQdMHVo4IiIiQxfrRZhaVcKcieUZjmbk6i9JaAMGenfHAO1DC0dERGTouqc+LpioraGHoL8kYQ1w0QCvdRGwdmjhiIiIDE1rexcrNgcbGJ85T/UIQ9FfkvC/wPlmdm1fjczsGuACgpkQIiIiGfP4pn10RKLk5xmvmqt6hKHoL0n4MUGtwU/N7DYzO8fMqi1QHf58G/DzsN2P0x2wiIhIX2L1CCfOqKaqtDDD0Yxs/W3w1BGug/B74K3AlQmaGfAowToKHakPUUREZGAOdHTx5+d3AZr6mAr9rrjo7nuAM8OVF98ILCFYbbEJWAX80d3/lNYoRUREBuC2J7ayv7WDooI8rjxlRqbDGfH6W3GxJkwSCJdc7nPZZTO72N3/L4XxiYiIDEhbZ4SfPLwJgLedMoOaypIMRzTy9VeTsNrM3tzfRcysysx+BdyVmrBERESSc8eTW9nb3E5Rfh4fWDon0+GMCv0lCfuBO8zsDjMbn6iBmb0eWA28HfhZiuMTERHpV3tXhB8/FPQivOnk6UypKs1wRKNDf0nC8cD3gTcDL5jZpbETYe/BLcCfCPZ3uMDdP5C2SEVERHrx+6e3s7upjYI844NnqRchVfpMEty9zd0/CpxLsJriH83sV2Z2JUHvwTsIpj8ucff70x6tiIhID52RKD9avhGAy0+cxoxxZRmOaPTod3YDgLsvN7NjCdZBuCp8bCPoPVByICIiGbPs2R1srz9InsGHz56b6XBGlf6GG+KdDpxJsC6CE+zVkLBOQUREZDh0RaL84MENAFx6wjRmThiT4YhGl36TBDMbY2Y/Bu4lSBAuAl4N7ANuM7PfmZnWvRQRkZRqauvk2/et5+kt+xOed3f++y8vsmXfAUy9CGnRZ5JgZmcDLwDvA35NUHtwr7s/QVDU+D/A5QRTJd+Y7mBFRCR3/G7Fdm584CWu/Mnj/PGZ7Uecv/GBDfz8Hy8DcPXpM5lboy2hU62/noT7gRLgUne/2t0bYyfcvd3dPw6cDTQDvzWz29MXqoiI5JKt+1oB6Io6H//tc/zgwQ24OwA/f2QT37l/PQBvOH4qn7t4ccbiHM36K1y8A/iIu9f31sDdHzGz44BvAO8H3pbC+EREJEftbmoDoCDP6Io63/jrOnY1HmTRlEq+fPdaAM5bVMO333I8+XmWyVBHrf42eLpqIBdx9wPAh83s9ymJSkREcl5tUzsAH1o6h837DvCn53by68e3dp9/1ZzxfP9fXkFhfjI1+JKMlN5Zd38wldcTEZHcVRv2JEwfV8Z3rzyB9581u/vciUdV87N3nkxJYX6mwssJvfYkmNl8d18/mIua2QJ3Xzf4sEREJJdFo86e5qAnYXJlCXl5xmcuXMTiKZW8sL2Rfz1nHmOKB7TUjwxBXz0Jq83sJjNbMtCLmdmJZnYrwRbSIiIig1LX2k4kGhQpTorbzfHSE6Zx3cWLqSorzFRoOaWvNOwNwLeA58zseeBu4ClgI8HGTwaMA+YBpwEXAouBNcDFaYxZRERGuT1hPQIEPQmSGb0mCe5+r5ndB7wF+BDwnwQrLfYUKyldDrwV+IO7R1Mcp4iI5JDdjUE9QnFBHpWlGlbIlP5mN0SA24HbzWwScBZBb8FEgoRhL8HQwkPuXpfmWEVEJEfEpj9OrirBTNMbM2XA6Zm71wK/TWMsIiIiAOwJk4RJFRpqyCRNLhURkawT60mYVKUkIZOUJIiISNaJLaQ0ubI4w5HkNiUJIiKSdWILKU3SzIaMUpIgIiJZR0lCdlCSICIiWaWtM0L9gU5ASUKmKUkQEZGsooWUsseAkgQzKzeziJl9Lt0BiYhIbqttbuv+c40KFzNqQEmCu7cADcCetEYjIiI5L7baYnVZoXZ5zLBkhhseJFhxUUREJG1iRYsaasi8ZJKE/wDOMLMvmFllugISEZHcFksSapQkZFwyu2Y8AJQA1wHXmdle4ECPNu7uc1IVnIiI5B4tpJQ9kkkStpJ4F0gREZGU2a01ErJGMhs8LU1jHCIiIoAWUsomWidBRESyhrsrScgiyQw3AGBmc4BLgdnhoU3AXe6+MZWBiYhI7mk62EVbZxTQ7IZskFSSYGZfAj4N9Jy4+nUz+6q7X5+yyEREJOfEL6Q0qUqFi5k24OEGM3s38FngCeByYF74uAz4J/BZM7smDTGKiEiOiC2klJ9njB+jJCHTkulJ+DBBgrDU3bvijm80s3uAR4CPAL9MYXwiIpJDutdIqCgmP88yHI0kU7i4CLijR4IAQHjsjrCNiIjIoGghpeySTJLQAZT3cb4ibCMiIjIou7uXZNZQQzZIJkl4Cni/mU3qecLMaoD3EQxHiIiIDEpstUVNf8wOydQkfIlgaea1ZvYLYE14/BjgGoKehKtSG56IiOQSrZGQXZJZcfFhM7sC+D7w7z1ObwWudvdHUhmciIjkFu0AmV2SWifB3f9sZncDJwGzAAM2As+4ezQN8YmISI7oikTZ26zhhmwyoCTBzMqB54Dvuft3CeoTnkpjXCIikmPqWjqIhtsITtZCSllhQIWL7t4CjAda0huOiIjkqthQA2gKZLZIZnbD48DJ6QpERERyW2z6Y1lRPhXFSW8tJGmQTJLwaeAtZnaNmWkZLBERSak9cTMb9DGTHZJJ1b4N1AM/J9jQaSNwoEcbd/dzUxWciIjkjt3dSYLqEbJFMknCbMAJpjsCHLGokoiIyGDFFlLS9Mfskcw6CTPTGIeIiOQ4LaSUfQZUk2Bm5Wb2dzO7Nt0BiYhIboptE60kIXskMwXylDTHIiIiOUw9CdknmdkNK9FW0CIikgZNbZ00tXUBMLlKSUK2SCZJ+DzwXjM7O13BiIhIblq/u7n7z3NryjMYicRLZnbD2wlmNtxvZs8B60k8BVJ1CyIikpQXwyRhalUJVaWFGY5GYpJJEt4V9+cTwkdPDihJEBGRpKwLk4QFkysyHInEG/Bwg7vnDeCRn8ybh7MmbjSzXWZ20MxWmNklA3jdtWb2qJntNbMOM9tmZreb2eJk3l9ERLLDoSShMsORSLxkahLSYRlwFXAd8HpgDbDMzC7q53UTgPuB9wLnA58j6Nl4wszmpi1aERFJOXfnxd1NACxUT0JW6XO4wcymAvvdva2vdmHbScAx7v73gbxxmAicB1zh7svCYw8SrOz4LeCe3l7r7l/rceghM3scWAv8C/DFgcQgIiKZt7uprXtmg4Ybskt/PQnbgCtiP5hZlZk9b2avTND2POC+JN77cqARuCt2wN0duAVYOIihg7rwuTPJ14mISAbFihYL8ow5EzWzIZv0V7jYcxuuAmAJkIr/ikuANe4e7XH8+fjzfQZnlh/GNBP4GlBLkGT01r6hn5iq+jkvIiKD0NEVJT/PyM87cnfHWD3C7IljKCrI9Ci4xMvkht3jCaZR9rQ/7nx/auParQfOdvedKYhNRERS5GBHhPO/8xCF+Xn85aOvoaTw8Bp3FS1mr0ynbD7IczHnAqcTFD82Ag+a2TG9XtC9uq9HeA0REUmhVTsb2V5/kJfrWvnnpn1HnI8NN6hoMftkMknYR+LegnHh8/4E5w7j7s+5++PufhtwDkFi8dXUhSgiIkO1YU9L958fXr/3sHOdkSgbw/MLJilJyDaZTBJWA4vMrGcMx4bPq5K5WLgJ1RpgfgpiExGRFNnYR5Kwua6VjkhQmqaZDdlnIDUJ7zSz08I/lxB8W/+ImV3Wo12yH87LCFZnfANxMxyAdwLr3L3PosWezGwccDzwzyTjEBGRNNqw91CSsHFvK9vrDzB9bBlwaKihvLiA6WNLMxKf9G4gScIF4SPeZb20HUgdQcw9wIPAL8xsPPAycDVwBnBprJGZLQfOcneLO7YSuBVYB7QSJCj/DygDvpREDCIikmYb45IEgIfX1/Evpx4FHCpanD+pHLMjZz5IZvWXJMxK1xu7u4e9EV8NH9UEwwVXuPuf+3n548A1wFFAKcEsh4eAK909qWEKERFJn7bOCNvrDwIwqbKY2qZ2Hl6/tztJeFEzG7Jan0mCu29J55u7exPwkfDRW5ulCY59II1hiYhIimza24qHfczvPH0m3/jrOh7dUEdnJEphfh7rarUcczbL9BRIEREZxWJDDRXFBbzxFdMBaG7vYuW2Blrau9i2P+hlUNFidlKSICIiaROb/jinppzJVSXd0xwfXr+X9bXN3e3Uk5CdlCSIiEjaxHoSYnsynLVgIhAkCbGixUmVxVSXFWUmQOmTkgQREUmbWE/C3JogSThzXpAkPL+jkX9uDFZfVNFi9lKSICIiaRGJOi/XtQIwZ+IYAE6eOZaSwjzc4Z4XdgEaashmShJERCQtdtQfpL0rWE1xTtiTUFKYz+mzgxX5u6LBtActx5y9lCSIiEhaxOoRCvONo8aVdR8/c/7Ew9ppZkP2SmqraDM7nWBNg3kEmzP1XB7L3X1OimITEZERLJYkHD1+DIX5h76TxicJ+XnWXa8g2WfASYKZvRP4JdAJrAe2pisoEREZ+bqLFicengTMnjCGadWl7Gg4yMzxZZQU5mciPBmAZHoSPkuwV8J57r4zTfGIiMgo0T39sWbMYcfNjPMXT+LmxzZz4lFjMxGaDFAyScLRwH8oQRARkYHoOf0x3idft4D5kyp47TGThjssSUIyScJ2oDhdgYiIyOixv7WD+gOdwKGFlOKVFRV0b/Ik2SuZ2Q0/Bq4yMw0eiYhIn2K9CJA4SZCRIZmehKeBNwJPmtkPgJeBSM9G7v5wimITEZERKlaPMKWqhDHFSU2kkyySzH+5B+L+/HPAe5y38Jh6GkREctzGPuoRZORIJkm4Jm1RiIjIqLKhx8ZOMjINOElw91vSGYiIiIweh3Z/HNNPS8lmWpZZRERSqq0zwvb6g8ChPRtkZEoqSTCzMWb2BTN73sxawsfzZnaDmSldFBERNu1txcOqtZ6rLcrIksyyzOOAR4BFQB3wbHhqPnA98GYze4277095lCIiMmLEhhoqSgqYWKHldUayZHoSvggsJNjgaYq7v8bdXwNMBT4MLABuSHmEIiIyosTWSJgzsRyznvsAykiSTJJwCfBzd/+hu3evj+DuEXf/EXATcFmK4xMRkRHm2W0NgKY/jgbJJAmTODTEkMgzYRsREclRD67bw8Pr9wJwVtyW0DIyJZMk1AIn9nH+xLCNiIjkoLbOCNfftQqA02aP4+LjpmQ4IhmqZJKEPwPXmtn7zaz7dWaWZ2bvA94N/CnVAYqIyMjw/b9vYNv+gxTmG1++7FjVI4wCyay4eD1wPvBD4Atmti48vgCYCGwAPp/a8EREZCTYsKeFnzy8EYD3nzlH9QijxIB7Etx9H3Ay8N/APuCU8FEH/BdwSthGRERyiLtz3Z0v0BlxjhpXxkfOmZvpkCRFktqay92bgM+GDxEREZY9u4PHNwVL5Hzx0mMoKdQ+f6OFlmUWEZFBa2rr5Ct3rwXg9cdOYemCmgxHJKnUa0+CmZ0J4O4Px//cn1h7EREZ/R7bUMe+1g6KCvL43MWLMx2OpFhfww3LATezUnfviP3cR3sLz6ufSUQkR6zd1QzAoimVTK4qyXA0kmp9JQnvJvjQ7+zxs4iICAAv7m4CYNHkigxHIunQa5Lg7jf39bOIiMiLu4OehIVKEkalARcumtn1Zrakj/PHmNn1qQlLRESyXWt7F1v2HQBg4ZTKDEcj6ZDM7IYbgOP6OL8ELaYkIpIzYr0IAIsmK0kYjVI5BbIE6Erh9UREJIvF6hGmVpVQVVaY4WgkHfpcTMnMKoHquEPjzeyoBE3HAVcB21IXmoiIZLMXw5kNGmoYvfpbcfHfCPZsgGBmw3fDRyIGfDIlUYmISNaL9SSoaHH06i9JWB4+G0GysAx4vkcbB1qAx939sZRGJyIiWcnd1ZOQA/pMEtz9IeAhADM7Gvixuz8xHIGJiEj22tFwkOb2oAxNaySMXgPe4Mndr0lnICIiMnLEehGK8vOYNWFMhqORdElqF0gAM8sHFgJjSTA7Qns3iIiMfrF6hHmTyinI116Bo1VSSYKZfQr4NNDXAJT2bhARGeXi92yQ0SuZFRffA/wXsBK4jqCY8bvAN4D9wAqC/R1ERGSUW6uZDTkhmT6iDxDMYDgb+Gl47G53/zTBSowzUS+CiMiod7Ajwua6VkA9CaNdMknCIuB34Z9ju0EWALj7LoLE4aOpC01ERLLRS3uaiYafAupJGN2SSRIiQGv459jzuLjzm4F5KYhJRESyWGxmw8SKYsaXF2c4GkmnZJKErcAsAHdvJ1iC+TVx508hqE0QEZFRTPUIuSOZ2Q0PA68HPhP+/DvgY2ZWSpBsvB24KbXhiYhItnlRMxtyRjJJwv8Az5lZqbsfJNgWej5wdXj+bwTTI0VEZJRyd+3ZkEOSWXFxHbAu7udW4BIzqwIi7t6ShvhERCSL1Da1U3+gE1BPQi5IesXFnty9MRWBiIhI9ovVIxTkGXMmlmc4Gkm3ZBZTiprZTjN7ZS/nrzKzSOpCExGRbBOrR5hbU05RgZZjHu2S/S88HnjQzN6UjmBERCS7qR4htySbJPwH8DRwh5n9ZxriERGRLPXohjr+uno3oHqEXJFsklAHnAvcDnzZzH5pZkOuaxARkey2fN0e3n3zU7R1RjlqXBlvOml6pkOSYZD0B7y7dwLvMLMNBNMgZ5nZ5SmPTEREssL9a2r50G+eoSMSZfaEMfzmvadqpcUcMeiqE3f/AvAO4FTgcYI1E0REZBS5d9UuPvDrp+mIRJlbU84d7zuNKVWlmQ5LhsmQSlPd/TfA+QR7OFyXkohERCQrvLi7iQ/f9ixdUWfh5ArueN9p1FSWZDosGUbJJAm3ABt7HnT3fwCnASsI9ncQEZFR4LEN+4hEnZqKYm5772lM0BBDzklmxcVr+ji3kWDYQURERona5jYA5k+qYNyYogxHI5mglTBERCShvU3tANRUqgchV/Xak2BmNwEOvM/dI+HP/XF3vzZl0YmISMbEehJqKlSHkKv6Gm54F0GS8EEgEv7cHweUJIiIjAJ7wp6ESepJyFm9JgnuntfXzyIiMrrVNqknIdfpg19ERI7Q1hmhqa0LUE9CLlOSICIiR4gNNYB6EnJZX4WL1w/ieu7uXxpCPCIikgViRYug2Q25rK/CxRsGcT0HlCSIiIxwsZ6EqtJCSgrzMxyNZEpfScKsYYtCRESyyqGiRfUi5LK+ZjdsGc5AREQke+xpjk1/VD1CLlPhooiIHGGPehKEJPZuiDGzkwn2aRjLkUmGChdFREaBWE+Cdn3MbQNOEsysFPgjcAFgBEWKFp72uGNKEkRERjjVJAgkN9xwPUGC8BXgbIKk4GrgQuAR4ClgcaoDFBGR4aeaBIHkkoQ3Ab9z9+uBVeGxHe7+V+A8oIiB7e8gIiJZrK0zQuPBTkBrJOS6ZJKEGcBD4Z8j4XMRgLt3AbcDb03mzc2s3MxuNLNdZnbQzFaY2SUDeN17zOxPZrYlfN1L4XUmJvP+IiJypL3Nh1ZbnKTVFnNaMklCM4dqGJqBKDA17nwjMDnJ918GXAVcB7weWAMsM7OL+nndF4Am4DPA64BvA28BnjKz6iRjEBGROLF6BFBPQq5LZnbDRmA+gLtHzGw1wRDETWZmwBXAtoFeLEwEzgOucPdl4bEHgdnAt4B7+nj5ie6+J+7nh8xsDbAceAfwvYHGISIih4vVI1SWFGi1xRyXTE/C/cAbzSz2G/MT4HVmthF4ieAD/xdJXO9ygt6Hu2IH3N2BW4CFZtZrEWSPBCHmqfB5ehIxiIhID90zG1S0mPOS6Un4b+BWwmmP7v5DMysB3k5Qo/Az4OtJXG8JsMbdoz2OPx9/PonrnRM+r+qtgZk19HONqiTeT0RkVKptis1s0FBDrhtwkuDuLcC6Hse+TVAPMBjjgfUJju+POz8gZjYOuJGgR+O3g4xHRESAPc2xNRLUk5DrBpQkmFk58BzwPXf/bgrf3wd5rpuZlQF3AuOAM929vbe27l7dz7UaUG+CiOS42A6QKlqUAdUkhL0I44GWFL73PhL3FowLn/cnOHeYcBXIPwEnAhe5+/P9vERERPqhngSJSaZw8XHg5BS+92pgkZn1jOHY8LnX2gKAsB7iLuB04GJ3fyyFsYmI5CzVJEhMMknCp4G3mNk14ZTHoVoGVANv6HH8ncA6d++1aNHMigmGGF4DXOruD/XWVkREBu6w1RbVk5Dzkpnd8G2gHvg58PVw6uOBHm3c3c8d4PXuAR4EfmFm44GXCfaCOAO4NNbIzJYDZ7l7fGLye+C1wBeBFjM7Le7cXnffOOC/lYiIdDtstUX1JOS8ZJKE2QTFhFvDnycN5Y3d3c3sMuCr4aOaYMrjFe7+535efnH4fH34iHcL2kNCRGRQYvUIoJ4ESW4K5MxUv7m7NwEfCR+9tVma4FgqhjtERKSHWD1CRUkBpUVabTHXJVOTICIio9yecLVFbREtkNxwAwBmNgs4l2C44TfuvtnMigg2d9rt7h0pjlFERIZJbViTUFOhegRJsifBzL5GsEriTwmKBmeHp0oI6gk+lNLoRERkWO3pnv6ongRJIkkws/cD/wH8ALiAcA8H6K4t+BNHTmcUEZER5NBCSupJkOR6Ej4ELHP3jwHPJjj/PLAgFUGJiEhmHFqSWT0JklySMB+4r4/ze4EJQwtHREQyqVY9CRInmSShDRjTx/mjgYYhRSMiIhnT1hmh4UCw2qJqEgSSSxKeBC5PdCLcR+EdwKOpCEpERIZf/GqL6kkQSC5J+AZwupndChwXHptsZq8FlgPTgW+mNjwRERkuh622qCWZheRWXLzfzD4I/A/wL+HhW8PnDuC97v7PFMcnIiLDJFa0WFFcQFlR0svoyCiU1G+Bu//UzP4EvBlYSDAN8iXgt+6+Iw3xiYjIMKkNV1tUL4LEJJ0quvtu4HtpiEVERDJoT/dqiypalID2bhAREeDQ5k7aIlpikupJMLPTCXZsnAeMJ27VxZC7+5wUxSYiIsOoe7VFTX+U0ICTBDN7J/BLoJNg/4at6QpKRESGX/dqi5r+KKFkehI+C6wDznP3nWmKR0REMqC1vYvt9QcA9STIIcnUJBwN/EgJgojI6HPTP16mtSNCcUEep80al+lwJEskkyRsB9QHJSIyyuxv7eAnD28C4F2vnqmeBOmWTJLwY+AqM8tPVzAiIjL8fvjgBlrau6gsKeBDZ83NdDiSRZKpSXgaeCPwpJn9AHgZiPRs5O4Ppyg2ERFJsx0NB/nVP7cA8IGlc6gqK8xwRJJNkkkSHoj7888B73HewmPqaRARGSG+e996OiJRaiqKueZVszIdjmSZZJKEa9IWhYiIDLuXapv5wzPbAfjoefMoLdJ3PDlcMhs83ZLOQEREZHh9/a/riDrMmjCGt5w8I9PhSBbSsswiIjno6S313LemFoB/v2A+hfn6OJAjJfVbYWYzzOwmM9tuZh1mdk54fGJ4/JT0hCkiIqn0Pw+8BMCSaZVctGRKhqORbDXgJMHMZgErCGY4rCauQNHd9wInA+9JdYAiIpJaK7c18PD6vQB87Nz55OX13IZHJJBM4eJXgCiwBDgI7Olx/h7gDSmKS0RE0uT7f98AwOIplZy7qCbD0Ug2S2a44Tzgh+6+jSOnPwJsAaanJCoREUmLNTubuH9tUIvwr+fMxUy9CNK7ZJKESmBXH+eLSHLraRERGV4/eDDoRZhXU85rj5mc4Wgk2yWTJGwDjunj/GnAhqGFIyIi6bJhTzP3rAq+633knLmqRZB+JZMk/BF4t5ktiTvmAGb2RuDNwG9TGJuIiKTQDx7ciDvMHF/G64/VjAbpXzJJwlcIdoJ8Avg1QYLwaTP7J0Fy8BzwrZRHKCIiQ7a5rpW7Vu4A4ENnz6VA6yLIAAz4t8Tdm4DTCfZtOJlgr4bzgQXAD4Gz3b0tHUGKiMjQ/Gj5RqIO06pLufzEaZkOR0aIpAoNw0Tho8BHzWwiQaKw190TzXYQEZEscKCjiz8+G+zR8MGlc7S6ogzYoGcjhAsoiYhIlttRf5DOSPBd7rxFkzIcjYwk/SYJZjYFcHffHf5cAnwoQdNt7v67FMcnIiJDtKPhIACF+UZNRXGGo5GRpM8kwcwWAKuA64CvhYfHAN8kKFyMnz/TZWYr3f2ldAQqIiKDs7MhKBebXFWiaY+SlP4Gpq4B9gPfSXDuE8DZ4eNcoBl4d0qjExGRIdsZ9iRMrSrNcCQy0vQ33HAO8Cd370hw7jl3fyj2g5n9L0GyICIiWSSWJEyrVpIgyemvJ2EesHKA13oRmDukaEREJOViNQnTxipJkOT015MwBmjpcaweOBZ4ucfxprC9iIhkkZ2N4XCDehIkSf0lCQ3AYWt3unsUWJ2g7WSgMTVhiYhIKkSizu7GoHBRSYIkq7/hhheACwZ4rQvC9iIikiXqWtq710iYVl2S4WhkpOkvSfgDcJaZXdJXIzO7DDgL+H2K4hIRkRSI1SMATNHsBklSf0nCL4B1wG/N7ItmdnT8STM72sy+BNwBrAVuSk+YIiIyGLGZDdVlhYwpHvQiu5Kj+vyNcfd2M7sYuJtgQaXPmlkTQZFiZfgwgpkNF7t7e5rjFRGRJGiNBBmKfnf5cPdNwIkEGzv9A4gQFDNGgEeA/we8wt03py9MEREZjNhqiypalMEYUN9TuAX098KHiIiMEN1rJKhoUQZB+4WKiIxi3cMN6kmQQVCSICIyiu1QkiBDoCRBRGSUam3vouFAJ6AkQQZHSYKIyCi1q/HQGgna3EkGQ0mCiMgotSOc2VCQZ0ysKM5wNDISKUkQERmlYkWLk6tKyM+zDEcjI5GSBBGRUUozG2SolCSIiIxSh9ZIUJIgg6MkQURklDrUk6CFlGRwlCSIiIxSWpJZhkpJgojIKBSNevcUSCUJMlhKEkRERqG6lnY6Iw7AdCUJMkhKEkRERqFY0SLAFCUJMkhKEkRERqFYPUJVaSHlxQPa8FfkCEoSRERGIa2RIKmgJEFEZBQ6tEaCpj/K4ClJEBEZhdSTIKmgJEFEZBTaqemPkgJKEkRERiEtpCSpoCRBRGSUOdgRYX9rB6CaBBkaJQkiIqNMbKgB1JMgQ6MkQURklIkVLebnGTUV6kmQwVOSICIyysSShMmVJeTnWYajkZFMSYKIyCizIyxanKahBhkiJQkiIqNIJOo8tG4PANPHKkmQoVGSICIyitz+5Fae294IwJWnzMhwNDLSKUkQERkl9ja387V7XwTgTSdN59TZ4zMckYx0ShJEREaJr9y9hua2LqrLCvnMhQszHY6MAhlNEsys3MxuNLNdZnbQzFaY2SUDeN0ZZnaTma00s04z8+GIV0QkWz22oY47V+4E4DMXLmR8eXGGI5LRINM9CcuAq4DrgNcDa4BlZnZRP687F1gKbABWpjE+EZGs194V4bo7VwFw8tFjefNJqkWQ1MhYkhAmAucB73H3X7j734GrgX8C3+rn5V9y99nu/ibg0TSHKiKS1X7y0CY21bWSn2d8+fIl5GltBEmRTPYkXA40AnfFDri7A7cAC81scW8vdPdo+sMTEcl+e5rb+P6DGwB4zxmzWDi5MsMRyWhSkMH3XgKsSfCB/3z8+VS+oZk19NOkKpXvJyKSbvetqaWjK0pFSQEfPW9epsORUSaTPQnjgf0Jju+POy8iIn14YG2wcNLSBTWUFWXye5+MRpn+jeprVkLKZyy4e3Vf58OeBvUmiMiIcLAjwqMb6gA4b1FNhqOR0SiTPQn7SNxbMC58TtTLICIioX9sqKO9K0p+nrF0vpIESb1MJgmrgUVm1jOGY8PnVcMcj4jIiPLA2loATpk5lqqywgxHI6NRJpOEZUA18IYex98JrHP3lBYtioiMJtGo88CLQT3CeYsmZTgaGa0yWZNwD/Ag8AszGw+8TLBOwhnApbFGZrYcOMvdLe7YROCs8Me54bE3hT9vdvcVaY9eRCSDXtjRyN7mdgDOVZIgaZKxJMHd3cwuA74aPqoJpjxe4e5/7uflxwC/63Es9vMtwLtSFqiISBaKDTXMnjiGWRPGZDgaGa0yOrvB3ZuAj4SP3tosTXBsOaAlxUQkZ92/VkMNkn6Z3rtBRESStLPhIGt2NQFw7kLNapD0UZIgIjLCxAoWq0oLOenosRmORkYzJQkiIiNMrB7h7AUTKcjXP+OSPvrtEhEZQVrbu3hswz5Asxok/ZQkiIiMII+8VEdHJEpBnnHWgomZDkdGOSUJIiIjSGyo4ZWzxlFZolUWJb2UJIiIjBBtnRHuXb0bgPMXa6hB0k9JgojICLF83R6a27rIzzMuPm5qpsORHKAkQURkhPjjMzsAeM28CUysKM5wNJILlCSIiIwADQc6eHBdsD7C5SdOy3A0kiuUJIiIjAB3v7CLzogzpiifCxZPznQ4kiOUJIiIjADLwqGG1y6ZTGlRfoajkVyhJEFEJMtt3XeAFVvqAbjixOkZjkZyiZIEEZEsd9fKoBehpqKY0+eMz3A0kkuUJIiIZDF3Z9mzQZJw6QlTyc+zDEckuURJgohIFnt+eyOb6loBuFxDDTLMlCSIiGSxWC/CgkkVLJpSkeFoJNcoSRARyVKdkSh/fm4nAJe/YhpmGmqQ4aUkQUQkS33v7xvY19qBGVxyvJZhluGnJEFEJAvd9I+XufGBlwC48uQZTK0uzXBEkosKMh2ASCq4O7VN7ayvbealPS1s2NPMS7UtNLV1kp+XR0GekR8+3J2oQ9SdqDtjy4o4d2EN5x8zmWn6h1iywO9WbOOL/7cGgPMW1fCly5ZkOCLJVebumY4ha5hZQ1VVVVVDQ0OmQ5F+NLd18vz2RlZua+DZrQ2s3NZAXUv7kK977LQqzls0idKiPPa1dLC3pZ19LR0UF+Rx7RmzOHW25qhLet27ajcf+s3TRB1Omz2Om695JSWFWmFR0qO6uprGxsZGd69OdF5JQhwlCdmhrTNCVzRYoz5WqOXurN7ZxEPr9/LQur08vbWeSPTI3938POPo8WXMqyln/qQKxo8pIuIQiUbpijqRiJOXZ5hBvgXPL9W2cP/aWuoPdPYb23mLavjU6xYyb5KqzCX1/vFSHe+++Sk6IlGOm17Fbe89jfJidfhK+vSXJOi3T7JGR1eUHy7fwA+Xb6SjK0p+nlFRUkBlSSEHOrqoa+k4rL0ZzKsp54QZ1ZwwYyzHz6hibk05xQXJf+vqikRZsaWev62u5dENdRTkG+PLi5lQXsSE8mKe2ryfZ7c2cP/aPfz9xT1cecoMTps9nr3N7exr7aCuuZ2DnRGmjy1j9oQxzJwwhlkTxjChvEgV6TIgD6/fy3t/tYKOSJS5NeXcfM0rlSBIxqknIY56EjJn5bYGPvX751lX29xnu+ljS1m6YCJnza/h1NnjqCwpHJb43J17V+3ma/e+yOZ9Bwb8uuNnVPOjq16hojPp0wNra/ngr5+hIxJl5vgybn/faUyp0u+MpJ+GG5KgJCG96lraWfbMDhxn3JhixpcXMX5MEX9auZObHn2ZqEOewXtfM5sLj51Cc1snTQe7aGrrxB1OnT2O2RPGZPSbeWckyu1PbuWnD2+irTPC+DHFTKgIehuKC/LYuv8Am+sOsLuprfs1NRXF3PSuU1gyrSpjcUv2unfVLv719mfpjDhzJo7htveexqTKkkyHJTlCSUISlCSkh7vzh2d28OW719DQx7j/wskVfP1Nx3Hc9OrhCy5NDnR08eiGfXz8tytpbuuirCifG996IuctnpTp0CSL3LVyBx//7XNEos7CyRX8+j2nMqG8ONNhSQ5RkpAEJQkD4+48tnEf62ubaWnroqW9i6a2Ltq7IiyYVMFJR49lybQqSgrz2VzXymfvfIFHN+wDoKKkgKPGlbGvpYP9rR10RKIUFeTxr2fP5QNL51CYP7qW7niptplrbn6K7fUHyTO4/uLFvOvVs3ptv7mulcc37aOytJCjxpVx9PgyKoZpSEWGj7tz82Ob+dL/rSHqsGRaJbe++1TGjinKdGiSY5QkJEFJQt/cnYfW7+U7963nue2NfbYtzDcWT6nkxd3NtHdFAXj9cVP4/BsWU1NR0n295vYuivLzRvUUr73N7bznVyt4blsDADPGlXL67PGcPmc8p80ez8GOCPe8sIt7XtjNml1NR7x+3JgijplayYeWztU2wVmmKxLlvjW13P7UNprbOnnFUWM5ZeZYTjp6HBMrEvcIdEaiXH/Xam5/cisAJ8yo5pZ3v5KqUiWDMvyUJCRBSUJi7s6jG/bx7fvW8czWhu7jsyeMobqskIqSQipKCsgzY9WOQzvWxUypKuFLly7J6a72gx0RPv7blfxl1e5+244tK6SjK0prR+SIc2fOn8gnX7ugu75hT3Mbdz+/iz8/t5Ot+w9wwoyxvGbeBF49dwJzJma2fmM029vczh1PbuU3T2w9rP4k3qwJY1i6YCKvP3YKrzhqLHl5Rn1rBx/8zdM8vmk/ABcdO5lvvvl4yoo0i0EyQ0lCEnIhSahtamPNziZe3N3Mi7ubeHFXM/UHOlg4pZLjplVx3PQqlkyrYn9rB09t3s+KzfU8tXk/e5oPLVT06rnj+bfz5nPyzHEJ32NfSzvPbm3g6a31VJYU8o7Tj9ZULoJka9WOJh7bWMc/N+3jqZf3dycCkytLuPDYyVx07BROOmosZrCvtYMt+w6wua6V257cytNb6ruv9bpjJtPU1snjm/aRYLkIIEjO5k+qYGxZIdVlRVSVBslce1eUts4IbZ0RDnZGmFJVyuuWTGbOxPIjrlHf2sHDL+0l6s75iycn9d+xMxKlIM+SSlTqWtrZsKeF46dXU1o0sN4ld2dvcztNbV1UlRZSVVpIUUH/w1bRqFPX2k5BXh5VpYXk5x2Ks761g2e21vP0lnqe3Ros1NXeFaW9K0J7V5Tmtq7udTrM4JwFNcybVMEzW+pZub2BjrD3LGZSZTGvO2Yyy9fvZUs4O+b/nTuPj507j7w8JXKSOUoSkjAak4Smtk4e37iPf2yo4x8b6ti0t7X/F/Xi1Fnj+Pj587XqYIp0RaKs3tmEGSyZWtXnh4W788DaPXzjr+uOmCZaWVLAhUumcOz0KlZs3s8/Nuwb1OqT8yeVc+GSKZw+ZzwrtzXwwNpant5S352EjCnK55ITpnHVqUd192R0dEXZVNfCut3NbNzbyvb9B9i6/wDb6g9Q29TO2LJClkyr4pipVSyZVsnCyZVMrS457JvzgY4u7ltTy7Jnd/DIS3VEos74MUVc/aqZvPP0o6kuOzROH4k6q3c28uTL+1lf28yGPS28tKeF5rauw/4uZUX5VJUWUllSSGVpsNZGRUkBZsbOhoPsbDzI7sY2OiOHPuirSgsZW1aEuw9ommt1WSFXnjKDt596NDPGlXUfb++KsGpHI49u2MdfVu1mbY8hpOKCPL755uN5gzZskiygJCEJqU4S/vD0dvLzjPmTKphTM2ZQi/wk8tjGOn728CYOdES47MRpXHL8VMbEfcPrjES5f00ttz25lcc27jtiZcKCPGNuTTkLJ1ewcEolY8sKWb2ziee2N7J2ZxMdkeBb0LTqUk6eOZaTZ47jlTPHsWCyVhnMtEjUuWvlDn67YhsTK0q45PipnDl/wmG/W+7O+toWHttYx67GNhoOdFB/oJOGAx20tEcoLsijtDCfksI8igryeH57I7saE3eZA5QU5uFOd20JwOIplUSizqa6lu4P2mRUFBdQU1nM+PJiVu9oTDi0AsGH/VtPOYq5NeU8uqGORzfW9TlDJpUK8oxjplVx0lFjOXp8GSWFeRQX5FNckMeY4gJeOWvcgGppXq5r5Z4XdnHvqt20dUb45puP5/gZ1en/C4gMgJKEJKQ6STjrGw92dy3m5xkzx5exYHIFM8aVMamihMlVJUyqLKaypJC6lg72NLdR29TGnqZ2KksLOWFGNcfPqO4uaHp80z6+c996nnh5/2HvU15cwKUnTOXi46by2MY67nhqG3vjhgcK8oxXHDWWM8Kx6mOnVfXaHdvRFWXj3hYqSwu12VGOiEad57Y3cO+q3dyzahfb9h9kSlUJ5yys4bxFkzh9znjaOiP88Zkd3PbkVjbsaTniGhUlBcyrKeeocWUcNa6MGePKmFpdyq7GNlbtaGT1zkZW72ziQC/JQGG+cc7CGi4/cRrHTK3iN09s5TePb6G5vSth+xnjSjl2WhVzJ5Yzd1IFcyeWM25MEU1tnTQe7KThQPDcdLCT5rZgrY3mtk66os7UqlKmVpcytbqEKVWlRN2pbw0Sqf0HOujsirIkHHobzQW1IqAkISmpTBIiUeeqnz/O2l3NNB4c2jefuTXllBcXsHLbobhOPnosM8aVcfcLu44Y/4RD46RvOWUGZ8ydcFhPg0hv3J36A52MLStMWEvg7qzYUs99a2qpLitk4eQKFkyuZGpVSb+1B5Gos6vxIHua29nT1EZtUzt7mtuYPraMC5dMPmxYAYKhstue2MqvHttMa0eEV80ZzxnzJvCauRM5anxZL+8iIslQkpCEdNQkxIqq1tU2s253M+trm9nV2MbuxqDXoCluLHVCeRE1FSXUVBZT29TOut1NRxSlveKoav7t/PmcMXcCZkbDgQ7+8MwObntiCxv3tjKxopi3njKDK0+ZwfSx+odURER6pyQhCZkoXDzQ0UVzWxfjxhQdsZBQa3sXz29v5Nlt9eyoP8gFx0zmzHkTev2Gt7upjQnlxaNuQSIREUkPJQlJGI2zG0RERHrTX5Kgr5wiIiKSkJIEERERSUhJgoiIiCSkJEFEREQSUpIgIiIiCSlJEBERkYSUJIiIiEhCShJEREQkISUJIiIikpCSBBEREUlISYKIiIgkpCRBREREElKSICIiIgkpSRAREZGElCSIiIhIQkoSREREJCFz90zHkDXMLApYVVVVpkMRERFJu8bGRgB394SdBkoS4phZF0HvSlOKLhnLNhpTdD3pne718NL9Hj6618MnF+91JRB194JEJ5UkpJGZNQC4e3VmIxn9dK+Hl+738NG9Hj6610dSTYKIiIgkpCRBREREElKSICIiIgkpSRAREZGElCSIiIhIQkoSREREJCElCSIiIpKQ1kkQERGRhNSTICIiIgkpSRAREZGElCSIiIhIQkoSREREJCElCWlgZuVmdqOZ7TKzg2a2wswuyXRcI5mZnWtmN5vZOjM7YGbbzeyPZnZsgrbnm9nj4b3fY2Y/MbPqDIQ9apjZDWbmZrYywTnd7yEys6Vm9jczawh/v9eY2ft6tNF9TgEzO9HM7jSznWbWGt7rT5tZcY92ut8oSUiXZcBVwHXA64E1wDIzuyijUY1sHwCOAr4DXAh8PPz5KTM7LdbIzJYC9wDbgDcAnwAuAe42M/2+D4KZHQN8CqhNcG4put9DYmZXA/cDG4G3EtzHHwBFcW2Wovs8ZGa2EHgMmAl8jOBe/hH4CvCzuHZL0f0GNAUy5cJE4G7gCndfFh4z4BFgvLsvymR8I5WZ1bj7nh7HqoGXgb+7+xvDY08ChcBJ7h4Nj50P/A14q7v/77AGPsKF/yA+BjwFHAtUu/sJced1v4fAzGYA64Ab3P3rfbTTfU4BM7sB+Dww1903xh2/lSBBK3P3Tt3vQ3IqIxomlwONwF2xAx5kYrcAC81scaYCG8l6JgjhsQbgJWA6gJlNA04Bbo39jx22uw/YAbxxWIIdXf6N4P5+tucJ3e+UuDZ8/l5vDXSfU6ozfG7scbwxPBfR/T6ckoTUWwKsif/lCj0fd15SwMwmEtzPVeGh2L1dlaD5C+jeJ8XMZgNfBD7i7k0Jmuh+D92ZwFrgirDeJhLW2/y3mcWGG3SfU+dWYD/wIzObZWaVZnYpcDXwrfDfbd3vOEoSUm88wS9hT/vjzssQhUM4PyX4Hf5meDh2b3u7/7r3AxTe358Bf3X3O3tppvs9dFOBeQQ9CTcC5wI3Af8O/DJso/ucIu6+FTgNWAxsIuhBuBO40d0/FzbT/Y5TkOkARqm+Cj1UBJIa3wAuA65x97U9zvV2j3XvB+69wMkE/5j2R/d78PKACuBt7n5HeGy5mZUCnzCzz8e11X0eIjM7GvgzsJtgaLgBOAv4jJlF4xIF0P0GlCSkwz4SZ5rjwudE2akkwcy+QvBN66PufnPcqX3hc2/3X/d+AMxsAvB14L+A1rhpXwVAfvhzG7rfqbCPoCfhrz2O/4Wgov4V6D6n0n8TJGUnuvvB8NjyoOOM683sF+h+H0bDDam3GliUYJpMbD5/onEuGSAz+yLwn8An3f3GHqdXh8+JxgyPRfd+oKYDVQRJQn3c49UE97YeuAHd71R4oZfjFj5H0X1OpRMJasYO9ji+guDzcCG634dRkpB6y4Bqgrm18d4JrHP3NcMe0SgRdr1+Dvicu3+j53l3307wP/tV8UmamZ0LTCOYDy392wCcneDxHMFc/rOBn+p+p0TsHvVcQ+Uigm7tp3SfU2onsMTMynocPz183qH7fTitk5BiYcHXA8BxwCcJ5vFfTZAkXOruf85geCOWmf07QYHi/xEsfBKv3d2fDdudQzCX+Q8EhY1Tga8BW4FXu3tk2IIeZcxsOUeuk6D7PURmdg/wKoL5+6uBcwj+7fipu38obKP7nAJmdhnBF7l/AN8lKFxcSnC/H3L388N2ut8x7q5Hih9AJfB9guKYNuAZ4LJMxzWSH8Bygm9WiR6be7R9HfBEeO/3ElTpj83032GkP8L/BisTHNf9Htp9HUOQAO8AOgh6cj4N5Ok+p+V+n0ewwmUt0EqQmH0OGKP7feRDPQkiIiKSkGoSREREJCElCSIiIpKQkgQRERFJSEmCiIiIJKQkQURERBJSkiAiIiIJKUkQGeXMbKaZuZndkOE4JpjZr8xsZxjP8kzGk05mtjT8O74r07GIDIWSBJE0M7OxZtYWfmi8PdPxZNC3gCuBHwPv4MiVM7vFJTbxj4NmttrMvpBgWd0BCz/Ab4jbuGqw1zkhvM7MoVxHJJtpF0iR9LsKKCJYovta4NeZDSdjzgf+6u5fTOI19wG/Cv88EXgjcD3BWvsXDDKOpQRLIN9MsFXwYJ0QXmc5sLnHuYeBUqBzCNcXyTglCSLpdy3wIHAX8F0zm+PuGzMcUyZMJvltdte7e3dSZWY3Ao8D55vZSe7+dCoDTBV3jxIs5ysyomm4QSSNzOwVBN84bwF+Q/DN8ppe2rqZ3Wxmp5vZQ2bWamZ1ZvZzMytP0P4sM/tn2A2/28z+x8yOSab+wMyuNLN/mFmzmR0wsyfM7E1J/P3GmNl/mdlGM2sP4/iVmR0d1+YGM3OC7Y+vjhs+eNdA3yfGg411loc/zusRy0wzu9XMasNYNprZV+OHJszsZoJv/wAvx8VyQ3h+qpl9y8xWmll9OEy0xsw+ZWb58X8n4Jfhjw/GXefm8HzCmoSB3K+erzeza8JhlnYz22Jmn0z2vokMlnoSRNLrWoJNZP7g7q1mdjfBB+X14bfNnk4g2Onyl8BtBF3j1wJR4H2xRmZ2BsEudfXAfxN0m78FePVAAzOzLwOfBe4l2OAmClwO/M7MPuLuP+jn9QXAX8P3/D1BzcE84IPABWZ2sgfb7v6RYNOiW4FHCHbVA3hsoLH2MCd87u6VCD9knwSqgB8B6wnu3WeAV5vZue7eBfyEYAO2y4F/A+rCSzwfPh8HXEGwU+BGoBC4kOAezwbeH7b7IzCF4L/JV4G14fFee4iSuF/xPgBMAn5B8N/47cDXzGy7u9/W+y0SSZFM7zClhx6j9QGUEHyQ3Rx37FKCnSsvTNDeCT6oT+tx/G6CHojyuGNPEnRnz447Vgg8Gl7nhrjjMxMce0V47KsJ4rgTaAIq+vn7vTe8xtd7HH99ePzWBH+/m/u6ZoKYfw5MCB8LCeoRHNgGFMe1/014/KIe1/lGePzauGM3hMdmJnjfUgg2vutx/FYgAkyJO/au8DpLE7RfGp5712DuV9zrdxJszx07XkawI+E/M/37rUduPDTcIJI+VwBjCYYaYu4G9gDv7uU1/3T3x3sc+ztBr99MADObBJwC3OXum2KN3L0T+J8BxnYVwYfQLeHUxO4H8CeggqA4sC+XEyQ1/xV/0N3vBlYCl5rZUP+NuZbgQ3Evwbf1LxDUd5zr7u0A4XtcAjzr7vf0eP1/caiHpF/uftDdPbxukZmNC+/JXwmGZ08ewt9lMPfrl+7eENf2AEFNxjxEhoGGG0TSJ/YBt93M5sYdvw94s5lNcPe6Hq/ZxJH2hc/jw+dZ4fO6BG0THUtkEUGNwIt9tJnUzzVmATvdvT7BudUEQycTCJKiwboL+D6QT/DB+ElgBtAe12YiUB6+52Hcfb+Z7SIYKuhXOCTwaeCdwFyCexRvbJLxxxvM/ert92F8guMiKackQSQNzGwWcDbBh8z6Xpq9Hfhuj2ORvi7b43kojHDYo4/3POJDt5d40mm7u98f/vmvZvYXgvqBO8zsVeG3/lTG8W3gX4H/JVjHYQ/BUM8rgK8xtGLvwcTZ1++DSNopSRBJj2sIPhTeS+K5+F8m6Gn47iCuHft2uSDBuUTHEnkJeB2w1d3X9te4FxuB15lZdXyXeGgxQV1Dz56SIXH3jWb2TYLahLcRFHfuAZqBY3q2N7OxBAWGK+Mv08dbvAN42N3f2uM6cxO07es6iQz7/RIZKtUkiKRYOK78LuAFd/+5u/++5wO4HVhiZqcke313rwVWEIxhd3ejm1kh8NEBXubW8Pmr8VP74q5VM4Br3Enwb8ine7z2QuBE4E+eeAbHUH0HaAQ+b2b54Xv8GTjRzF7Xo+2nwxiXxR1rCZ/HJbh2hB7f+M1sDMFMiJ76uk4id5KZ+yUyaOpJEEm9CwjGzX/RR5s/EFTZXws8NYj3+ARBbcNjZvZDgg/NtxCs7Aj9fMt196fM7PMEhYArzex3BJX0U4CTgIvirtWbm4GrgU9ZsDTxwwTj+B8CaoH/TPpvNQDu3mBm3yeYvvkvBAnPfxKs6HhneD82AGcSLAP9MIcXj8YKQ79mZr8hmCWyyt1XEUxNfL+Z/S9wP0Fdxrs5VBcS7ymCQsTPhj0WrcDL7v5EL6HfTAbul8hQqCdBJPWuDZ//2FuD8ANpPfBWMytN9g3c/SGC4YLNBB8u/0nQu/CRsMnBAVzji8DFBMnBx4AfEMz7L2YAPRLhbIrXEqwh8EqCoZO3A78DTnX3bQP/GyXtOwTf5K8PexO2AKeG7x2r9XglwUyCCz1YIyEW96PApwjWW/gZQa9ObAGpjwPfBE4Dvkfwof5Tenz7D6+zlSCBKCVYm+F2gjUPEsrw/RIZFAtn+4jIKGBmbyT4Nvw2d78j0/GIyMimngSREcgCJT2OFRJ8E+7i0NLFIiKDppoEkZGpGNgSjqmvI5g3fyXBssJfc/fdmQxOREYHJQkiI1MnweqNlxIUGxpBsvBhd/9hJgMTkdFDNQkiIiKSkGoSREREJCElCSIiIpKQkgQRERFJSEmCiIiIJKQkQURERBL6/ye/irHmdk+nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot angle vs generalization error\n", + "plt.figure(figsize=(8,8))\n", + "plt.plot(angle_sweep, un_mean_error[:, 1])\n", + "plt.xlabel(\"Angle of Rotation\")\n", + "plt.ylabel(\"Generalization Error (XOR)\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3cadecf3", + "metadata": {}, + "source": [ + "### 1000 task samples" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "df1b20ff", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAH4CAYAAADn6v8xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABkt0lEQVR4nO3dd5hU5dnH8e8tHZGlqNgBO2LvYsEeEUs0sTcsiVFjNHmNGmOiRmOiJrZoiMaCPVZUYouiiA0VFUVQVBAVRVFgkd72fv94zjhnZ2en7M7slP19rutcM3POc87cMww79zzV3B0RERGRQluh1AGIiIhIdVKSISIiIkWhJENERESKQkmGiIiIFIWSDBERESkKJRkiIiJSFGWZZJhZFzO73symm9lCMxtrZgflcN4uZnabmY0zs6Vm1uj4XDNbzcxuNLMp0XN8amb/MrM1CvtqREREWqe2pQ6gEcOBrYFzgU+BIcBwMzvQ3Z/McN5ewO7A28BSYNt0hcysPfAi0AP4I/AB0A/4E7CXmW3q7osL8kpERERaKSu3ybjMbH/gCeBQdx8e7TPgJaCnu/fLcO4K7l4X3b8WOMvdLU253YEXgFPc/dbY/pOBW4A93H1UgV6SiIhIq1SOzSWHAHOAxxI7PGRCdwAbm9kmjZ2YSDBysDS6nZOyP/FYtRgiIiLNVI7NJZsCE9MkDO/FjzfzOcYAbwAXm9lU4ENgY+BiYDTwerqTzKw2y3W7Al+4e+9mxiciIlLxyjHJ6Al8lGb/rNjxZnH35Wa2F3AX8Gbs0NPAYXnUiKSympqadYDyaoMSEREprgZdE6A8kwzI/CXd7C9wM2sH3EuoFTkJ+ITQ8fMi4DEz28/dl6ae5+7dsly3FqhpbnwiIiLVoByTjJmkr63oEd3OSnMsXycBBwJbuvu70b6XzGwSMAo4CrizAM8jIiLSapVjx88JQD8zS41ts+j2/QI8x1bA0liCkTA2um20c6mIiIjkphyTjOFAN0JNQ9zxwCR3b26nT4CvgHZmtlXK/p2i2y8L8BwiIiKtWjk2lzxJmMPiVjPrSZiM6wRgF+DgRCEzGwUMjM+DYWarAAOjh+tH+34aPZ7q7omaimHAbwgTfF0GTCbUXvwB+IbQX0NERESaoeySDHd3M/sxcHm0dSMMWT3U3UdkOb0/8GDKvsTjOwgzh+Lun5vZ9oSOnhcCvYDphEnALnH3mc1+ISIiIq1c2c34WcnMrLampqamtra21KGIiIi0pLRDWMuxT4aIiIhUASUZIiIiUhRKMkRERKQolGSIiIhIUSjJEBERkaJQkiEiIiJFoSRDREREikJJhoiIiBSFkgwREREpCiUZIiIiUhRKMkRERKQolGSIiIhIUSjJEBERkaJQkiEiIiJFoSRDREREikJJhoiIiBSFkgwREREpCiUZIiIiUhRKMkRERKQolGSIiIhIUSjJEBERkaJQkiEiIiJFoSRDREREikJJhoiIiBSFkgwREREpiopPMsysi5ldb2bTzWyhmY01s4NyOG8XM7vNzMaZ2VIz85aIV0REpLWo+CQDGA4cA1wIDAYmAsPNbP8s5+0F7A58AowrYnwiIiKtkrlX7g/4KJF4AjjU3YdH+wx4Cejp7v0ynLuCu9dF968FznJ3a2Y8tTU1NTW1tbXNuYyIiEilSfv9Wek1GYcAc4DHEjs8ZE13ABub2SaNnZhIMERERKQ4Kj3J2BSYmCZheC92XEREREqgbakDaKaewEdp9s+KHS8YM6vNUqSmkM8nIiJSySq9JgMgU6eSyu1wIiIiUuEqvSZjJulrK3pEt7PSHGsyd++W6XhU06HaDBERESq/JmMC0M/MUl/HZtHt+y0cj4iIiEQqPckYDnQDDkzZfzwwyd0ntnhEIiIiAlR+c8mTwAvArWbWE/gUOAHYBTg4UcjMRgED4/NgmNkqwMDo4frRvp9Gj6e6+9iiRy8iIlLFKjrJcHc3sx8Dl0dbN8KMn4e6+4gsp/cHHkzZl3h8BzCkYIGKiIi0QhU942e50YyfIiLSSlXljJ8iIiJSppRkiIiISFEoyRAREZGiUJIhIiIiRaEkQ0RERIpCSYaIiIgUhZIMERERKQolGSIiIlIUSjJERESkKJRkiIiISFEoyRAREZGiUJIhIiIiRaEkQ0RERIpCSYaIiIgUhZIMERERKQolGSIiIlIUbfM9wcy6A6sCDnzr7rMLHpWIiIhUvKxJhpmtABwMHAYMBFZLOf41MAp4EHjc3esKH6aIiIhUGnP39AfM2gCnAb8DVgfmA28Ck4GZgAE9gPWBbYEVgenA5cC/3H15sYMvN2ZWW1NTU1NbW1vqUERERFqSpduZqSZjArA28B/gLmB0Y7UUUW3HHsCxwJXAL4F+zYlWREREKlumjp9PAeu6+8nuPipTM4i717n7SHc/EVgPeLrQgYqIiEhlabS5RPKn5hIREWml0jaXFHQIq5mtVMjriYiISOUqSJJhZl3M7ELg00JcT0RERCpfLkNY2wIHAhsAs4BH3f276FgH4NfAOYSRJp8XL1QRERGpJBlrMsysB/A28BDwV+Am4BMz29bMtiCMQLkcqAV+RhjO2qKiWpTrzWy6mS00s7FmdlCO565nZo+a2Rwzm2tmT5rZJsWOWUREpDXIVpPxB2BT4FHgOUIScTowFFgLWA6cBNxVwnkxhgNbA+cSmmuGAMPN7EB3f7Kxk8xsVeAlYAZwArAMuBB40cy2cvdpxQ5cRESkmmUcXWJmHwMT3f3g2L4zgH8QajF2K+W04ma2P/AEcKi7D4/2GSF56Onujc7VYWZXAmcC67n7V9G+noRE5R53P60J8Wh0iYiItEZNGl2yNvC/lH2JOTCuLoN1Sw4B5gCPJXZ4yJruADbO0vRxCPBsIsGIzp0JjAAOLU64IiIirUe2JKM9kJpI1Ea35dDJc1NCTUvqRGHvxY43YGadCJOGvZ/m8HvAqlFzioiIiDRR3quwxpTDQmg9gY/S7J8VO55Od0LVzqw0x+LnzogfMLPaLPHUZDneJMOGDQNghaVL2eGee+hcW0vt+eez2ZFHsnTpUu65554G52y55ZZsueWWLFiwgAceeKDB8W233ZZNN92UOXPmMHz48AbHd9ppJzbaaCO+++47/vvf/zY4vttuu7Huuuvy9ddf8/TTDSd43WuvvVh77bX54osvGDlyZIPj++23H6utthpTpkxh9OjRDY4fcMABrLzyykyaNInXXnutwfFDDjmEmpoa3n//fcaOHdvg+OGHH07nzp0ZN24c48aNa3D8mGOOoV27drz55pt88/jj7HbzzdSusQajTz2VZR07MmTIEABeffVVPvqo/kesXbt2HHPMMQC8+OKLfPpp/ZHbnTt35vDDDwfgueeeY9q0+t17unbtyqGHhsqyp59+mq+//rre8Z49e3LggQcCMGLECGbOnFnv+GqrrcZ+++0HwCOPPML3339f7/haa63F3nvvDcADDzzAggUL6h3v27cvAwcOBOCee+5h6dKl9Y5vuOGGDBgwAEh+9uL69+/Pdtttp89eAT57EyZMaHBcnz199or92WtJuSQZ/2dmR8YetyMs8/5nM/supazH+2+0kExTlmabzrQ557a4/v/7Hxu9+CIAq/3iF7DhhrDZZk26VofJk+HLL2H77QsZYkXa6c476TpjBl1nzGCbBx/k9eOOK3VIIiJVIVvHz3xrK9zd2zQvpNyZ2WvRcw5I2b8DMAY4wt0bpLNRc8l84K/ufkHKsfMIw3V7ufuM1HOzxFO8jp/z5kHfvvBdLK+rqYGnn4Ydd8zvWg89BEccAXV1cOWV8NvfFjbWSvLOO7D11vX3vfAC7L57ScIREalQ+Xf8dPcV8txaLMGITAD6RavAxiV+3qfrc4G7LwSmkL7PxmbAt/kmGEX3r3/VTzAA5syBffaBeLXb11/Dk0/Cf/8Ly9OMKn75ZTj22JBgANxwA7Tm9Wtuu63hvpNPhvnzWz4WEZEqU9C1S0pgONCNMCNp3PHAJHefmOXcfcxstcSOaPKxA4FHChxn8yxYAFddlXx81lmw8srh/rx5sN9+cNBBsNZasPrqMHgwHHggDBwIkycnz/vww1Bu8eLkvs8/hzFjWuZ1lJtFiyDerptoq5wyBS64IP05IiKSs7ySDDNrZ2abmNlO0W3L9iBp6EngBeBWMzvJzPYws2HALsAPbQBmNsrMUn+u/40w/PVJMzvYzAYT5txYRpjFtHzcfDPMiCpW1l4brrgCXnwRVovyo4ULYcSI0Mci7pVXYIstQi3I9OkhGZmdZtTx/fcXN/5y9dhjyfejb1+46abkseuvh5deKk1cIiJVIqckw8z6mdkDhOGr44GXo9s5ZvZAqabijubE+DHwH0Ji8BSwOWFyrhFZzv0G2BX4ArgLuJ/w+nZz93IYnhssXBiSioTzz4cOHWCTTUIzydpr1y/fuXPozNk26tM7fz6cdhpstBF89lmyzOWxPOrBB5PNJ63Jrbcm7594IgwZAoMGJfeddFKo6Zk3L9mk9PXXITm54ALYc8+QxJ19Nrz5ZutudsrVsmX1a9KKZcoUuPbakCzOm1f85xORtDJ2/AQwswOB+4DOwDRgHKEGoCuwFWF68YXAkdm+2KtdUTp+3nADnHlmuL/GGqH5o2PH5PGvv4a77oJVV4VttoGNNw4JxltvwfHHw8SUFqMVVoDHH4cf/Sg0rST6eYweDbvuWri4y91nn4XaC3cwg6lTYZ11YNo06N8fUobm0aYNrLhiw/1x668PRx8dkpW+fYsZfWUaMwb23z80Sz34IOy2W+Gu7R4+6488Ag8/DO++mzzWqxdcemlIJNs2Z9S+iGSQtuMn7t7oBvQljML4HBjUSJn9gM+AeUDfTNer9g2oramp8YJZtMh9zTXdw59Q9+uuy+/8hQvdf/Mbd7PkNW66KXn81FOT+884o3BxV4KLL06+9n33rX/slluSx5qyderkPmlSaV5XuZozx7137+R71KWL+6uvNu+ac+e6P/aY+2mnufftm/3fpX9/9yefdK+rK8hLEpF60n8vNnbAw5fmPwm1Fn2ylOsTlbsxU7lq3wqeZAwdmvwDudpq7gsWNO06o0e7n3KK+wMP1N///PPJ6/fq5b5sWfNjrgTLl9f/wrv//vrH6+rcf/979402Cu9Lp071E4hddnE/5xz3Bx8MX1pDhrivtFL9L7TTTy/JSytbQ4Y0/NLv2tX9zTfzu87Che733hsSw3btGk8o2rd333//+kl6Yhs0yP2zz9Jf/6uv3P/zH/dnnnH/+uvmv26R1qNJScbHwHWZysTKXgd8kkvZat0KmmQsXuy+zjrJP4xXX12Y68YtWxaSl8RzjBxZ+OcoR889l3zNPXqEGqNsFi92/+479yVL0h9fsMD9xhuT1+3SJfx6b00++sj9008b7n/44fpf8vGErHt393Hjsl/77bdDbVu3bo0nFl26uB92WEgSvv8+nDd/vvtll4VjqWVvuCEknO4hofj1r907dqxfrlevkNBccon7rFkFe6tEqlCTkoyFwEmZysTKngQsyKVstW4FTTLGjw9/4MB91VXDH8ti+OUvk39Qf/7z4jxHuTnqqORrPvPMwl23rs69X7/ktW+4Ibfzli1z/+KLwsVRaMuXu998s/s99yS/lFPdcov7CiuE133ssaFGwD3c9uyZfE+OPdb93XdDcpfYt/LK7m+8kf66r7/uvvvujScWm2/uft557i+8EBLBxnz9dfh8x5sOIdRK/eY39WurGttWXtn91lvTvweffeb++eeNP39dnfsdd7hfeaX7vHmNlxOpXE1KMmYDv8pUJlb2TGB2LmWrdSt4c8mCBe7XXhv+wBfLSy8l/4j27Nn4L/VqMXWqe4cOydecy6/ofPzjH8lrb7JJ9vb/xYvdt902lD/33MLGUih//nPyNf361w2Pv/FGaJ5IrSm48srQNJHYt/ba7rNnh3Peesu9pqb+OQMGuA8bFhLqDz90/8lP0n/Z9+3rfumljTd5ZPLKK+4bb5w5mdhiC/cddnDv3Dn98R12CK/5pZfcf/vb5PXatGnYJJkwbFjy/F13rd5E47vv3M8/333ddd2PPjo0b0lr0aQk4xXg6UxlYmWfAl7NpWy1bgVPMlrC8uX1262feabUERXPvHnuW26ZfK1bb13455gzp37V/AsvZC5/333Jsh06lF+V/IIF4Rd8/Es23nT33Xf1m/Ua28xCH6C4MWMaNmMk+mq0aVN/X5s24Utr5MjGa1NytWiR+x/+4N62bcPk4rHHkonhsmWhA+9tt+X2GhPNK4mmmoT58xv2Ddlzz6b3sSpHs2eH9zS1b9Ipp5Q6Mmk5TUoyfgUsB07OUu7EqFxOtR7VulVkkuHufvbZyT8KQ4Y0/ut7yZLwJViJvfPr6kJ7feJ1tmvn/vLLxXmu005LPs9Pf5q57G671f+j/K9/FSempvrXv9J/md5/f/gS/tGPkvtqatzvvDPU4KSW/7//S3/98ePdDz88cyfOww8P/T0K7d133ffbL/wbPPxw5uRl/vzQGTi1xibd9rvf1T/38svTl9tvv9z6A5WT998Pn+kf/ch98GD3gw5yP+SQzH1l/v3vUkctLaNJSUZ74O0ogbgX2JMwjbdFt3tG+5dH5dpnul61bxWbZLz2Wv0/Cu3ahQ6h/fuHX/t9+tT/hbLTTpVX3XvZZfVfYzGboMaPTz5PmzbuX36Zvtz77zf8g7zTTsWLK1/Ll7tvuGEytvgXSfv27kceWT/2xx4L5y1ZEmo7unYN+7fdNnu1+TffhOaV9ddPXm/PPfMffVJsH32UbAJaY43Qz2PEiDA0PF4jlegA++23yfcBGvYvOeigymmiTB2G3NjWr5/7PvvUfz/K7d9RiiH/JMPDF+eqwGigLkomUrc64CVgtWzXqvatYpOMurqQSORSHZzYfvGLUkedu8ceqx97SwwvjddQXHRR+jLxTrfxrRi/2ptixIhkTF27hv4sjfVnSP317h6aUp59Nr9f68uXh/kzXn+9vGvMZs+uX/OxfLn7dtsl34/DDw/747WEG23kvnSp+x//WP+9+8lPMndaLRcnnpj5b8IGG7jffXeo4Zo3z32zzZLH1lknJFxSzZqWZPxQMCwcNgwYC3wU3Q4DDsr1GtW+VWyS4R76YvTr13hnN0iOHkhsI0aUOursJk6sXwuz++4t88vx/vuTz7n66g2fc+7c+r9w423+F15Y/PhyEf/Vfc45Yd/UqeH1xD8He+4Zvjxbu5dfrv++3Hln/Wag4cNDubq60Mk3XnbffcNnolw9+mj9eK+80v2//w37H3ooDAtP/Qx8/HH9zr1779165uJpnfJPMoBVMx1PU/6AfMpX21bRSUbcggVhSOW4caEX/SefJH+5xXv8r7JK+U9YdMAByXh79265X1OLF9efgyR11MHNNyePbbhh+EMdTzia0rlx6NDwZXXuueGPfnPa+996KxlP27b1h2e+804ycVtzzdDUIcERR9T/Mk5sAwbUr5mpq6tfywFh1Mp332V/jrq64iV16ZKAb74J/9cTcR51VO7Xi9eGQZjrpJxrqKQ5mpRkfAsclqlMVK4GuBNYnq1sNW9Vk2Rk8t13oS068Udj8ODy/aMxc2b9EQRvvdWyzx+vFl933VAL4B7er622Sh67+uqQEMTnjsg2KiXV3/7W8Iutc+cw6+U//5kcOpqro49OXufooxse//BD9yuuyDw3RGuUOkQ6sb3ySsOydXX1p7eH0Gl22rTGrz9yZEhKa2ry+4y89lro+HzNNekTibq60KzXvn1o1rnmmvCZqatzP/jgZHxrrBH+X+UjtXnol78s378Z0hxNSjImRf0u/gP0bKTMYMLCaXXAvzJdr9q3VpFkuLv/73/1/2gMHVrqiNKLr0Gy/fYt//zTptWf5GnttcOQyDFjkvs6dkz+0T799OT+IUNyf57bbmv4pZa6dezoftxxYYr5bH/gP/+8/hDSlk7OKt0FF9R/7w89NHP5G26oP0lY795h1tJ4P42FC8McJfHrbrllbl/WzzxTfybTwYPrz0a7eHH4bKRLUuPznEDThrgvX96wk/DppyvRqD5NSjI6RtOFLwe+Ag6OHasB7oiOTQX2znSt1rC1miTDvX5Vb6dOoe9DuYn3cP/730sTw6OP1h/22KuX+157pU8mXn89ub9Ll9xG8AwfXr+vzIABoUp6gw0aTzg22ijzl8U55yTL7r57s9+CVuf775NNZW3bhlqfbO69t+G8Hb16hYTl6afDSK90/5apc4+keuqp9DUr/fqFDsZz5oS+EtmS1ERi0FRLlzZMNE47rflznkg5yT/J+KEQ7A58GiUUdwJHxGovbgK65HKdat9aVZKxcGH9P3zrrOM+ZUqpo0qaMaP+r/FSVuv/73+Nd6h9/fVkubq6+qM37roreay2NgwDnDQp9CtZujRUl8e/QLbYIpRLmDLF/frr609Altjatw+1GqneeKN+rI8/Xqx3pbpNmBBGYOXzy/+pp9xXXDH7l318crTBgxu/3hNP1E9wU+ey6Nat4ZwmP/tZGI4bHxkCYWhxc4etL11avxkOQtOJVIumJxkevkC7AHfHhq6q9qI1JxnuYTKjeDVsOSUa8Umkdt651NGEKajjo0kgzEGSWmUcn7hphx1CO/lOOzWcARPq12Csv37jnXDr6kKCcuqpDRcn++CDZLmJE+uvM9K/v35ptrSvvgqLscX7PcWbL4YODYlmvHkl/m+YMGJE/QSjd+/wf/OeexouApfYLr00+XmsqwtJ6HHHhc7TudTG5CJdojFpUmGuLaXW7CRjH+DzqPZiWdQp9Ihcz28NW6tLMtzDL7X4r+nevdOvxNnS9tgjGdN115U6mmDs2Ppf4rfc0rDMF180XMQr27bGGrknd1OmhAX3Euf26eM+fXpYB2SttZL7e/QIv8alNJYudX/kkdCUYRYS5fiX8UEHJf+tTj21/rkvvFB/6GyfPvX/T77xRv0kpm1b99tvb4EXFVm2rP6cIpUwFF5y0bQkA1gR+FdUe/EFsB+wA/BhtO9BYOVs12kNW6tMMtzTJxqffFK6eKZPT/7KN2t8xs1SmDgxdAT8v/9rfM6AdG3kZqEdfb31Qg1EIhFZc80ww2g+3nyzfpPI1lvXn9lzxRXrN+NIaaWbqGvUqOS/V8eOyaHZH39cf5TSuuumX0juq6/C9ODbbhua81raMcckY7zjjpZ/fimG/JMMYA9gSlR7cQdQEzvWAbg6qtX4BvhJpmu1hq3VJhnuoXNaagezNdYInRzPPDP8IWmpdRriK6EOHNgyz1lI48eHL/2+fd1PPjlM7JU6v8eyZWFUSlMnNxoxouHkaom+Gs891/zXIMVVVxeSw3hTx+zZoVNvYl+vXslh0+XmzDOTcV5zTamjkcJoUpKRGFVyYIYyuwKfRGXvy3S9at9adZLh3nhP9sR21lktE8euuyaf85//bJnnrESpi5+tsEJYKEwqw913108o4jVgHTqEodLl6qKLkrGWywy30lxpvxdXILP/AP3dfURjBdz9JWDzqEnlsCzXk2q2337w1FOw/fbQvn3D4//+N8yZU9wYvvwSXn453F9hBTj00OI+XyU79VT4/e/DfTO4+Wa9X5XksMNgzTXD/W++geeeSx4bNgx22KEkYeWkZ8/k/VmzSheHFF3GJMPdj3H32dku4u4L3P0MQudQac322ANefx3mz4ePPoJHH4WNNgrHFiyAu+4q7vM/+GD4fZSIpVev4j5fpbvsspCUvfMOnHxyqaORfLRvD2ee2XD/xRfDkUe2eDh56dEjeV9JRlXLVpORF3d/oZDXkwrWti1ssAEcfDD86lfJ/UOHJpOAQli0CKZOhbFj4Zlnwi+4hCOOKNzzVLOdd4Yttih1FNIUP/85dO6cfHzkkfDHP5YunlwpyWg1Gk0yzGzDpl7UzDZq6rlShY49FlZcMdyfODHZnNFc990H3btD376w3Xahuebdd8OxNm1U9S/Vr3t3uOYa6NQpJPS33RaavspdPMmYObN0cUjRZarJmGBmt5nZprlezMy2MrO7gPebH5pUja5d4Zhjko+HDs1+zuuvh+aO3/4Wli9veHzWLDjjjFCTkc4BB9Rv9xWpVj//eWiefPTRkGxUAtVktBrmjVRdm9l+wN+BjYH3gCeAN4HJwCzAgB7ABsCOwCBgE2AicI67P1Ps4MuNmdXW1NTU1NbWljqU8jNuHGy1Vbjfrh1Mmwarrpq+7JQpsO22MDvqDnTNNXD22fXL/PrXcO214f6KK8L668PKK4fEYt11Q3n1xxApT7NmJX8E1NSA/mZWg7RVaI0mGQBm1gY4HDgd2BlIVzhx4VHAUOBhd69rVqRmvYArCSu8dgLeBs5z91dzOPdAwtoq2wAbAl+4e5805VYC/ghsHW3dgBPdfVgz4laSkclOO8GYMeH+X/8K553XsMy8eTBgAIwfn9zXqVNoBtlgg/D4o4+gf39Ytiw8fvhhNY2IVJLly8OPjcT3z9KloR+XVLK0SUa20SXL3f0+d98VWB04CriUMFx1KPAnwrDVVd19T3d/sAAJRkdgJDAQOBM4BJgLjDSzrXK4xI+BbQmJyScZyvUETiG8MU82I2TJ1S9+kbx/001Ql/JRcYcTT6yfYAAsXAgnnZQsf955yQRj113hkEOKF7OIFF6bNtCtW/Lx7KyDGKVCZazJKAUzOx24EdjG3d+O9nUAPgAmufugLOevkEh0zOxRYMtGajLMoxdvZlsC76CajOJauDCM60/8QXnqqdBZM+Evf4ELLkg+Puec0FSS6JNx3XWw+eahr0bCm2+GphURqSzrrw+TJ4f7H36YHOoulSptTUY51k8dAoxPJBgA7r7YzO4DzjOzldx9bmMn51qT4uWWXbUGnTqFmoqrrw6PL788tMV27gxffZWcGArC+P+rrgrnXHpp2Hf++dC7d7LMcccpwRCpVD17JpMMdf6sWuWYZGwKpJtv4z2gDdAPeKNFI4qYWW2WIjUtEUdFO/XUZJLx0kthSzVwIPz97+H+hReGXvPjx4eakA8/DPs7dYI//7lFQhaRItAIk1ahoJNxFUhPwuiVVLNix6VSbbghDMrQ4rX22vDAA6FTGIRZDW+/PbThxp1zTigrIpVJc2W0CiWryTAzI9RM/MDdlyXuZji1ZM0c7t4t0/GopkO1Gdncdhtcf31oIlm4MGwLFkCXLqFfRurQ1m22CU0liZqL1VaDc89t+bhFpHBUk9EqlLK5ZCApzSJm1heYSfraisQnUp/GSrfaaqE/Rj7+8Ifk9OFDh4aEREQqlxZJaxVKmWS8BWyXsu8rYAKhX0aqzQjLyX9Y5LikHHXoAHffXeooRKRQVJPRKuTcJ8PMjomGkhaEu89197Ep2xJgOLBZNKw08dztCXN0POfu3xcqBhERKRH1yWgV8qnJuAv4h5ndA9zm7u8UKaZbgTOAR8zsd4TmkbOANQizj/7AzKYCxOfBMLPeJGtI1gA6m9lPo8cT3X1irOwgYEUgcf62ZjYvuuZDhXxRIiISo5qMViGfJONI4CTgNOB0MxsH/Bu4t5C1C+6+yMz2BK4izCrakTB75z7u/lYOl9gDuD1l34PR7SXAxbH9Q4HYxAucEW3QyMQiIiJSAEoyWoW8Z/w0s7UIycYQQg3AQuAh4FZ3H13g+CqKZvwUEcnRxx+HIe0QFjVMTMwllSr/tUvScfdp7v4nd18X2Bd4nNCM8YKZTTKzc82skeU1RUREUJ+MVqJZk3G5+3PA1cAIQhazAfBX4HMzu9HMNM5QREQaii+QNmdOctFDqSpNSjLMrIeZ/crM3gXGAAcAdwO7ATsADwC/IPTZEBERqS91JVY1M1elvObJMLN9gJOBg4EOwPvA2cBd7l4bK3q8mX0G/KowYYqISNXp2TOZXMyaBSuvXNJwpPByTjKi4aJrEzp6/ge42d1fy3DK+8BKzYpORESqV48eWom1yuVTkzGHMKz0rhyHrI4A+jYpKhERqX7q/Fn1ck4y3H2LfC7s7guAz/KOSEREWgfNlVH18plWfCszOyPD8TPiU4GLiIhkpEXSql4+o0suAgZnOD4I+GPzwhERkVZDNRlVL58kYzvgxQzHXwS2b144IiLSaqhPRtXLJ8lYmbBYWWNqozIiIiLZqSaj6uWTZMwA+mc4vimZkxAREZEkJRlVL58k4zngFDNrkGiY2SaESbqeK1RgIiJS5dTxs+rlM0/GZcChwJtmdhswDnBgK8KqrEuASwsdoIiIVCn1yah6+cyTMdnM9gKGAaenHJ4AnOjuHxcwNhERqWZqLql65u75nxTmw9iAsPLqJHd/t8BxVSQzq62pqamp1UI/IiLZLVsG7drVf9ymTenikeawdDvzWiAtwd3HEZpLREREmqZt27ASa+KHWW1t/X4aUvGalGSYWWegJ2kyF3f/vLlBiYhIK9GjRzLJmDlTSUaVyWcV1hWAc4EzgdUyFFVdl4iI5KZHD5gyJdxXv4yqk09Nxl+BcwidPB8G1BVYRESaR50/q1o+ScaxwNPuvn+xghERkVZGc2VUtXwm4+oOPFasQEREpBXSXBlVLZ8kYzywerECERGRVkjNJVUtnyTjEuAXZrZ2sYIREZFWRklGVcunT8Y2wGfARDMbDnwKLE8p4+6uqcVFRCQ36pNR1fJJMi6O3T+2kTJOAdYvMbNewJXAYKAT8DZwnru/muW8NsDZwI8IK8Z2JyRGDwJXufvcWNltCYu67Qr0AeYB7wKXuvvLzX0NIiKSA/XJqGr5JBl9ixZFjJl1BEYCXQhzcswkJA4jzWyAu7+T4fROwEXAfcDNwHfAdsAfgEFmtpO7L4vKHglsC9xKmL20K/BLYLSZ/dTdHynwSxMRkVRqLqlqTVq7pJjM7HTgRmAbd3872tcB+ICwTsqgDOe2Abq5+8yU/ScQFnY7yN1HRPtWdfcZKeXaAe8D89x9mybErrVLRETyMWkSbLxxuL/eevDJJ6WNR5oq7dol+XT8TF7JbH0z29nMapoXU1qHAOMTCQaAuy8m1E7sY2YrNXaiuy9PTTAib0a3a8XKzkgt5O5LCU0ma6UeExGRIlBNRlXLK8kwswPMbDIwCRhN6AyKma1qZp+Y2U8LENOmhNqEVO8Rpizv14Rr7hndprvuD6IakwGNlTOz2kwbUIykS0SkenXvnrxfWwvLU8cTSCXLOckws92B4cAswnDWH6pGolqByYR+Ds3VM3qOVLNix3NmZusCfwJedPeXshS/AlgD+HM+zyEiIk3Uti3URL/P3JOLpUlVyKcm44+EpoQdCH0mUr0GbJ3rxSxoG99ihzN1FMm5E4mZrQI8Acyn8RExibJnAmcBl7j782mf2L1bpg2Yk2tsIiISUZNJ1conydgWuMfd6xo5Po3Mq7OmGggsjW9m1ocwmiRdbUXiU5jTJ9DMegLPAd2Avdx9WoayPweuA65x90tyjF9ERApBSUbVymcIaxtgcYbjKwNL8rjeW4ThpXFfEVZ53TRN+c0Ik399mO3CZtaDMAx2dWAPd/8oQ9lTgH8B/3T33+QWuoiIFEx8Qi7NlVFV8qnJ+IAwcVVjDiA0p+TE3ee6+9iUbQmh38dmZrZloqyZtQeOAp5z9+8zXdfMuhNqMNYG9nb3CRnKnkiYT+MWwpwcIiLS0lSTUbXyqcm4FbjezJ4DHo/2uZl1Bv4K7AQcX4CYbgXOAB4xs98RmkfOInTIPDxe0MymArh7n+hxJ+AZYAtC0tDZzHaMnTIt0WxiZocRkouxwO3ADmbJYb7uPqYAr0VERLJRklG1ck4y3H2ome0M/Bv4O6ED5n2E/hNtgNvd/Z7mBuTui8xsT+AqYCjQkTCt+D7u/laW03uRbIJJ1zn1EpLTow8m1ORsB6SbrjztxCIiIlJgSjKqVj41Gbj7sWb2MGGkxsaEL+LXgTvd/eFCBeXuXwPH5VCuT8rjqeSYHLj7EGBI3sGJiEhhqU9G1coryQBw9+GEfhMiIiLNp5qMqtWkacVFREQKRiuxVq1GazLMLNGJ8y5399jjjNz9zoJEJiIirUN8avHZs0sXhxRcpuaSYYTOnf8hzH+ReJypz4MDSjJERCR3SjKqVqYkYw+AaO6KHx6LiIgUlJKMqmXuOS8FIlmYWW1NTU1NrRb4ERHJ3aJF0KlTuN+mDSxdCqZZBCpM2n8wdfwUEZHS6tgxmWQsXw7z5pU2HimYfJZ6v8TM3s9wfLyZXViYsEREpFVRk0lVyqcm4xDg2QzH/wf8tHnhiIhIq6Qkoyrlk2T0JfMKqJOiMiIiIvlRklGV8u2T0S3Dse6ENUxERETyoySjKuWTZEwADk53wMLypQeRuaZDREQkPSUZVSmfJONWYEczG2ZmqyR2RvdvA3aMyoiIiORHSUZVymep93+b2UDgeOA4M5tOmOFzDcL42PvdfWhxwhQRkaqmJKMq5dUnw92PBY4E/gvMAeYCjwOHu/tRhQ9PRERaBSUZVakpS70/ADxQhFhERKS1UpJRlTTjp4iIlJ6SjKqkpd5FRKT0lGRUJS31LiIipackoyrls9T7noQkQkREpLCUZFSlTElGb2B04oG7jyp6NCIi0jqlJhnuWu69CmTq+Hk7MCDxwMyWm9nRxQ9JRERanY4dwwawbBnMn1/aeKQgMiUZ84HOscdKKUVEpHjUZFJ1MjWXTADONLNvgcS/9sZmtlumC7r76EzHRURE0ureHaZPD/dnz4a11y5tPNJsmZKMC4CHgUeixw78PtrSsaiMVmIVEZH8qSaj6jSaZLj7C2a2LrAdsDphCOvNwGvFDsrMegFXAoOBTsDbwHnu/moO514AHAr0BboAXwHPApe6+xdpym8JXATsBqwITAPudPc/FeTFiIhIbpRkVJ1Mk3GtA3zr7s9Gjy8BnnT3x4sZkJl1BEYSEoQzgZnA2cBIMxvg7u9kuUQ34CFCc89coB9wIXCAmfV39x8+uWa2DzACeBQ4MSq/HmHRNxERaUlKMqpOpuaST4HjgHujx1MJnUGL7SSgP7CNu78NYGYvAh8AlwODMp3s7uem7BplZp8CTwEHEk0WZmYrAncBt7n76bHyLxTiRYiISJ6UZFSdTKNLlgLtYo8HAr2KGw4AhwDjEwkGgLsvBu4D9jGzlZpwze+i26WxfYcRXs8VTQ1UREQKSElG1cmUZHwKHGRmNbF9LTHj56bA+2n2v0foVNovl4uYWVsz6xT1ubgW+JCwLH3CbsAsYCMzG2dmy8xshpn9y8y6NnLN2kwbUJPuPBERyYGSjKqTKcn4B6FWYZaZLSckGHdHk3I1ti0rQEw9CV/+qWbFjmdkZl0ItRYLgHcIzUJ7unu8uWcNwjwgDwH3A3sTajWOA54001RzIiItSklG1ck0uuSfZjYR2IcwuuQE4GVgSiGeOPoSrzfc1d0TSUqmGpNcalMWEEbFtAc2Bs4j9M3Y3d2jQdisAHQELnH3v0b7RpnZIuAGYC/guZT4umV6UtVmiIg0g5KMqpOp42divZJRAGY2BLjJ3e/NcEo+BpLSydLM+hJGk6SrregR3aar5ajH3euAsdHDV83saULzz/nAWdH+mdHtMymnPxXdbk1KkiEiIkWkJKPqZEwyUvQFvi3gc79FqG2I+4ow9HTTNOU3A5YT+lbkxd2/MrNpwIax3eOBI9MUTzST1OX7PCIi0gxKMqpOpj4ZmNkAM+sJ4O6fufuCDGXXNbOTcn1id5/r7mNTtiXAcGCzqMNm4trtgaOA59z9+1yfIx4bYVXZT2K7hxOaXvZPKZ54/Hq+zyMiIs2gJKPqmHvjXRyiDp/HJZpIzKwHYb6MA1LXKDGzYwgzZTZrWvFoMq63Cf0lfkdoHjmL0EdiF3d/K1Z2KoC794ke9wbuJnTk/ARYRqgV+Q1h5tDt3H1q7PyhhEm4/gy8CmwDXAyMcvfU5COX2Gtrampqamtr8z1VREQWLoTO0bqc7drB4sVa7r1ypP2HytZcknqSEWbizKeZJS/uvsjM9gSuAoYSko23gX3iCUYjaoHJwK8Io0faAV8S+llc7u6fpZQ/kzCN+MnAH4BvCJ0+/1iQFyMiIrnr1Ak6dAjJxdKlsGABrLhiqaOSZihastAc7v41YShptnJ9Uh7PAYbk8TzLCLUYf84vQhERKYru3eHrr8P92bOVZFS4jH0yREREWpT6ZVQVJRkiIlI+lGRUlaYmGS0xvbiIiLQ2SjKqSi59Mv7PzBLzSbQjJBh/NrPvUsqtWdDIRESk9VGSUVVySTK2ira4HRspqxoOERFpOiUZVSXbtOLqsyEiIi1HSUZVURIhIiLlQ0lGVVGSISIi5UNJRlVRkiEiIuVDSUZVUZIhIiLlQ0lGVVGSISIi5UNJRlVRkiEiIuVDSUZVySnJMLNOZna8me1Q7IBERKQVS00yXNMvVbJcazIWA/+m4aRcIiIihdOpE7RvH+4vWQILF5Y2HmmWnJIMd68DvgC6FjccERFp1czUZFJF8umTcQdwnJl1KFYwIiIiSjKqRy5rlyS8ChwKjDOzfwIfAwtSC7n76ALFJiIirZGSjKqRT5LxbOz+dTRcDM2ifW2aG5SIiLRiSjKqRj5JxolFi0JERCRBSUbVyDnJcPc7ihmIiIgIoCSjimgyLhERKS9KMqpGXkmGma1tZreZ2TQzW2Jme0b7V4n2b1ecMEVEpNVQklE1ck4yzKwvMBb4CTCBWAdPd/8W2BY4pdABiohIK6Mko2rk0/Hzz0AdsCmwEJiRcvxJ4MACxSUiIq2VkoyqkU9zyd7AP939CxoOXwX4DFirIFGJiEjrpSSjauSTZHQFpmc43p78akYaZWa9zOwOM/vOzOab2UtmNiDHc4eZmafZxqSUW8nMrjKzkWY2OyozpBDxi4hIMyjJqBr5JAVfAP0zHN8R+KR54YCZdQRGAl2AM4GZwNnASDMb4O7v5HCZecA+KfvmpjzuSehD8g6hqefoZoQtIiKFoiSjauSTZDwC/MLMbiVZo+EAZvYT4DDgogLEdBIhmdnG3d+Orv8i8AFwOTAoh2ssd/cxWcp85u7do+tviZIMEZHy0KNH8r6SjIqWT3PJn4FpwOvA3YQE43wzew14AHgX+HsBYjoEGJ9IMADcfTFwH7CPma1UgOfA3dP1KxERkVKLL/e+eLGWe69gOScZ7v49sBNwC2G4qhGaJDYC/gns4e6LChDTpsD7afa/Rxg22y+Ha3Qxs2/MbLmZfWZmfzezLs0NzMxqM21ATXOfQ0Sk1dNy71Wj0eYSM9sN+CCaAwP4IdE4CzjLzFYhJBrfFrhWoCcwK83+WbHjmbwLjCMkKm0IidCZwK5mtrO7Ly1QnCIiUizdu8M334T7s2fDGmuUNh5pkkx9Ml4AjgPuBTCzKcDZ7v44/DABV5OZmZGyYqu7L0vczXBqxoTG3a9J2fWMmU0CbgaOIDT1NIm7d8t0XLUZIiIFEq/JmJXud6dUgkzNJYuBDrHHfQgjPgplILA0vplZH8JoknS1FYmeQE35tN1NmEhspyacKyIiLa137+T9994rXRzSLJmSjI+AE8xsCzNbJ9rX08zWybTl8dxvAdulbF8RpizfNE35zYDlwId5PEeCRbd1TThXRERa2g47JO+PyTZYUMpVpuaSywhNJYlRHg5cG22ZtMlyPFzMfS5hLZR6zGw4cIOZbenu46J97YGjgOeifiH5OpaQUOmTKiJSCXaKVTy/9lrp4pBmaTTJcPeHzOxdYHdgdcIcGI8SRnkU063AGcAjZvY7QvPIWcAawOHxgmY2NYq1T/S4N3AXYbjrZELCszfwS+A14P6U8wcBKxKaggC2NbN50TUfKvQLExGRHG21FXToEIawTp4M334Lq6xS6qgkT5brwBAzqwOOdfd7ixsSmNlqwFXAYKAjoTblfHd/OaXcVKiXZHQnJClbA70IzSRTgAeBv7r7wjTn9yYNd7d0+7PEXVtTU1NTW1ub76kiIpJqwIBkLcbjj8OBWoOzjKX9zsx5xk93z2firmZx968JI1uyleuT8ng2cGgez9MnayERESmNnXZKJhmvvaYkowLlnDiYWU8z65eyr6+Z/cPM7jGzHxU+PBERabV23DF5X50/K1I+zSV3Axu6+/bR4y6EkR6JGVLqgD3dfXQxAq0Eai4RESmgadNg7bXD/RVXhNpaaFuQxb6l8NI2l+TTBLIT8FTs8RGEBGP/6PYD4NymRiciIlLPWmvBmmuG+/Pnw4QJpY1H8pZPktEL+Dz2eBAw1t2fjvpQDAO2KmBsIiLS2mkoa0XLJ8lYCnSKPR4IvBh7XEv2dUVERERyF08y1C+j4uSTZHwE/MSCgwjTfI+MHV+bpk35LSIikl6886dqMipOPknGjYTai9nAQ4T5J+JJxm7A+MKFJiIird7WW0O7duH+Rx/BzJmljUfyknOS4e53AscTEou7gUGJZdPNrCdh9dEHihGkiIi0Uh07htk/E15/vXSxSN7ymmDL3e9295+4+0nu/kls/0x338bdby18iCIi0qqp82fFarFZPEVERJpEk3JVrLxmNYmWcj8V2IAwkiR18g13970KFJuIiEj9mozXX4fly6FNTgt+S4nlnGREK5YOB9oDc9FIEhERaQnrrAOrrw7Tp8PcuTBxImy2Wamjkhzk01zyF+A7YHt3r3H3vum2IsUpIiKtlZmaTCpUPknGxsC17j62WMGIiIikpc6fFSmfJONbYEmxAhEREWnUdtsl70+cWLo4JC/5JBl3AT8pViAiIiKN6tUreX/27NLFIXnJZ3TJMGAPM3sMuA74FFieWsjdP0/dJyIi0izduyfvK8moGPkkGR8CThi2ekCGchpXJCIihdWtW/L+7NngHjqESlnLJ8n4EyHJEBERaVkdO4Zt0SJYtgzmz4cuXUodlWSRc5Lh7hcXMQ4REZHMuncPc2UA1NYqyagAmlZcREQqg/plVJy8phUHMLM2hDkzupMmSXH30QWIS0REpD4lGRUn37VLzgPOB7pmKKaOnyIiUnhKMipOzs0lZnYKYWrxccCFhFEm1wJXEdYxGQucVPAIRUREQElGBcqnT8YvgDHuvgdwc7TvCXc/H9gc6INqMUREpFiUZFScfJKMfsCD0f3EUNa2AO4+nZB4nFWIoMysl5ndYWbfmdl8M3vJzAbkcX57MzvXzCaY2SIzm2lmo8xsw5Ry/c3scTObEz3PaDPbrRCvQURECix1rgwpe/n0yVgOzI/uJ257xI5PBTZobkBm1hEYCXQBzgRmAmcDI81sgLu/k+X8tsAIYDPgr8C7QA0wAOgUK7cu8AowDfh59JrOAJ41sz3c/dXmvhYRESmgeE1GbW3JwpDc5ZNkfA70BXD3xWb2BbAr8J/o+HaEvhnNdRLQH9jG3d8GMLMXgQ+Ay4FBWc4/C9gZ2Nzdp8T2P55S7nygPbBPVBODmT0NTCT0M9m5ma9DREQKSc0lFSef5pLRwODY4weBU83sNjMbBpwCPFmAmA4BxicSDAhJDXAfsI+ZrZTl/DOBB1MSjHR2At5OJBjR8ywDngIGmNnqTYpeRESKQ0lGxcmnJuM64F0z6+TuC4GLgA2BE6Lj/yPUDjTXpsALafa/R+hY2g94I92JZrYO0Bv42MyGAkcCK0bnXuTuT8SKtwcWp7lMYt+mwPT4ATOrzRJ7TZbjIiLSVEoyKk4+04pPAibFHs8HDjKzGmC5u88rUEw9Sd/sMit2vDFrRLfnAeOB4wl9SX4DjDCzQe7+TFRmIrCrmXV29wWxaySaSVZuSvAiIlIkSjIqTk5Jhpl1Aa4HnnL3B+PH3H1OU57YzIyUIa9RcwVkXogt07FE888SYJC7z42e63ngY+APQCLJuAE4GLjTzM4ldPz8FbBDdLyuwRO7d8vw3ImaDtVmiIgUg5KMipNTn4yoluJIMs/0ma+BwNL4ZmZ9CKNJ0tVWJEayZOpcOjO6fTWRYAC4+yJCE8zWsX0jgROB3YHJwNfAjwmJCMBX+bwYEREpMiUZFSefjp8TCRNuFcpbhBEp8e0rYAKhP0SqzQhNHx9muOZkYEEjx4yU2gl3vwNYDdgE2MDd+0flFkTxiYhIuejUCdq1C/cXL4aFC0sbj2SVT5JxJXBa6oRWTeXuc919bMq2BBgObGZmWybKmll74CjgOXf/PsM1lxHmyNjZzLrGzu8E7AG8nu4cd//A3T8xs26EOTNuT+mnISIipWamuTIqTD6jSzYGvgDGm9l/CX0cUr+I3d0vbWZMtxImxXrEzH5HaB45i9Cp8/B4QTObGj1pn9juPxLm0njGzK4k1H78GlgVOCJ27urRdV8F5hFGrZwL1AIXNPM1iIhIMXTvDjNmhPuzZ8Pqmm2gnGVMMsxsCnCWu48ALo4dOqSRUxxoVpLh7ovMbE/ChFhDgY7A24RJs7I2Ybj7R9HU4FcAdxI6l74B7OXur8SKLiX00TiZ0FlzGmFisT9nqi0REZESUr+MipKtJqMPkJj8qm9xQ0ly96+B43Io16eR/e8C+2U59ztg36bEJyIiJaIko6LkM0/GZ8UMREREJCslGRUln46fIiIipaUko6LkUpPRM5quOyfu/nkz4hEREWmckoyKkkuScW205cJzvKaIiEj+unVL3leSUfZySQheBrKtaCoiIlJ8miejouSSZNzk7vcWPRIREZFs1FxSUdTxU0REKoeSjIqiJENERCqHkoyKoiRDREQqh5KMipKtT8YewActEYiIiEhWSjIqSsYkw91fbKlAREREsurSBdq0geXLYcECWLIE2rcvdVTSCDWXiIhI5TCrP1eGhrGWNSUZIiJSWdRkUjGUZIiISGVRklExlGSIiEhlUZJRMZRkiIhIZVGSUTEaHV1iZsc35YLufmfTwxEREclCSUbFyDSEdRhhVVWL7fPYfUuzD0BJhoiIFI+SjIqRKcnYI+VxO+AKoCfwL2AiIdHYBDgV+A44rwgxioiIJGm594rRaJKROhGXmV0CdAQ2c/e5sUOPmdmNwBhgV2BkMQIVEREBtNx7Bcmn4+eJwO0pCQYA7v49cHtURkREpHjUXFIx8kkyVgHaZDjeBli1eeGIiIhkoSSjYuSTZHwI/MzMuqceMLMewM/QYmoiIlJsSjIqRrZVWOMuBh4BJpnZbcAkwsiSfoRmkh7ATwsdoIiISD1KMipGzkmGuz9mZj8FrgPOTTk8DTjC3R8tYGwiIiINKcmoGHnN+Onuw4E+wA7AUcDR0f0+7v5woYIys15mdoeZfWdm883sJTMbkOO5K5jZb83sIzNbbGZfmNmVZtY5pdy2ZjbUzN43s3lm9rWZPWNmuxTqdYiISBF07RpWYwWYOxeWLSttPNKonJIMM+tiZpPN7Gx3r3P3N939fnf/T3S/rlABmVlHwjDYgcCZwCHAXGCkmW2VwyWuA/4KDAcOAP4OnAbcn1LuSGBb4FbgQMJcHysAo83s0Oa/EhERKYoVVoCamuRjDWMtW+aeOmFnIwXNaoFz3P2WogZkdjpwI7CNu78d7etA6FQ6yd0HZTh3bWAq8A93Pzu2/wTCDKb7uvuz0b5V3X1GyvntgPeBee6+TRNir62pqamp1QdeRKS41l0XPv003P/4Y1h//dLGI5ZuZz7NJWMIv/yL7RBgfCLBAHD3xcB9wD5mtlKGc7cnvKb/pux/PLr9oWNqaoIR7VsKvAus1bTQRUSkRahfRkXIJ8k4HzjczE40s7QZS4FsSqhNSPUeYS6OfhnObR/dLk7ZvyR27UZFNSYDGnl+EREpF0oyKkI+Q1ivBmYDtwBXmtlkYEFKGXf3vZoZU09gVpr9s2LHGzMxuh0AvBTbn+g0unKW574CWANIuwJt1GSUSU2W4yIiUghKMipCPknGuoR5MT6PHvdqzhNHtSH1ZhB190QX4UwdRRo95u7vmtlo4Hdm9gmhA2l/YCiwHGi0g6qZnQmcBVzs7s/n9CJERKQ0lGRUhHzmyehT4OceCLwQ32FmfYGZpK+t6BHdpqvliDuM0MnzoejxEuAaYG9gTroTzOznhFEp17j7JY1d2N27ZXriqKZDtRkiIsWmJKMi5FOTUWhvAdul7PsKmED6vhObEWojPsx00ahD5/5mtiqwGvAZsBA4gzCctR4zO4WwdP0/3f03eb4GEREpBSUZFaFkSUa0muvY1P1mNhy4wcy2dPdx0b72hMm/notWfM3l+jOAGdH5vyY0zdya8lwnAjcT+pmc2eQXIyIiLatbt+R9JRllK68kw8zWA35NmOWzOw1Hp7i7r9fMmG4l1Do8Yma/IzSPnEXokHl4SjxToyftE9v3C0KNxyeEJpb9gSHAz9z9i1i5wwjJxVjCMvU7xAfNuPuYZr4OEREplnhNhuYmKls5JxlmthnwMtCBsDjauoSmjZ6EZonJhDVMmsXdF5nZnsBVhA6bHYG3gX3c/a1cQgV+A/QGlhKSiH3dfWRKucGEJGk74NVGriMiIuVIzSUVIZ8ZP4cDu0TbTEJTxN7u/ryZ/Qy4HBjo7hMzXKaqacZPEZEW8uabsP324f7WW8NbufwGlSJq9oyfuwA3u3tiifcfLuru/waeIqwZIiIiUlyqyagI+SQZKxGaRCA5g+aKseOvEBIRERGR4lKSURHySTK+IfS9SIwMmQ9sGDvenZTJtURERIoivgrrnDlQV7DFwKWA8hldMo7681q8CJxlZm8QkpVfEhYXExERKa62bWGllWDuXHAPiUa8dkPKQj41GfcCPc2sU/T4D4TZLV8gTN/dDbigoNGJiIg0RsNYy17OSYa73+/uu7n7wujxO4R1QX4N/ArY3N1fLk6YIiIiKdQvo+w1a8bPaHKr6wsUi4iISO7iScasbMtaSSnkXJNhZueY2VbFDEZERCRnvWKLgU+fXro4pFH51GRcCXi00uiLwPPA86158i0RESmhNddM3v/yy9LFIY3KJ8nYBNgL2BPYDfgxIemYQej8mUg6phQ6SBERkQbiScZXX5UuDmlUzkmGu39IWGb9RgAz2xLYI9r2B44gzARayuXjRUSktVBNRtnLZwhrqm+AbwmrpM4lTDG+vBBBiYiIZKUko+zlswprN0KtxV7RtiGh5uIdwhwazwMvFT5EERGRNNZYI3lfSUZZyqdp41tCzccHwLPA74BR7l5bhLhEREQyiycZ06fD8uXQRqtblJN8mkvaEGouFgILom1xMYISERHJqmNH6Nkz3F++HGbMKG080kA+ScYawAnAe8DhwNPAbDN70cwuMrNdzUydPkVEpOWoX0ZZy2da8a/d/R53P9nd1wXWA84AvgROBUYBmtdVRERajpKMstac0SXtUzYDOhciKBERkZwoyShr+Ywu6U2YiGtPwiiT1QmJxRxgNGF0ycgixCgiIpKekoyylk8fik9Jdvx8BfgHIbF4y93rihCbiIhIZkoyylo+ScYlhKRijLsvLVI8IiIiuVOSUdbySTKudfc5mQqY2abu/n4zYxIREcmNkoyylk/Hz8fNrH1jB81sE+C55ockIiKSIy2SVtbySTK2Au5Jd8DMNiJ0+lxQiKBERERy0rMntI9+/86ZA/PnlzYeqSefJOMw4GAz+0d8p5mtT+irsZQw8kRERKRlmGkNkzKWz2RczwA/A84ws98BmFlfQoIBsIe7Ty14hCIiIpmoX0bZymsacHe/w8xWB/5sZk6Y6bMdsLu7Ty5GgI0xs/7AL4FtgM2BDkDfXBIdM2sDnA38COgPdAc+Ax4ErnL3ucWJWkRECk5JRtnKe8ZPd/8rMBS4nDDD557uPqnQgeVgW+BA4GvCvB356ARcRJj74yxgf+A2QuLxvNZgERGpIEoyylajX6Zm9scM530HzCXM9HmYmSX2u7tfWrjwMrrL3e8AMLOzya8/yEJCrcfM2L5RZjYDGAYMAkYUKE4RESkmJRllK9Mv9otzOP8n0ZbgQIskGc2ZZdTdlwMz0xx6M7pdq6nXFhGRFqYko2xlSjL6tlgU5SNRG5J2QjEzq81yfk1BoxERkeyUZJStRpMMd/+sJQMpNTNbF/gT8KK7v1TqeEREJEdKMspWPquw9gDWcvf3Gjm+OfCFu88uVHDRdQ1oE9/n7ssK/ByrAE8A84FjGyvn7t2yXKcW1WaIiLSs+DwZ06fD8uXQpk3j5aXF5DO65EpCp8jG3A78pVnRpDeQMNHXD5uZ9SnUxc2sJ2E69G7AXu4+rVDXFhGRFtCxY5j5E0KCMWNGaeORH+QzVHMP4O4Mxx8HjmteOGm9BWyXsq8gE9RHtTMjgdUJk4l9VIjriohIC1tzTZgZ9ef/8ktYffXSxiNAfknGGsDnGY5Pi8oUVDQx1thCX9fMuhNqMNYmJBgTCv0cIiLSQtZcE96LWvO1UFrZyCfJmA/0znC8N7C4eeHkzsw6EybRAtgiuh1kZt8C37r7i7GyUwHcvU/0uBPwTHTemUBnM9sxdvlpajYREakg6vxZlvJJMl4HTjCzBtNum9lKwPHAG4UMLotVCdOAx/0zun0R2D3Dub1INsHcmOb4JeQ2T4iIiJQDLZJWlvJJMv5GaF541cwuAcYRJt/aijBF91rAKYUOsDHRGiWWrVxUtk9TzxURkQqgmoyylHOS4e4vmNnpwHXA/SmHlwK/dPfnChmciIhITpRklKV8V2G9ycz+CxwOrE+oDZgEPOTu+lcVEZHSUJJRlvJebTRKJq4pQiwiIiJNoySjLOW91LuIiEjZWXllaN8+3J8zB+bPL208AuRZkxHNLXEysAPQnYZJirv7XgWKTUREJDdmYYTJ1Knh8ZdfwoYbljQkyW/tkt7AK4QJt+YAXYFZJJON7whzaYiIiLS8NddUklFm8mkuuYxofQ9gA0KnzyMIycZfgLnArgWOT0REJDfql1F28kky9gL+7e4vEObHADB3X+DuvwfGA1cUOkAREZGcKMkoO/kkGT2B96P7S6PbTrHjzwL7FCIoERGRvCnJKDv5JBnfAj2i+3OBRUCf2PH21E86REREWo6SjLKTT5IxgWghMnd3wjolp5vZOmbWB/g58GHBIxQREclFPMn45JPSxSE/yCfJeAzYKVrBFOBPhA6gnwKTo/uXFjY8ERGRHG2xBbSNBk2+9x5Mn17aeCT3JMPd/+nu67n7wujx88BOhLVMrgZ2c/fHixOmiIhIFl27wq6xQY5PPlm6WARo5oyf7j7W3X/j7r9191cLFZSIiEiTDB6cvP/EE6WLQwBNKy4iItUknmQ8+ywsWVK6WCR7kmFma5vZWWZ2mpmtGtt3r5l9bWbzzexFM9NEXCIiUlobbQR9+4b78+bBSy+VNp5WLmOSYWYbEybZuhq4EXjPzDYERgFHAh2AOsJMn8+a2TZFjVZERCQTMzWZlJFsNRnnEua/OBs4HKgFHgY6Azu6e3d3Xwn4EbAEOL9okYqIiOQinmSo82dJZVsgbSBhKvF/AJjZfOAJ4Fx3fyNRyN2fNbNbgKOLFqmIiEgudt8dOnWChQth0iSYPBnWW6/UUbVK2Woy1gDeiz0eH91OTFP2fcLU4yIiIqXTsSPstVfysZpMSiZbktEBWBh7nLi/KE3ZxTlcT0REpPjUZFIWlBSIiEj12X//5P1Ro2D+/JKF0ppl65MBsL+ZrRbd70xY5v0wM9sypZxGloiISHlYZx3YbDMYPx4WL4aRI+Ggg0odVauTS5JxNA07dJ7aSFlvXjgiIiIFsv/+IcmA0GSiJKPFZUsy9miRKERERApt8GC44opw/4knwD3MoyEtxsKq7eXDzPoDvyQ0v2xO6Hza192n5nGNxNweJwDrAfMJI2N+7u4fRWVWAv4IbB1t3YAT3X1YM2KvrampqamtrW3qJUREpFCWLYNVVoHE3+Rx48JKrVIMabO3cuz4uS1wIPA18Eq+J5tZW2AEIcm4iTBR2InAGKBTrGhP4BTCG6OuxyIi1aZtWxg0KPn4oYdKF0srVY5Jxl3uvpa7H0RIFvJ1FrAzsIu7X+/uL7r74+5+vru/Gyv3WTRj6Z7AVYUIXEREysxhhyXv339/aDKRFlN2SYa71zXzEmcCD7r7lCzPo0+aiEi1GzQIunQJ9z/+ODSZSIspuySjOcxsHaA38LGZDTWz2Wa2xMzGmtngbOfncP3aTBtQ09znEBGRAurYEQ4+OPn4/vtLF0srVFVJBmEadIDzgM2A44EfExZ2G2FmPypNWCIiUjJHHJG8ryaTFpXLPBlFYWYGtInvc/dlzbxsImlaAgxy97nRcz0PfAz8AXimqRd3926Zjqs2Q0SkDO27L9TUwJw5MHUqvPkmbL99qaNqFUpZkzEQWBrfzKxPM685M7p9NZFgALj7IuAFwlBVERFpTTp0gEMOST5Wk0mLKWWS8RawXcr2VTOvORlY0MgxA5rbqVRERCpRvMnkgQegTl8HLaFkSYa7z3X3sSnbkmZecxlh2OvOZtY1sd/MOhFmL329eVGLiEhF2msv6Nkz3J82DV59tbTxtBJl1/HTzDqb2U/N7KdAYmq2QdG+gSllp5rZ1JRL/BFoBzxjZoeY2UGEybZWjY7Fzx8UPc/e0a5tY88tIiLVol07OPTQ5GM1mbSIcpxWvA/waSOHX3T33WNlpwK4e5+Ua2wBXEGYlKsN8AbwB3d/KaXcVMKQ1wbcPe8J7jWtuIhIGRs5EvaOflOutlqo0WjTJvM5kqu035lll2RUMiUZIiJlbNkyWHNNmDEjPH7+edhD64AWSMWsXSIiIlJ4bdvCT2Ot4XfcUbpYWgklGSIi0noceWTy/h13wH33lS6WVkBJhoiItB677AKDY6tMnHQSjB1buniqnJIMERFpPczgnntgo43C40WL4Mc/hunTSxpWtVKSISIirUtNDYwYAd26hcdffhlmBF20qKRhVSMlGSIi0vpssEGY+XOF6Gvw9ddhyBD49tuShlVtlGSIiEjrtM8+cPXVycf33w9rrw0nnABvvFG6uKqIkgwREWm9fvUrOOWU5OPFi+HOO2GHHcJKraNGlSy0aqAkQ0REWi8zuOmmkFhst139Y2++CXvuCeeeG5IPyZtm/CwgzfgpIlLh3ngDbrwxNJ3EE4sttwyjUjbZpGShlTnN+CkiIpLR9tuHSbomT4Z9903uHzcOttkGhg4tWWiVSEmGiIhIqjXXhKeeguuugw4dwr5Fi+D00+Hee0sbWwVRc0kBqblERKQKTZgAxxwD774bHnfrBuPHw1prlTSsMqPmEhERkbz17w8vvQR9+4bHtbVw4olQV1fSsCqBkgwREZFsVlopjECx6Af7c8+FDqKSkZIMERGRXOyySxjOmnDuufDhh6WLpwIoyRAREcnVJZfA5puH+4sWwXHHwdKlpY2pjKnjZwGp46eISCswfjxsuy0sWRIer7km9OsXVnbdaKMwXfnGG5c2xpaXtuOnkowCUpIhItJKXHVV/aaTuBVWgL/9Dc4+O9mHo/ppdImIiEhB/OY3cPzx0KZNw2N1deH4ySe3+unIVZNRQKrJEBFpZZYsgSlTYNKksD34IIwdmzw+YAA88gj06lW6GFuGmkuKTUmGiEgrt2gR/OIXYWryhDXXDJ1Fv/8+bHPnhj4b550Hu+9eslALTElGsSnJEBER3OGaa+C3v80+Ydcee8Cf/hSGx1Y2JRnFpiRDRER+8PTTcOSRMGdO9rK77QarrBLKJmo7eveGY4+FQw+FTp2KH2/zKMkoNiUZIiJSz+zZMGoUtGsHNTXQtWvYf8MNcPvtsHx59mt07RqSlaOOCteZNSu59egBO+4IG25Y6pEs1ZVkmNlPgMOB7YDVga+B0cBF7j41h/MvAA4F+gJdgK+AZ4FL3f2LJsakJENERHIzeTJcdlmYrry566D06AE77AA77RSaYHbYISQkLafqkozXCYnFcOBToA9wIdAT2MbdP81y/pXALGACMBfoF51vQH93n92EmJRkiIhIfqZMgVdegY4dQ61FTU1YXv6pp0Jtxyef5H/NLl1g4EDYay/Ye2/YdNNi13RUXZKxqrvPSNnXF5gMXOPu/9eEa+4HPAWc4O53NuF8JRkiIlI47iEBuf12ePNNWHHFUGvRo0dYcv7TT2HMGJg5M/N1TjwRbrutmJGmTTLaFvMZiyk1wYj2fWpm3wFrNfGy30W3moheRERKzyyMPMk0+sQ91HaMGQOjR4cVYqdOrV9mhx2KGmZjKjbJSMfMNgVWAd7P45y2QDtgI+Ba4EPg8UbK1ma5XE2uzysiIlIQZrDBBmE77riwb8qUkGw89xw8/3xoMilFaJXaXJLKzDoQOn6uB/Rz929zOKcLoT9GwuvAIe4+vZHytVkuWVNTU4OaS0REpGzU1YVEpAR9Msq+JsPMDKg3Oby7L0sp0wa4E9gSOCCXBCOygDA6pT2wMXAeMMrMdk+XaLh7tyyx1qLaDBERKScrlG6ZskpYIG0goY/ED5uZ9UkcNLMVgNsJw1GPcvdnc72wu9e5+1h3f9XdbwP2IIxSOb9w4YuIiLROZV+TAbxFqG2I+wp+SDBuA44GjnX3R5rzRO7+lZlNAzZsznVERESkApIMd58LjE3dHzWj/Bs4DjjR3f/T3Ocys3WB3sCTzb2WiIhIa1f2SUYG1wMnERKNj8xsx9ix7919YuKBmU0FcPc+0ePewN3A/cAnwDJgU+A3wGzg78UPX0REpLpVcpJxYHT7s2iLexHYPcO5tYRJu34FrEEYwvolYSKuy939s0IGKiIi0hpVzRDWcqAZP0VEpJVKO4S1EkaXiIiISAVSkiEiIiJFoSRDREREikJJhoiIiBSFkgwREREpCiUZIiIiUhQawlpAZlYHWE2N1kgTEZHWY86cOZ+7e+/U/ZU8GVc5qgNWmDNnzvcFvGYiY5lTwGuKVCP9XxHJrkX/n6gmo8xFy8dnXWZepLXT/xWR7Fr6/4n6ZIiIiEhRKMkQERGRolCSISIiIkWhJENERESKQkmGiIiIFIWSDBERESkKJRkiIiJSFJonQ0RERIpCNRkiIiJSFEoyREREpCiUZIiIiEhRKMkQERGRolCSUYbMrIuZXW9m081soZmNNbODSh2XSDkxs4vNzM1sXMr+UdH+1O0/JQpVpEWZ2c5m9ryZzTez783sSTPbrJGy+5jZmOi7ZoaZ3WRm3QoVi5KM8jQcOAa4EBgMTASGm9n+JY1KpEyYWX/gPOCbRop8DOyUsl3YMtGJlI6Z7Qi8ALQlfI8MAVYGRpvZ+illdweeBL4ADgTOAQ4CnjCzguQHGsJaZqJE4gngUHcfHu0z4CWgp7v3K2V8IqUW/fF7FXgT2Azo5u5bxo6PSt0n0lqY2f+ATYH13H1htK8bMAV4yt2PiZV9A2gHbOPuddG+fYD/AUe6+/3NjUc1GeXnEGAO8Fhih4dM8A5gYzPbpFSBiZSJXwNrAb8vdSAiZWgn4PlEggHg7rWEH6o/NrM2AGa2JrAdcFciwYjKPgt8CfykEMEoySg/mwIT4//okfdix0VaJTNbF/gT8Et3/z5D0Y3MbLaZLTOzj83sQjNr10JhipRSe2Bxmv2Lgc7AutHjxHfJ+2nKjqdA3zVKMspPT2BWmv2zYsdFWp2o2fDfwDPu/miGoi8RajsOAX4MvEhITB4ocogi5WAisGP0/wWAKMHePnq4cnSb+C5p7PumIN81bQtxESm4TB1l1IlGWqufAdsCGZsM3f0PKbv+a2bfABeY2S7u/nKxAhQpA/8AbgWuN7O/EioT/kRoYgRIrSVv7DulIN81qskoPzNJn0H2iG7TZZ0iVc3MVgauBP4CzDezblFntrZAm+hxxwyXuCO63am4kYqUlrvfBpxPGFUyDfgc2Aj4W1Tkq+h2ZnTb2PdNQb5rlGSUnwlAvzTDhxJjnNO1n4lUu7WAGkKSMTu27UxoO54NXJzh/MT/p9RfcSJVx92vIDSLbAb0cfcBhMThM3f/Iio2IbpN1/diMwr0XaMko/wMB7oRxizHHQ9McveJLR6RSOl9AuyRZnsXmBzdvznD+cdHt2OKGKNI2XD3xe7+vrt/ZmZ9gCOAG2LHpwFjgWPiP2rNbC9gTeCRQsSheTLKTNRZZySwOXAu8ClwAuGP5MHuPqKE4YmUldQ5McxsV0JV8cPAZ8CKwMHAicBD7n54aSIVaRlmtgWhw/NYwoiSLYHfAW8Dg9x9WazsnoQ5MR4mJOlrAFcQmlh2dvflzY1HHT/LjLu7mf0YuDzauhF6Cx+qBEMkq+nR7Z8I1cV1wCTgN4QOcSLVbjGwF3AWIcmeQuiPcXU8wQBw9+fN7ADgEsIkkHOBR4FzC5FggGoyREREpEjUJ0NERESKQkmGiIiIFIWSDBERESkKJRkiIiJSFEoyREREpCiUZIiIiEhRKMkQaQFm1sfM3MwuLnEcK5vZnWb2VRTPqFLGU0xmtnv0GoeUQSwdzWyqmf251LFUIjPrFH1mLyp1LJIfJRnSKphZdzNbFH3pHFvqeEro74Tphf8FHAc0+qUXS4zi20Izm2Bml5hZ56YGESUAF0eLnDWZmW0ZXadPc67TAn5DmFjvb/GdKe9tnZnNNbMpZjbczE40s04libbMuPtC4K/Ab81sjVLHI7lTkiGtxTFAe8I07SeXOJZS2gd4xt3/5O53u/uzOZzzLCEhOQ64gLAY2R8JMwM21e7ARYQv3ubYMrpOnzTHRgOdgLua+RzNEiUKvwVud/fZaYqMI7y3xwP/B9xLWDviNmB8NE20hOXLHfh1qQOR3GlacWktTgZeAB4DrjWz9dx9coljKoXVyH8J54/c/e7EAzO7nrDQ2D5mto27v1XIAAvF3euARaWOAziakEzd2cjxL+Pvb+RCMzsMuAd4ysz6N5KgFJ2ZreTuc0vx3HHuPt/MHgGGmNmF7r641DFJdqrJkKpnZlsTfvHeQfijvZSwYFa6sm5mw8xsJzN70czmm9l3ZnaLmXVJU36gmb0WNSN8bWbXmVn/fPpfmNkRZvZyVFW+wMxeN7Of5vH6VjSzv5jZZDNbHMVxp5n1jpW52MwcMOCEWBX9kFyfJyFa02BU9HCDlFj6mNldZvZNFMtkM7s83rRiZsMItQ8An8ZiuTg6voaZ/d3MxpnZ7KiZa6KZnWdmbeKvCbg9evhC7DrDouNp+2Tk8n6lnh81XUyIyn9mZufm8ZYdBnzt7u/kcQ7u/iBwJbA6cEZKbGZmp5nZW9FnZq6ZvWBme6Rex8w6m9nVZjY9KjvGzPaKPueeUnaUhb4j65rZQ2Y2C/g+dnx1MxtqZp+b2RIL/SRuNrNV0zxvjZldYWafRO/bt2Z2n5mtm1KuY/T5nBTFV2tm483sqjRvy1OENWkavE4pT6rJkNbgZGA+8HD0a+gJwhftH6Nfu6m2BP5L+AK7l1C1fzJhsa2fJwqZ2S6EFQxnE9qLa4HDgZ1zDczMLgN+DzwN/CF6jkOAB83sl+5+Y5bz2wLPRM/5EKHPxQbAacC+ZrZttKTzI4Tl0u8CXiK5LPqrucaaYr3o9odakehL+g2gBhgKfER4734H7Gxme0ULNN0EdI1e56+B76JLvBfdbg4cCgwnLOPeDhhEeI/XBU6Nyj1C+AL+OWExwQ+i/Y3WUOXxfsX9AuhFqK6vBY4FrjCzae5+b+NvEURJ0QBCLVpT3EL4fAwGLovtvws4KnoNtwMdCE2Cz5rZoe7+eKzsg8D+hOat54C+hPf200aeswvwIvBK9NyrRq9lHeA1QrPjrYT3eX3Ce7dH9N7NicrWED5b6xCafSYQ/q1OB16Pyn4WPd+NwEmEmp5rgDaEf5M908T2WnS7O+H/jJQ7d9emrWo3oCPhi3BYbN/BhLbdQWnKO+GLfseU/U8QakC6xPa9QaiOXze2rx3hj7MDF8f290mzb+to3+Vp4niU8AtypSyv72fRNa5M2T842n9Xmtc3LNM108R8C+HX48rAxoT+GA58AXSIlb8n2r9/ynWuivafHNt3cbSvT5rn7US0eGPK/ruA5cDqsX1Douvsnqb87tGxIU15v2Lnf0VYTj6xvzPwLfBaDu9h3+gaVzdy3IH/ZrnG98DM2ONDovN+nlKuLWF5708T7x8huXDg3yllE/s9Zf+oaP9laeJ4DJgBrJWyf1tgWcpn+zpgIbBFStne0euJ/3+cBTyZy2cyKr8UGJFreW2l3dRcItXuUKA7oakk4QnCH8uTGjnnNXcfk7LvecIf8T4AZtYL2A54zN2nJAq5+1LCH9hcHEP4g36HhaGlP2zA48BKwE5ZrnEIISn6S3ynuz9B6FB4sJk19//5yYQv1W8JtQWXEH6Z7+VRu3j0HAcB77j7kynn/4VkDU1W7r7Qo28TM2tvZj2i9+QZQhPvts14LU15v25399pY2QWEPikbkN0q0W2+/WDivifU/CQcS7Qkd8pnphswgvAZTcR2YHR7dfyC0b/RBzQudRRMDXAA4XO5KOV5pxJqyfaNyhrhsz0a+DKl7HzCe7dv7PJzgP5mtmmW9yFhFlHtipQ/NZdItUt8QU4zs/Vj+58FDjOzld39u5RzptDQzOi2Z3TbN7qdlKZsun3p9CP0kfgwQ5leWa7RF/jK03cKnEBo+lmZkFQ11WPADSSrsc8F1gbiHe9WIVSzT0g92d1nmdl0QlNHVlGTxvmE0RbrE96juO55xh/XlPersc9DzzT7UyX6PKS+hnx0JdYvgvC5WQn4JsM5vQjNVX0JSdUnacpMiq6V6tt4UhXZiJDgnUzjo7MS79MqhPdmX8L/vXTizZRnE2qpxpvZFEICO4JQW5GuOdNIvq9S5pRkSNUys76EDmJG+IObzrHAtSn7lme6bMptcyT+WA7K8JwNvrQbiaeYprn7c9H9Z8zsKUL/if+Y2YCo1qGQcVwNnAncT5jHYwahinxr4Aqa12G9KXFm+jxkk/iS7dGUky3M/7ESyb4IEF7Dt4RRK415P1YW8vtSXpAulOj2burXCsYtTCn7HOHfKyN3fyx6nfsDA4G9CYnMS2a2t7svSTmlO40nL1JmlGRINTuR8AfvZ4QOe6kuI/wxu7YJ1078atsozbF0+9L5GNgP+NzdM1VdZzIZ2M/MuqX59bkJ4Rdwak1Ns7j7ZDP7G6FvxlGEzrEzCFX4/VPLm1l3Qqe/cfHLZHiK44DR7n5kynXWT1M231+0Lf1+fRFdM5emlXROiW6fiO37GNgQGOPu87Kc/ykhKduAhs0juX5OIdSEONA+lnA25lvC/7euOZQFQm0XIYG5O2pu+SuhxuxgQsdV4Iekqy3JJErKnPpkSFWK2tWHAOPd/RZ3fyh1A+4DNjWz7fK9vrt/Q+hkd3B8SJ6ZtQPOyvEyiUmiLrfY0MzYtXJpd36U8P/4/JRzBwFbAY83UuXcXNcQ2tIvMrM20XOMALYys/1Syp4fxTg8ti/x5ZjuF/5yUmoczGxF0k/ClOk66TxKC75fHob7vgTskO+5FubJOJfQ8TQ+yuhOwmv4SyPnxZvYRkS3v04psz/pm0rScveZwJPAoWa2Y5rnNDNbJSpbR+gEvL01MhQ78dk2szaWMutrVDOWGO6b+u+aeO4Xc41dSks1GVKt9iX0G7g1Q5mHCaMcTgbebMJznEPo2/Gqmf2T8KV7OGGIH2T5le3ub1pYi+ESYJyZPUj4Qlkd2IZQfdw+wyUAhgEnAOdFv/JGE/oxnE5os78g71eVA3evNbMbCEMcjyYkTBcQZhR9NHo/PgF2I0xjPpr61eyJjrVXmNk9hFE677v7+4Rhmaea2f2EKvdehE66M2noTUL7/u+jGpP5wKfu/nojoQ+j5d+vB4HBZra9u7+R5vialpzqvhNh2Oe+wPaE9/DQlI6nD5nZ7cAvLcwB819C7ctahI7C65Ps//IkocPsz6KOl4khrD8nNHltnsfrOA14GRhtZncSEoEVouc6mJD8XByV/T1hmPADZvYA4d97CWF0yf7AW4QfASsB083s8eh6M6L4TiMMDU8kSQmDo9fa1CHB0tJKPbxFm7ZibIQ/7A5slqXcJELVbqfocdohnjQyVJIwln8M4UvyG8LIkh2isufGyvUhZQhr7NhgwhfBLEJnyi8Ikw6dluNrXZHwq3YK4Q/5DMKXfu80ZZsyhPWGRo73JDSRfAy0ifb1jZ57RhTLFMIcFp3TnH9udHxp/L0hDBG9Cvgsel8/JtQ87EXKkNSo/AnAxOj5fnh9pBnCms/71dj50bFhpAz/zPA+diQkSP9o5N8jvs0jNHE8SkisOmW47nGEWpLvo/dpKmHukCPSvN5ro8/nQuD16HP7ELAgpewoYGqG51w5+rf5KHrOWmA84XO/SUrZzoS5X8ZHzzuX0GTzb2CHqEz76N/ijeg9Why9jtuADdK8jnnAVYX8W6GtuFtiLLWIFIiZ/YTwB/wod/9PqeOR0jOz8wmTkvX10P+g5MxsPNDO3TcudSy5MLOzCB2BN3T3r0odj+RGfTJEmihqh+6Ysq8dYcXNZSSn3ha5llD9f05LP7GlWcnVzAYDmxKa+8pe9P/sPEIthhKMCqKaDJEmiv7wfUbo5DaJ0HxwBKGd+wp3Pz/D6SItwsz+QujU+gKh39CWhKaY74EtveE06iIFo46fIk23lDC08GBCZ00jJBtnuPs/SxmYSMxLhE6YvyWsKzOL0On5D0owpNhUkyEiIiJFoT4ZIiIiUhRKMkRERKQolGSIiIhIUSjJEBERkaJQkiEiIiJF8f+5PQ8600dreAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# number of times to run the experiment, decrease for shorter run times\n", + "mc_rep = 100\n", + "# samples to use for task1 (xor)\n", + "task1_sample = 1000\n", + "# samples to use for task2 (rxor)\n", + "task2_sample = 1000\n", + "# we will use the same angle_sweep as before\n", + "angle_sweep = range(0, 90, 1)\n", + "\n", + "# call our function to run the experiment\n", + "un_mean_te, un_mean_error = fn.unaware_bte_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep)\n", + "# plot angle vs BTE\n", + "fn.plot_unaware_bte_v_angle(un_mean_te)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "7c3f2dbb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAHyCAYAAABh312/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABKRElEQVR4nO3deZxcdZX//9epXtNLutOdnQBJ2BIISGQfUcKqsi864qAgMs44Dr+vzozjigzqDC4jM4rjLgrDKIyiYRlQFCVsssoSSCCEJJB9631fqs7vj3urU2mqu6u6q/pWp9/Px6Melf7cW7dOX0Lq1Gc5H3N3RERERAaLRR2AiIiIFCYlCSIiIpKWkgQRERFJS0mCiIiIpFUcdQCFxMz6CRKn1qhjERERGQdTgYS7p80HTKsb9jCzBGA1NTVRhyIiIpJ3LS0tAO7uaUcW1JOwt9aampqa5ubmqOMQERHJu9raWlpaWobsPdecBBEREUlLSYKIiIikFWmSYGZVZnajmW0zsy4ze8bMzs/gddeZmad5bB+PuEVERCaDqOckLAfeCnwK2AB8CFhuZue5+30ZvP5MoD3l596cRygiIjJJRZYkmNnZwBnAxe6+PGx7EFgI3ABkkiQ84+7NeQtSRERkEotyuOEioAW4K9ngwXrMW4BFZnZ4VIGJiIhItEnCEmC1uycGta9MOT6Sl80sHs5p+JGZzcxtiCIiIpNXlHMS6oFX07Q3phwfyjrgc8BzBPMQ3kYwr+F0MzvG3ZvSvcjMmkeISVWUREREQlFPXByu3OOQx9z91kFNfzSzJ4DfAX8P/GsOYhMREZnUokwSGkjfW1AXPjemOTYkd/+9mW0DThrmnNrhrhH2NKg3QUREhGjnJKwCFpvZ4BiODJ9fGsU1Y8DgOQ4iIiIyClEmCcuBWuC8Qe2XA2vcfXU2FzOzs4BZwBM5iU5ERGSSi3K44T7gQeAmM6snKKZ0BXAycEHyJDNbAZzi7pbS9hzw38AaoA/4C+CTwGvAd8YpfhERkX1aZEmCu7uZXQhcHz5qgdUExZXuGeHlrwAfA+YCJcAm4MfAl1VcSUREJDcsqF8kEExc1FbRIiIyWYRbRbcMNbFfu0CKiIhIWkoSREREJoitzV109vaP2/spSRAREZkAevrj/PUtz3Dutx9l9dbWcXnPqCsuioiISAa++ptXWL2tlZhBe8/49CaoJ0FERKTA/eHlHfz0sdcB+Pjph3L8grrhX5AjShJEREQK2I7Wbj75yxcAOH5BHVefdvC4vbeSBBERkQIVTzifuP15mjr7qK0o4VuXHk1RzEZ+YY4oSRARESlQ31vxGo+vbwDg65ccxZyaKeP6/koSRERECtCzG5v4zwfWAnD5SQdy1hGzxz0GJQkiIiIF6Nt/WEs84SyaXc3nzl4cSQxKEkRERApMS1cfj762G4CrTzuY8pKiSOJQkiAiIlJgfr96B31xp7wkxmmLZkYWh5IEERGRAvObF7cBcOphM6koja7uoZIEERGRAtLa3ccja4OhhncfOSfSWJQkiIiIFJAHVu+gN56grDjG6REONYCSBBERkYJy34vbAVh22Awqy6LdYklJgoiISIFo6+7j4bW7ADg74qEGUJIgIiJSMP7w8k56+xOUFsc4ffGsqMNRkiAiIlIo7gtXNZxy6AyqIh5qACUJIiIi425bSxe3P7WRpo7egbb2nn5WvBoMNZxTAEMNoCRBRERk3H3qjpV85tcvsuwbK7jp0Q309if4w8s7gqGGohinLY52VUNS9H0ZIiIik0h7Tz+Prwt2dmzp6uPL/7eaWx9/nary4CP5HYdOZ2p5SZQhDlBPgoiIyDh67LXd9Cec4pjxVyccQFHMeL2hk5e2tAKFsaohSUmCiIjIOHoonHdw7PxpXH/Rkfz242/n1MNmADCtoqQgVjUkabhBRERknLg7D60JkoRlhwXzDg6ZVc1Przyel7e1UlVWTM2UwhhqACUJIiIi42bdrna2NHcBwTLHVIvnTI0ipGFpuEFERGScrAh7EWZWl7FodnXE0YxMSYKIiEgOdfT0s2F3R9pjyfkIpxw6AzMbz7BGRUmCiIhIDn30f/7MaTes4N6V2/Zq7+qN8+SGRmDPfIRCpyRBREQkRzp6+nnstd24w7/eu5rO3v6BY0+sb6C3P0HM4OSDp0cYZeaUJIiIiOTIys0tJDz487aWbn7w0PqBY8mhhqUHTKOmonBWMAxHSYKIiEiOPL+pea+ff/DwOraGqxlWrNkJwLJBqxoKmZIEERGRHHluYxMA714ymxnVZXT3Jfjqb17h9d0dvN7QCcAph02cJEF1EkRERHLA3Qd6Et528HROWzSTf75jJXe/sJVYuJChvrKUJXNrogsyS+pJEBERyYFtLd3sbOsB4Oj9a7nkrfM4al6QENz5/FYA3nHoDGKxwl/6mKQkQUREJAee29gMQHlJjEWzq4nFjGvPPXyvcwZXWSx0ShJERERy4PlNwXyEo/arpbgo+Hg9dn4d5x4V7OpoBm8/ZGIsfUzSnAQREZEcSM5HOPqA2r3arznncLa3dHPMgdOoryob/8DGQEmCiIjIGPXFE6zc3AIE8xFSza4p546/+4sIoho7DTeIiIiM0ZrtbfT0JwBYOqgnYSJTkiAiIjJGz4VDDbOmljGnZkq0weSQkgQREZExShZRGjzUMNEpSRARERmj5KTFpQdMizaQHFOSICIiMgYtnX2s39UBqCdBRERk0vrxI+v5+O3P0dDeM9D2/OZmAGIGR+43cUouZ0JLIEVERDLQ0x/nK795hXjCWbO9jds+ciLTKkt5Pqy0eNjsqVSW7Vsfq+pJEBERycCWpi7iCQfgle1tXPbjJ2nu7OW5TfvmpEVQT4KIiEhGNjV1AcGwgpmxelsrH7jpSTaH7Uv3wSRBPQkiIiIZ2NTYCcB+06Zw46VLKYoZL21ppbmzD9i3iiglKUkQERHJwKamIEnYf1oF5xw1h/9839Ekd32uLivmoBlVEUaXHxpuEBERycDmxmBYYf9pFQCc/5a5uDuf/fWLXHLMPGLJjGEfoiRBREQkAwM9CXV7yi5fcPR+nHPknIGtofc1++ZvJSIikmPJOQn711Xs1b6vJgigJEFERGRE7T39NIUTFOdNqxjh7H2HkgQREZERJHsRYO/hhn2dkgQREZERJJOE8pIYM6rKIo5m/ChJEBERGUGykNK8aRWY7XurGIaiJEFERGQEA5MWp02eoQZQkiAiIjKizU3pVzbs65QkiIiIjGDToEJKk4WSBBERkWG4e9pCSpOBkgQREZFhNHb00tkbByZXjQRQkiAiIjKs5MoG0JwEERERSZFc2TC1vJiaKSURRzO+lCSIiIgMY9MkXdkAShJERESGNVlXNoCSBBERkWFtnqQrG0BJgoiIyLCG2iJ6MlCSICIiMoR4wtnSrOEGERERGWRHazd9cQc03CAiIiIpkkMNMPkKKYGSBBERkSElCynNqC6jvKQo4mjGn5IEERGRIUzWLaKTlCSIiIgMYTIXUgIlCSIiIkPaPIkLKYGSBBERkSFN1i2ik5QkiIiIpNHTH2d7azegngQRERFJsbW5Gw9KJGhOQhTMrMrMbjSzbWbWZWbPmNn5WV7DzOyPZuZm9s08hSoiIpNMcmVDUcyYU1MecTTRiLonYTlwGXANcA6wGlhuZmdncY2PAIvyEJuIiExiyfkIc2rKKS6K+uMyGsVRvXGYCJwBXOzuy8O2B4GFwA3AfRlcYz/g68BVwB35i1ZERCaT7r44dz2/FYADJulQA0Tbk3AR0ALclWxwdwduARaZ2eEZXON7wMPu/qv8hCgiIpNNXzzB1T9/lqc2NALwVyccEHFE0YmsJwFYAqx298Sg9pWpx4d6sZm9HzgVyCSZSL6meYRTajK9loiI7HviCecff/ECD7y8E4BrzlnMuUfNjTiq6ETZk1APNKZpb0w5npaZTQe+BXze3TflITYREZlk3J3PL3+Re14Ihhk+ccYh/PXbF0YcVbSy7kkws2nATMCBXe7eNIb391EeuxHYAPxXVm/mXjvc8bCnQb0JIiKT0Fd+8wq3Px187/zI2xfw8dMPiTii6I2YJJhZDLgAeC9wCjB70PHtwArgl8DdaYYPhtJA+t6CuvA5XS8DZnYm8D7gNGCqmaUeLjOzWqDd3fszjENERCa5XW09/OiR9QC8//gD+NzZixn0+TIpDZkkmFkR8HfAZ4E5QAfwNMGqgwbACD7QDwbOB94PbDOz64Hvu3t8hPdeBVxiZrFBicWR4fNLQ7zuCIJhkhVpjn00fLwb+O0I7y8iIgLAxsaOgcJJ15yjBCFpuJ6EVcD+wO3ArQSrCNL2EoS9DacCHyBYkng1sHiE915OsHTxPFJWOACXA2vcfahJi3cAz6dpfxD4FcEQxMo0x0VERNLa2hyUX66ZUkJlWZRz+gvLcHfiN8BX3X3HSBcJk4c/AH8ws88Cn87gve8j+GC/yczqCeYYXAGcTDC8AYCZrQBOcXcL32szsHnwxcKsb7O7r8jgvUVERAZsawl2e5yslRWHMmSS4O7/MJoLuvt2YMTXurub2YXA9eGjlmDJ48Xufs9o3ltERGQ0kj0Jc2sn526PQ8lpn4qZVbt7W6bnu3srwdDE1cOcsyzDa2kASURERkU9CenlpE5CuFHTNQRDBiIiIhPKthb1JKSTyRLIYoLJhYcQLEu80913h8fKCIYWPkmw0mFj/kIVERHJj63NQU/C3Fr1JKQaNkkwszqCpYZHECx5dOAbZnYG0EewmmAhsJ5gsuIt+QxWREQk13r64+xu7wVgTo16ElKN1JPwBYI9FO4EHiCoifAxgo2V5gFx4MPArRnURRARESk428OhBoC5ShL2MlKScC5wj7tfnGwws3XAtwnqKLxjjGWZRUREIpVc2QAwq6YswkgKz0gTF/cHfjeoLVnJ8D+UIIiIyESXXNkwvaqMsuKiiKMpLCMlCaXA4ESgOXzWJEUREZnw9qxs0KTFwcayBDLTjZxEREQKVnJlg2okvFkmxZT+ycwuTfm5hGCVw7+Z2e5B57q7X4CIiMgEoRoJQ8skSVgaPgY7MU2bjy0cERGR8TVQI0ErG95k2CTB3XNSkVFERKRQDQw3aE7CmygJEBGRSaujp5/W7n5AhZTSyWqDJzMrISjPXAO0AGvdvS8fgYmIiORbcvkjaHVDOhn1JJjZYjP7BcHyxxeBR8PnFjP7hZkdnr8QRURE8iNZSKkoZsysVpIwWCYbPJ0H3AZUAJuB5wl6EaYSTGh8D3COmV3q7vfkL1QREZHcSvYkzKouoyhmEUdTeEba4GkBcDvQALzX3X+T5px3AT8AbjOzI91d20WLiMiEkOxJ0PLH9EYabvhnoJ9gj4Y3JQgA7v5b4BSCzZ4+mdvwRERE8ifZkzBHSUJaIyUJZwI3u/vrw50UHr8ZeGdOohIRERkHA4WUVG0xrZGShHnACxle6wVg7tjCERERGT9bVJJ5WCMlCd1AVYbXqgR6xhaOiIjI+HB3toVzEjTckN5IScJq4OwMr3U28PLYwhERERkfLV19dPXFAZVkHspIScL/Amea2VXDnWRmVwJnEayEEBERKXjJlQ2gksxDGSlJ+D7BXIMfmtnPzew0M6u1QG3488+BH4fnfT/fAYuIiORCcmVDaXGM+srSiKMpTCNt8NQb1kG4A7gUeF+a0wx4jKCOQm/uQxQREcm9rSkrG8xUSCmdESsuuvtO4B1h5cVLgCUE1RZbgZeAX7v73XmNUkREJMe2Daxs0HyEoYxUcXFmmCQQllwetuyymZ3r7v+Xw/hERETyIlkjQfMRhjbSnIRVZvbekS5iZjVm9t/AXbkJS0REJL+2hj0JWtkwtJGShEbgdjO73czq051gZucAq4APAD/KcXwiIiJ5sXWgJLN6EoYyUpLwFuC/gPcCL5rZBckDYe/BLcDdBPs7nOXuH81bpCIiIjmSSDjbByYuqidhKMMmCe7e7e4fB04nqKb4azP7bzN7H0HvwQcJlj8ucfcH8h6tiIhIDuzu6KEv7oB2gBzOiKsbANx9hZkdSVAH4bLwsYmg90DJgYiITCjbVEgpIyMNN6Q6CXgHQV0EJ9irIe08BRERkUKWLKRUVVbM1PKSiKMpXCMmCWZWaWbfB35LkCCcDbwNaAB+bma/NLPp+Q1TREQkd5IlmbX74/CGTRLM7FTgReBvgP8hmHvwW3d/kmBS47eAiwiWSl6S72BFRERyYdvAygbNRxjOSD0JDwDlwAXufoW7tyQPuHuPu/8jcCrQBvzCzG7LX6giIiK5sbGxEwhKMsvQRkoSbgeOCKstpuXujwBHEUxqHLHwkoiISNRWbg6+8x4+d2rEkRS2kTZ4uiyTi7h7J/D3ZnZHTqISERHJk20tXQMlmZfuPy3iaApbNqsbRuTuD+byeiIiIrn2/MZmAMqKYyyaUx1tMAVuyCTBzA4d7UXN7LDRvlZERCSfntvUDMBR82ooKcrpd+V9znB3Z5WZ/cTMlmR6MTNbama3EmwhLSIiUnCe29gEwNIDNNQwkuHmJJwH3AC8YGYrgXuBp4F1BBs/GVAHHAKcCLwbOBxYDZybx5hFRERGpS+e4MUtwaTFpfvXRhvMBDBkkuDuvzWz3wN/CXwM+BxBpcXBLHxeAVwK/MrdEzmOU0REZMzWbG+juy/4iDr6gNpog5kARlrdEAduA24zs1nAKQS9BTMIEoZdBEMLD7n77jzHKiIiMibJoYbZU8uZo90fR5TRBk8A7r4D+EUeYxEREcmr58KVDUvVi5ARTesUEZFJI7myQUlCZpQkiIjIpNDU0cuG3R2AVjZkSkmCiIhMCs+HvQjFMWPJ3Jpog5kglCSIiMikkJy0uHjOVKaUFkUczcSgJEFERCYFzUfInpIEERHZ5yUSPjDcoCQhcxklCWZWZWZxM/tCvgMSERHJtfW722nr7gfgaO38mLGMkgR3bweagZ15jUZERCQPng3rI9RWlDC/viLaYCaQbIYbHiSouCgiIjKhDBRR2r8WMxv+ZBmQTZLwz8DJZvZFM5uar4BERERyTTs/jk7GZZmBPwDlwDXANWa2C+gcdI67+0G5Ck5ERGSs2nv6eXVHG6BJi9nKJknYSPpdIEVERArWE+saSDiYwVHzaqMOZ0LJZoOnZXmMQ0REJC/ufH4LACctrKdmSknE0UwsqpMgIiL7rLbuPn6/egcAFy7dL+JoJp5shhsAMLODgAuAhWHTeuAud1+Xy8BERETG6v5VO+jpT1BaHONdS2ZHHc6Ek1WSYGZfBj4DDC56/XUzu97dr81ZZCIiImN0VzjUcObiWUwt11BDtjIebjCzDwOfB54ELgIOCR8XAo8DnzezK/MQo4iISNZ2tnbz2Gu7Abjg6LkRRzMxZdOT8PcECcIyd+9PaV9nZvcBjwBXAz/NYXwiIiKjcvcLW0l4UGVx2WEzow5nQspm4uJi4PZBCQIAYdvt4TkiIiKRS65qOOfIOZQWa57+aGRz13qBqmGOV4fniIiIROq1nW28tKUV0KqGscgmSXga+FszmzX4gJnNBP6GYDhCREQkUnc+txWAedOmcIxKMY9aNnMSvkxQmvllM7sJWB22HwFcSdCTcFluwxMREcmOuw8MNVx49H7EYtrQabSyqbj4sJldDPwX8E+DDm8ErnD3R3IZnIiISLb+/EYTm5u6ALhwqVY1jEVWdRLc/R4zuxc4BlgAGLAOeNbdE3mIT0REJCvJXoQl+03l4JnVEUczsWWUJJhZFfAC8G13/ybB/ISn8xiXiIhI1vriCe57cTsQDDXI2GQ0cdHd24F6oD2/4YiIiIzen9Y10NjRixmce5SGGsYqm9UNTwDH5isQERGRsbrnhWBVw3Hz65hdUx5xNBNfNknCZ4C/NLMrzUxTRUVEpKD09Me5/6VgqOG8t6gXIReymbj4H0AT8GOCDZ3WAZ2DznF3Pz1XwYmIiGTqoTW7aOvppyhmvFs7PuZENknCQsAJljsCvKmokoiISFTuWbkNgL84qJ7pVWURR7NvyKZOwvw8xiEiIjJqnb39PLB6BwDnacJizmQ0J8HMqszsj2Z2Vb4DEhERydYfXt5JV1+ckiLjnUdoqCFXslkCeVyeYxERERmV5KqGUw6dQU1FScTR7DuyWd3wPDneCjrsobjRzLaZWZeZPWNm52fwuqvM7DEz22VmvWa2ycxuM7PDcxmfiIgUvtbuPlas2QVoVUOuZZMk/AvwETM7NYfvv5xgU6hrgHMINo1abmZnj/C66cADwEeAM4EvAEcDT5rZwTmMT0RECtzvV+2gN56gvCTGGYs1pz6Xslnd8AGClQ0PmNkLwKukXwKZ0byFMBE4A7jY3ZeHbQ8SrKK4AbhvqNe6+9cGNT1kZk8ALwN/BXwpkxhERGTiu2dlMNRw+qJZVJZltSWRjCCbu/mhlD8fHT4GcyDTyY0XAS3AXQMvdnczuwX4oZkd7u6rh3z1m+0On/uyeI2IiExgjR29PLo2+Of/vLfMiTiafU82SyCzGZrIxBJgdZrdI1emHh/uAmZWRPA7zAe+BuwAbhnm/OYRYqoZ4biIiBSQx9c10J9wppQUseywmVGHs8+Jsl+mnmDIYrDGlOMj2ZFy3qvAqe6+NQexiYjIBLCrrRuAedOmUF5SFHE0+55hewfMbK6ZZbRDhpnNMrPTsnx/H+WxpNOBkwgmP7YAD5rZEUNe0L12uEd4DRERmSAaO3oBqKssjTiSfdNIQwibgIuTP5hZjZmtNLPj05x7BvD7LN67gfS9BXXhc2OaY3tx9xfc/Ql3/zlwGkFicX0WMYiIyATWoCQhr0ZKEgbv9lhMMFegKgfvvQpYbGaDYzgyfH4pm4uFBZ9WA4fmIDYREZkAmjqVJORTricjZmM5UAucN6j9cmBNlisbMLM64C3AazmJTkRECl5Du5KEfIpy4uJ9wIPATWZWD2wArgBOBi5InmRmK4BT3N1S2p4HbgXWAB0EvQf/D6gAvjw+4YuISNTUk5BfkSUJYU2ECwnmEFxP0KuwmqC40j0jvPwJ4ErgAGAKwSqHh4D3uXtWwxQiIjJxaeJifkVamsrdW4Grw8dQ5yxL0/bRPIYlIiITQCLhNHUG9fOUJORHJknC5WZ2YvjncoIVBFeHvQCpNGFQRETGTWt3H/FEsFpeSUJ+ZJIknBU+Ul04xLmZ1DYQEREZs+RQAyhJyJeRkoQF4xKFiIhIllKThGkVShLyYdgkwd3fGK9AREREspFMEipLi1SSOU+irJMgIiIyagMrG6rUi5AvShJERGRCakzWSNBQQ94oSRARkQmpUdUW805JgoiITEjJnoRpShLyRkmCiIhMSMk5CfVKEvJGSYKIiExITR3qScg3JQkiIjIhNagnIe+y2rvBzE4i2GfhEKAesEGnuLsflKPYREREhjTQk6DVDXmTcZJgZpcDPwX6gFeBjfkKSkREZDjdfXE6euMA1KtOQt5k05PweWANcIa7b81TPCIiIiNSSebxkc2chAOB7ylBEBGRqKUmCfWVZRFGsm/LJknYDOi/hIiIRC6ZJBTFjOryrKbXSRaySRK+D1xmZtpFQ0REItXUuWfSYiw2eA695Eo26defgUuAp8zsO8AGID74JHd/OEexiYiIpNXQruWP4yGbJOEPKX/+MeCDjlvYpp4GERHJq4GehMqSiCPZt2WTJFyZtyhERESysKeQkqbK5VPGSYK735LPQERERDK1pySzehLySWWZRURkwkn2JNSpJyGvskoSzKzSzL5oZivNrD18rDSz68ysMl9BioiIpEr2JNRVqCchn7Ipy1wHPAIsBnYDz4WHDgWuBd5rZm9398acRykiIpIiWSehrko9CfmUTU/Cl4BFBBs8zXH3t7v724G5wN8DhwHX5TxCERGRFImED6xuqFNJ5rzKJkk4H/ixu3/X3QfqI7h73N2/B/wEuDDH8YmIiOylpauPRLgIv051EvIqmyRhFnuGGNJ5NjxHREQkbxo79+zboCQhv7JJEnYAS4c5vjQ8R0REJG/22gFSSyDzKpsk4R7gKjP7WzMbeJ2Zxczsb4APA3fnOkAREZFUySShqqyYsmIV+c2nbCouXgucCXwX+KKZrQnbDwNmAK8B/5Lb8ERERPY2sLJBQw15l3FPgrs3AMcCXwUagOPCx27gK8Bx4TkiIiJ50zhQbVFJQr5ltQm3u7cCnw8fIiIi466xQztAjheVZRYRkQllYN8G1UjIuyF7EszsHQDu/nDqzyNJni8iIpIPAztAVilJyLfhhhtWAG5mU9y9N/nzMOdbeFxTTUVEJG8a1ZMwboZLEj5M8KHfN+hnERGRyGhOwvgZMklw95uH+1lERCQKWt0wfjKeuGhm15rZkmGOH2Fm1+YmLBERkTfr6o3T1RdsH6Q6CfmXzeqG64Cjhjm+BBVTEhGRPErdt0HDDfmXyyWQ5UB/Dq8nIiKyl6a99m1QkpBvwxZTMrOpQG1KU72ZHZDm1DrgMmBT7kITERHZW3L5Y3HMmFqeVT1AGYWR7vA/EOzZAMHKhm+Gj3QM+FROohIREUmjKWXSoplFHM2+b6QkYUX4bATJwnJg5aBzHGgHnnD3P+U0OhERkRQNWv44roZNEtz9IeAhADM7EPi+uz85HoGJiIgMppLM4yvjAR13vzKfgYiIiIwk2ZNQp5LM4yLrWR9mVgQsAqaRZnWE9m4QEZF8SfYk1KknYVxklSSY2aeBzwBThzlNezeIiEheJKstqpDS+Mim4uJfA18BngeuIZjM+E3g34FG4BmC/R1ERETyIllMSUnC+MimmNJHCVYwnAr8MGy7190/Q1CJcT7qRRARkTxxd3a0dAMwvaos4mgmh2yShMXAL8M/J3eDLAZw920EicPHcxeaiIjIHjvbemjrCQr7HjSzMuJoJodskoQ40BH+Oflcl3L8deCQHMQkIiLyJmt3tAMQM1gwXUnCeMgmSdgILABw9x6CEsxvTzl+HMHcBBERkZxbu7MNgPn1lZQVa3R7PGSzuuFh4Bzgs+HPvwQ+YWZTCJKNDwA/yW14IiIigbU7g56Eg2dWRRzJ5JFNkvAt4AUzm+LuXQTbQh8KXBEe/x3B8kgREZGcW7sj6Ek4ZJaShPGSTcXFNcCalJ87gPPNrAaIu3t7HuITERHB3Xk1nJNwyMzqiKOZPMa8z6a7t+QiEBERkaHsbu+lpasP0HDDeMqmmFLCzLaa2fFDHL/MzOK5C01ERCSQnLRoBgfNUJIwXrJZ3QBQDzxoZu/JRzAiIiLpvBZOWtx/WgVTSrWyYbxkmyT8M/Bn4HYz+1we4hEREXmTtQPzEdSLMJ6yTRJ2A6cDtwH/amY/NbMxz2sQEREZTnK44WCtbBhXWX/Au3sf8EEze41gGeQCM7so55GJiIiEksMNWtkwvrLtSRjg7l8EPgicADxBUDNBREQkpxo7etndHuz+qOGG8TXqJAHA3X8GnEmwh8M1OYlIREQkRbIXAeAgJQnjKpsk4RZg3eBGd38UOBF4hmB/BxERkZxJzkfYr3YKVWWaBjeesqm4eOUwx9YRDDuIiIjkVHJlg4oojb8xDTeIiIjkW7In4VCtbBh3Q/YkmNlPAAf+xt3j4c8jcXe/KmfRiYjIpLdWezZEZrjhhg8RJAl/B8TDn0figJIEERHJiZbOPna29QCqkRCFIZMEd48N97OIiEi+vbarbeDPmpMw/vTBLyIiBSs51DB7ajlTy0sijmbyUZIgIiIFa22y0qKGGiIx3MTFa0dxPXf3L48hHhERkQHJJEFDDdEYbuLidaO4ngNKEkREJCde2xHMSdDKhmgMlyQsGLcoREREBmnr7mNrSzeg4YaoDLe64Y3xDERERCTVul0dA38+eIaShCho4qKIiBSkteFQw/SqMqZVlkYczeSU9U4ZZnYswT4N03hzkqGJiyIikhNbmrsAOLC+IuJIJq+MkwQzmwL8GjgLMIJJihYe9pQ2JQkiIjJmTR29ANSpFyEy2Qw3XEuQIPwbcCpBUnAF8G7gEeBp4PBs3tzMqszsRjPbZmZdZvaMmZ2fwev+2szuNrM3wtetDa8zI5v3FxGRwtXU2QfAtAoVUYpKNknCe4Bfuvu1wEth2xZ3vx84Aygls/0dUi0HLgOuAc4BVgPLzezsEV73RaAV+CzwLuA/gL8Enjaz2ixjEBGRAtTUGfQkaD5CdLKZk7A/wYcxBBs+QZAY4O79ZnYbwWZQn83kYmEicAZwsbsvD9seBBYCNwD3DfPype6+M+Xnh8xsNbAC+CDw7UxiEBGRwjWQJFQoSYhKNj0JbexJKtqABDA35XgLMDuL610UvuauZIO7O3ALsMjMhhy6GJQgJD0dPs/LIgYRESlQTR0abohaNknCOuBQAHePA6sIhiAwMwMuBjZlcb0lwGp3TwxqX5lyPBunhc8vDXWCmTUP9wBqsnxPERHJk+awJ6FWPQmRySZJeAC4xMyKwp9/ALzLzNYBawmGDm7K4nr1QGOa9saU4xkxszrgxjCOX2QRg4iIFKCe/jgdvcHItlY3RCebOQlfBW4lXPbo7t81s3LgAwRzFH4EfD3L9/dRHhtgZhXAnUAd8A537xnygu61I1yrGfUmiIhErjlc2QAabohSxkmCu7cDawa1/Qd7JjNmq4H0vQV14XO6Xoa9hLUb7gaWAu9095UjvERERCaA5KRF0HBDlDIabgjrGawzs0/k8L1XAYvNbHAMR4bPQ84tCGMqJ5j0eBJwrrv/KYexiYhIhJKTFgFqp6gnISoZJQlhL0I90J7D914O1ALnDWq/HFjj7quHeqGZlREMMbwduMDdH8phXCIiErFkT8LU8mKKi7TNUFSymZPwBHAs8OMcvfd9wIPATWZWD2wgqOB4MnBB8iQzWwGc4u6W8to7gHcCXwLazezElGO73H1djmIUEZEIqJBSYcgmSfgM8EczexK4OaxpMGru7mZ2IXB9+KglqLh4sbvfM8LLzw2frw0fqW4h+8qPIiJSQJoHSjIrSYhSNknCfwBNBD0JXw+XPnYOOsfd/fRML+jurcDV4WOoc5alabM0p4qIyD6isSNZbVHzEaKUTZKwkGBZ4sbw51m5D0dEREQlmQtFNksg5+cxDhERkQEDww2akxApTRkVEZGCs6cnQcMNUcpmuAEAM1sAnE4w3PAzd3/dzEoJNnfa7u69w15ARERkBE0d2rehEGTVk2BmXwNeBX5IsPxwYXionGBlwsdyGp2IiExKTVrdUBAyThLM7G+Bfwa+A5xFuIcDDKxSuJs3F0YSERHJSn88QWt3ck6ChhuilE1PwseA5e7+CeC5NMdXAoflIigREZm8Wrr6SFbiUU9CtLJJEg4Ffj/M8V3A9LGFIyIik13TXjtAKkmIUjZJQjdQOczxA4HmMUUjIiKTXvNeO0BquCFK2SQJTwEXpTsQ7sj4QeCxXAQlIiKTV7InoaK0iPKSooijmdyySRL+HTjJzG4FjgrbZpvZO4EVwDzgG7kNT0REJpumDlVbLBTZVFx8wMz+DvgW8Fdh863hcy/wEXd/PMfxiYjIJLNnB0gNNUQtq2JK7v5DM7sbeC+wiGAZ5FrgF+6+JQ/xiYjIJKMaCYUj64qL7r4d+HYeYhEREVG1xQKivRtERKSgJIcb6rSyIXJZ9SSY2UnA1cAhQD0pVRdD7u4H5Sg2ERGZhJI7QKonIXoZJwlmdjnwU6CPYP+GjfkKSkREJi/tAFk4sulJ+DywBjjD3bfmKR4REZnk9qxuUE9C1LKZk3Ag8D0lCCIiki/uPjDcoNUN0csmSdgMlOUrEBERkbaefvoTwe5OShKil02S8H3gMjNTjUwREcmL5PJH0L4NhSCbOQl/Bi4BnjKz7wAbgPjgk9z94RzFJiIik0zqDpB1mpMQuWyShD+k/PnHgA86bmGbehpERGRUkpMWS4tiVJTq4yRq2SQJV+YtChEREfZsE11bUYLZ4FI8Mt6y2eDplnwGIiIi0tgRDDdoqKEwqCyziIgUjNSeBIleVkmCme1vZj8xs81m1mtmp4XtM8L24/ITpoiITAZ7qi2qJ6EQZJwkmNkC4BmCFQ6rSJmg6O67gGOBv851gCIiMnk0hcMNqrZYGLKZuPhvQAJYAnQBOwcdvw84L0dxiYjIJKR9GwpLNsMNZwDfdfdNvHn5I8AbwLycRCUiIpNSk0oyF5RskoSpwLZhjpeS5dbTIiIiqfZMXFSSUAiySRI2AUcMc/xE4LWxhSMiIpNZY1iWua5Sww2FIJsk4dfAh81sSUqbA5jZJcB7gV/kMDYREZlEunrj9PQnAPUkFIpskoR/I9gJ8kngfwgShM+Y2eMEycELwA05j1BERCaF5KRF0JyEQpFxkuDurcBJBPs2HEuwV8OZwGHAd4FT3b07H0GKiMi+rzFlB8g6JQkFIauJhmGi8HHg42Y2gyBR2OXu6VY7iIiIZKw5XNkQM6gu1zz4QjDq/wphASUREZGcaEpZ2RCLaXOnQjBikmBmcwB39+3hz+XAx9Kcusndf5nj+EREZJJoViGlgjNskmBmhwEvAdcAXwubK4FvEExcTE31+s3seXdfm49ARURk35bcAVKTFgvHSBMXrwQagf9Mc+yTwKnh43SgDfhwTqMTEZFJo0mFlArOSMMNpwF3u3tvmmMvuPtDyR/M7H8JkgUREZGsJYcbVEipcIzUk3AI8HyG13oFOHhM0YiIyKTVqH0bCs5IPQmVQPugtibgSGDDoPbW8HwREZGsad+GwjNSktAMzEltcPcEsCrNubOBltyEJSIik422iS48Iw03vAicleG1zgrPFxERyVpzcnVDpXoSCsVIScKvgFPM7PzhTjKzC4FTgDtyFJeIiEwivf0J2nr6Ac1JKCQjJQk3AWuAX5jZl8zswNSDZnagmX0ZuB14GfhJfsIUEZF92Y7WPVv/zJpaFmEkkmrYOQnu3mNm5wL3EhRU+ryZtRJMUpwaPoxgZcO57t6T53hFRGQftH2vJKE8wkgk1Yi7QLr7emApwcZOjwJxgsmMceAR4P8Bb3X31/MXpoiI7Mu2twRJwrSKEspLiiKORpIy2uAp3AL62+FDREQkp5JJwuyaKRFHIqlG7EkQERHJt21hkjCnRkMNhURJgoiIRC45cVHzEQqLkgQREYnctpYuQD0JhUZJgoiIRG7PnAQlCYVESYKIiEQqnnB2tgUr6GdruKGgKEkQEZFINbT30J9wQMMNhUZJgoiIRCq5sgE03FBolCSIiEikktUWK0uLqC7XDpCFREmCiIhESpMWC5eSBBERidSeQkqqtlholCSIiEikVEipcClJEBGRSKmQUuFSkiAiIpHa0RrUSJilJKHgKEkQEZHIuPuengQNNxQcJQkiIhKZlq4+uvsSgFY3FCIlCSIiEplkjQRQklCIlCSIiEhkkssfS4ti1FWURhyNDKYkQUREIpMspDSrpoxYzCKORgZTkiAiIpEZqLaoSYsFSUmCiIhEZk9JZlVbLERKEkREJDLbWpMlmdWTUIiUJIiISGR2tKgkcyFTkiAiIpFRSebCpiRBREQi0dnbT2t3P6AaCYVKSYKIiEQiOWkRtLqhUClJEBGRSCSThJjBjOqyiKORdJQkiIhIJJLVFmdUl1FSpI+jQhTpfxUzqzKzG81sm5l1mdkzZnZ+Bq872cx+YmbPm1mfmfl4xCsiIrmT3LdBQw2FK+rUbTlwGXANcA6wGlhuZmeP8LrTgWXAa8DzeYxPRETyZE8hJSUJhSqyJCFMBM4A/trdb3L3PwJXAI8DN4zw8i+7+0J3fw/wWJ5DFRGRPNg+UEhJ1RYLVZQ9CRcBLcBdyQZ3d+AWYJGZHT7UC909kf/wREQkn7arkFLBK47wvZcAq9N84K9MPZ7LNzSz5hFOqcnl+4mIyNCSExdVSKlwRdmTUA80pmlvTDkuIiL7oN7+BA0dPYB6EgpZlD0JAMOtSsj5igV3rx3ueNjToN4EEZE829nWjYf/yqsnoXBF2ZPQQPregrrwOV0vg4iI7AP2qraoJKFgRZkkrAIWm9ngGI4Mn18a53hERGScJFc21FaUUF5SFHE0MpQok4TlQC1w3qD2y4E17p7TSYsiIlI4BmokaD5CQYtyTsJ9wIPATWZWD2wgqJNwMnBB8iQzWwGc4u6W0jYDOCX88eCw7T3hz6+7+zN5j15EREZt5eYWQEMNhS6yJMHd3cwuBK4PH7UESx4vdvd7Rnj5EcAvB7Ulf74F+FDOAhURkZz64ys7uPuFrQCctmhmxNHIcCJd3eDurcDV4WOoc5alaVsB2JtOFhGRgtbY0cun7ngRgBMW1HHZCQdGHJEMJ+q9G0REZJJwdz7765Xsbu+hqqyYG/7yLRTF9H2vkClJEBGRcfGrZ7dw/6odAFx3/hHMm1YRcUQyEiUJIiKSd5saO7nu7lUAvOuI2Vzy1v0ijkgyoSRBRETyyt355C9foL2nn+lVZVx/8ZGYaZhhIlCSICIiebVycwtPbgiK6H79PUdSV1kacUSSKSUJIiKSV4++thuA+fUVnLZoVsTRSDaUJIiISF49ujZIEk4+ZHrEkUi2lCSIiEjedPXG+fMbTQCcfLCShIlGSYKIiOTNkxsa6I0niBmctFBJwkSjJEFERPLmsXA+wpHzaqmpKIk4GsmWkgQREcmbR8L5CG/XUMOEpCRBRETyYldbD69sbwM0aXGiUpIgIiJ58ad1QS/ClJIilh5QG20wMipKEkREJC+SQw0nLKyjrLgo4mhkNJQkiIhIzrn7nvoImo8wYSlJEBGRnFu3q4Ptrd2A5iNMZEoSREQk5x5duwuA6VVlHDarOuJoZLSUJIiISM4l92s4+eB67fg4gSlJEBGRnOqLJ3hifbDr48mHzIg4GhkLJQkiIpJTL2xqpr2nH9CkxYlOSYKIiORUcunjwTOrmF1THnE0MhZKEkREJGfcnfte3AaoF2FfoCRBRERy5vH1Dazd2Q7Ae46ZF3E0MlZKEkREJGduffwNAI45cBpL9quJOBoZKyUJIiKSE9tauvjd6h0AXH7SgRFHI7mgJEFERHLitic3Ek8406tKedeS2VGHIzmgJEFERMastz/Bz5/aBMClxx2gDZ32EUoSRERkzH7z0jZ2t/dQFDP+6oQDog5HcqQ46gBkYnrstd30J5y3HVRPcZFyTZHJLjlh8czFs5hbOyXiaCRXlCRIVnr7E3zp/1bxP09sBGBmdRmXHDOP9x4zj4UzqoZ83c62blZtbWXdznamV5VxyKwqDppRRXnJ3l2S7k5vPKGuSpEJZNXWFp55ownQhMV9jZIEydj2lm4+9rM/8+zG5oG2nW09fG/FOr63Yh1LD6hlbu0UimNGUcwojhm72np4aWsru9p63nS9mMEBdRXMnFpOa1cfTZ29NHX20dufYOkBtXzp/CUcOU9LqEQKXbIX4eCZVZx0UH3E0UgumbtHHUPBMLPmmpqamubm5qhDybstzV3cu3Ir967cxqqtrZhBzIIP96KYsf+0Co5fUMcJC+o4bkEd63d18LGfPcvu9h7M4BOnH8pFS/fjV89u5o4/b2ZLc9eI71kUM+bXV7C7vZeWrr4Rz48ZXH7SfP7xrEOZWl6Si187p9ydbS3drN/Vwbpd7exu72F2TTn7T6tg/7oK9qudQkdPP69sb+OV7a2s2d7GzrYeTl88k0veOu9NvShD6e6L09zZx4zqMopi6XfTiyecvngi42tK7rk7Pf0JOnvjdPb2090XJ56AhDvuwXNbdz+bmzrZ1NTF5qZOtjZ3kUhAcZFRXBSjJGaUFseoKiumqrw4eC4rZsH0So6bX8e0ytKof8299PYn+O2q7Xzqjhfo7kvwpQuO4PKT5kcdlmShtraWlpaWFnevTXdcSUKKfSVJ6O6L88T6Bh58ZSebm7qoKi9mankJU6cUU1IU4+FXd+3VG5AJM3CHqeXFfPPSozlt0ayBY4mE83j4fl19ceIJpz/hxBNOZVkRR8yt4Yi5Uzl0VjXlJUW4O7vaeli7s51Xd7TR1NFLTUUp0ypKmFZRSm88wQ2/W8OrO4KqbTOqy7jmnMWcd9RcYkN8SOZaV2+c5zY28cSGRp5c38AbDZ0UxYxYDIpjMcyCnpXO3viQ10jes3SmV5Xx4ZPn84ETD0ybALV29/HHl3fy25e2s+LVnXT3JSiOGXNqy9mvdgpza6bQ0dvP9tYedrR0s6u9h3jCqassZf9pU5hXV8G8aVM4fM5UTlxYz6ype9fP39nazf2rd/D71TtoaO+hrDhGWXERZSUxKkqLWDR7KksPqOUt+9eOa4LW1RvntZ3tzK4pZ3pVaUFsMdzZ2097T3+QRJsRM6OnP86qba28uLmFF7e08NKWFna0dpPI8z+nh86q4vgFdRw2eyrbW7p4fXcn63d38PruDirLijlxYR0nHVTPSQvrWTC9cuD+9ccTdPTE2dXew5bmIEHZ3NTF9pZuimJGZWkRU0qLqSwtYnp1GcfNr+OgGZVD3v+drd38/KmN/PzJjewMewlrppTw6KdPpboAE3oZmpKELESZJHT3xWns6B147GrrYUdbNztbe9jZ1k1zZx/TKkuZWV3GrKnlzKwuo6qsOPgGmXDiiQStXf08snY3j722m66+oT+8kuorg7XMyw6bSWlxjET4wd4XT/Dytlae3NDIc5ua6e1PALBodjU/+OAxHFhfme/bQV88wU8e3cA3H1g78LvMmzaF9x9/AO89dh4zq8e2aUxvf4I3GjpYt6uDrc1dNHb00tDRS0N7Dzvaeli9tYW+eGb/b8QM9q+rYGZ1GdtautnW0k085dPCwmGVRbOrKS0u4rcvbRu4dlVZMaccNoOYGYmEk3CnpauPp19vzPj9M7FgeiUnLKhj/7oKHnxlJ3/e2DRkApPKDA6eUcV+06bQ3h18WLZ199PVF+ewWdW8/dDpvP3gGRwxd+pAAhdPODtau9nW0kVpURH1VaXUV5UOOc9kZ1s3f3x5Jw+8vINH1u6mJ/z7Vl1WzIIZlSyYXsnC6VUsnFEZPKZXMaW0iM7eftbuCBLNV3e00dDeixN8ow+eg79HPf0Jevrj9PYnMLOB/4dmTQ2e6ypLqZlSQu2U4Lk/keCZN5p4akMjT7/eyKqtrXv99xyrWVPLmDetgv2nTWG/aVMoKYrRH3f6Egn6405Pf5yOnjht3f209/TR0tXPazvbsv77UF9Zihm09/TT3ZfIOs6Z1WWcuLCeExbW4Q6bmjrZ3NjFxsZOXtneOhBPzOCsw2fz8TMOYfGcqVm/j0RLSUIWcpkkuDu723t5o6GD1xs6B543NnTQ3tNPXzz4MO7tT9DVFx/2G+lomMFbD5jGkfvV0NnbT2tXP209fbR397No9lTOfcscTlo48sqEnv44Kze3sLmpk3ceMZuK0vGdxrKluYsv3bOK+1ftGGgrjhlnHj6LxXOm0tTZS3NnMJ+huy/OUfNq+YuD6jlufh2VZcV7/Q5PbWjk2TeaWLernY2NnRl961s0u5oTF9Zz+NypGEGXcbKXZEZVGQfNrOLA+oq9PgD74gm2t3SzqamTKSVFHDqreiAWCKrS3fTIBm57aiMdw/x3Ly2O8Y5DZvDuJbNZsl8N21u72RJ2U29r6aayrIjZU8uZNbWc2TXlTCkpYktzF5saO9nU2MUbjR2s3Nwy5N+t6vJizlwc3MfeeIKevjg9/QmaOntZubmFV3e0ZfzNuK6ylINnVLGttYttzd30p3lhdXkxtRUlxMJv48n7+XpDZ2ZvkqK+spSGjt6sX5dLRTHj0FnVHLnfVI7cr4b50yupKC2morSIytJiyktjQa8TwVAeBuUlsVFNyu3ui/Pcxmaefj1IXNbv6mC/2iksmF7J/OmVzK+vYFd7D4+va+CJ9Q00dQ49nFccM+bWTmHetCnMqZmC43T2xOno7aezN87ruzsyurd1laVcetz+XHbigeyn1QwTlpKELOQ6SVh87W9HlcEXxYz6ytKBbzszqsuprSihubM37FnoYUdr0NVdXGQUx2IUx4ySYuMt82o5ffFMTjl0JnUFNn45Fq/tbOf2pzZyx7ObaR7mH8Ck4pix9IBaYmZ79YYMVl4SY/9pFeG33TLqK0upqyzl8DlTOX5BHbUV+buHLZ193P70Rtbv6iAWM2JGOOEzxjEHTmPZYTP2Si5Goy+e4MUtLTyxvoEn1zeyqbGTExbW8a4lQZJYWjx0ktjR08/KzS08t6mJpo5eqstLBsbKi8z488YmHlm7i02NI89HGUl12KNy5uGzOHFhPbvbe9iwu4MNuzpYv7uD9bvaWb+rg7ae/je9dnpVKYfOqmZOzRRiFiTIhmEGJUWxYCilJEZpURHxRGLg/58drcFzU2fvm5Kh0qIYb9m/huMX1HHc/DrmTasg4UFymHAnZsaC6ZUFOQckkXDW7Ghj1dbWcH5DkLRUlhVTF/67MtTcFgj+7Vq7s53H1zXw+LoG/ryxaeD/kwPqgvk2B82oZNlhMwvy95fsKEnIQq6HG971zYd5ZXsbM6rLmF9fwYH1lRxYV0FtZSmlRcEEpeAfsSLqKoPx+PrKMqrLi8dt7H2i6e6Lc/+q7fzq2S20d/dRV1lKbTifAeCp15t4cXNz2m/AB80IJn8tnjM17LquYs7Uct3rMXqjoYNH1u5me0s3c2rLmTctmLS5X+0UeuMJGtp7aOjoZXdbDy1dfQNDAY6TcFhQX8nxC+qGTVgg+PDa1d7D+nCIaG7tFA6dVT3mZNjdae/pp7mzj5auPuIJ57DZ1foAlElBSUIWcp0kbG7qZFpF6Zi/DUp2Wrr6eGpDI0+sb8Adjps/jWPn1zGjuizq0ERECoqShCzsK6sbREREMjFSkqB6uiIiIpKWkgQRERFJS0mCiIiIpKUkQURERNJSkiAiIiJpKUkQERGRtJQkiIiISFpKEkRERCQtJQkiIiKSlpIEERERSUtJgoiIiKSlJEFERETSUpIgIiIiaSlJEBERkbSUJIiIiEhaShJEREQkLXP3qGMoGGaWAKympibqUERERPKupaUFwN09baeBkoQUZtZP0LvSmqNLJrONlhxdT4amez2+dL/Hj+71+JmM93oqkHD34nQHlSTkkZk1A7h7bbSR7Pt0r8eX7vf40b0eP7rXb6Y5CSIiIpKWkgQRERFJS0mCiIiIpKUkQURERNJSkiAiIiJpKUkQERGRtJQkiIiISFqqkyAiIiJpqSdBRERE0lKSICIiImkpSRAREZG0lCSIiIhIWkoS8sDMqszsRjPbZmZdZvaMmZ0fdVwTmZmdbmY3m9kaM+s0s81m9mszOzLNuWea2RPhvd9pZj8ws9oIwt5nmNl1ZuZm9nyaY7rfY2Rmy8zsd2bWHP79Xm1mfzPoHN3nHDCzpWZ2p5ltNbOO8F5/xszKBp2n+42ShHxZDlwGXAOcA6wGlpvZ2ZFGNbF9FDgA+E/g3cA/hj8/bWYnJk8ys2XAfcAm4Dzgk8D5wL1mpr/vo2BmRwCfBnakObYM3e8xMbMrgAeAdcClBPfxO0BpyjnL0H0eMzNbBPwJmA98guBe/hr4N+BHKectQ/cb0BLInAsTgXuBi919edhmwCNAvbsvjjK+icrMZrr7zkFttcAG4I/ufknY9hRQAhzj7omw7Uzgd8Cl7v6/4xr4BBf+g/gn4GngSKDW3Y9OOa77PQZmtj+wBrjO3b8+zHm6zzlgZtcB/wIc7O7rUtpvJUjQKty9T/d7j0mVEY2Ti4AW4K5kgweZ2C3AIjM7PKrAJrLBCULY1gysBeYBmNl+wHHArcn/scPzfg9sAS4Zl2D3Lf9AcH8/P/iA7ndOXBU+f3uoE3Sfc6ovfG4Z1N4SHovrfu9NSULuLQFWp/7lCq1MOS45YGYzCO7nS2FT8t6+lOb0F9G9z4qZLQS+BFzt7q1pTtH9Hrt3AC8DF4fzbeLhfJuvmllyuEH3OXduBRqB75nZAjObamYXAFcAN4T/but+p1CSkHv1BH8JB2tMOS5jFA7h/JDg7/A3wubkvR3q/uveZyi8vz8C7nf3O4c4Tfd77OYChxD0JNwInA78BPgn4KfhObrPOeLuG4ETgcOB9QQ9CHcCN7r7F8LTdL9TFEcdwD5quIkemgSSG/8OXAhc6e4vDzo21D3Wvc/cR4BjCf4xHYnu9+jFgGrg/e5+e9i2wsymAJ80s39JOVf3eYzM7EDgHmA7wdBwM3AK8FkzS6QkCqD7DShJyIcG0meadeFzuuxUsmBm/0bwTevj7n5zyqGG8Hmo+697nwEzmw58HfgK0JGy7KsYKAp/7kb3OxcaCHoS7h/U/huCGfVvRfc5l75KkJQtdfeusG1F0HHGtWZ2E7rfe9FwQ+6tAhanWSaTXM+fbpxLMmRmXwI+B3zK3W8cdHhV+JxuzPBIdO8zNQ+oIUgSmlIebyO4t03Adeh+58KLQ7Rb+JxA9zmXlhLMGesa1P4MwefhInS/96IkIfeWA7UEa2tTXQ6scffV4x7RPiLsev0C8AV3//fBx919M8H/7JelJmlmdjqwH8F6aBnZa8CpaR4vEKzlPxX4oe53TiTv0eAaKmcTdGs/rfucU1uBJWZWMaj9pPB5i+733lQnIcfCCV9/AI4CPkWwjv8KgiThAne/J8LwJiwz+yeCCYr/R1D4JFWPuz8XnncawVrmXxFMbJwLfA3YCLzN3ePjFvQ+xsxW8OY6CbrfY2Rm9wF/QbB+fxVwGsG/HT9094+F5+g+54CZXUjwRe5R4JsEExeXEdzvh9z9zPA83e8kd9cjxw9gKvBfBJNjuoFngQujjmsiP4AVBN+s0j1eH3Tuu4Anw3u/i2CW/rSof4eJ/gj/Gzyfpl33e2z3tZIgAd4C9BL05HwGiOk+5+V+n0FQ4XIH0EGQmH0BqNT9fvNDPQkiIiKSluYkiIiISFpKEkRERCQtJQkiIiKSlpIEERERSUtJgoiIiKSlJEFERETSUpIgso8zs/lm5mZ2XcRxTDez/zazrWE8K6KMJ5/MbFn4O34o6lhExkJJgkiemdk0M+sOPzQ+EHU8EboBeB/wfeCDvLly5oCUxCb10WVmq8zsi2nK6mYs/AC/LmXjqtFe5+jwOvPHch2RQqZdIEXy7zKglKBE91XA/0QbTmTOBO539y9l8ZrfA/8d/nkGcAlwLUGt/bNGGccyghLINxNsFTxaR4fXWQG8PujYw8AUoG8M1xeJnJIEkfy7CngQuAv4ppkd5O7rIo4pCrPJfpvdV919IKkysxuBJ4AzzewYd/9zLgPMFXdPEJTzFZnQNNwgkkdm9laCb5y3AD8j+GZ55RDnupndbGYnmdlDZtZhZrvN7MdmVpXm/FPM7PGwG367mX3LzI7IZv6Bmb3PzB41szYz6zSzJ83sPVn8fpVm9hUzW2dmPWEc/21mB6acc52ZOcH2x1ekDB98KNP3SfJgY50V4Y+HDIplvpndamY7wljWmdn1qUMTZnYzwbd/gA0psVwXHp9rZjeY2fNm1hQOE602s0+bWVHq7wT8NPzxwZTr3BweTzsnIZP7Nfj1ZnZlOMzSY2ZvmNmnsr1vIqOlngSR/LqKYBOZX7l7h5ndS/BBeW34bXOwowl2uvwp8HOCrvGrgATwN8mTzOxkgl3qmoCvEnSb/yXwtkwDM7N/BT4P/JZgg5sEcBHwSzO72t2/M8Lri4H7w/e8g2DOwSHA3wFnmdmxHmy7+2uCTYtuBR4h2FUP4E+ZxjrIQeHzQK9E+CH7FFADfA94leDefRZ4m5md7u79wA8INmC7CPgHYHd4iZXh81HAxQQ7Ba4DSoB3E9zjhcDfhuf9GphD8N/keuDlsH3IHqIs7leqjwKzgJsI/ht/APiamW12958PfYtEciTqHab00GNffQDlBB9kN6e0XUCwc+W705zvBB/UJw5qv5egB6Iqpe0pgu7shSltJcBj4XWuS2mfn6btrWHb9WniuBNoBapH+P0+El7j64Pazwnbb03z+9083DXTxPxjYHr4WEQwH8GBTUBZyvk/C9vPHnSdfw/br0ppuy5sm5/mfadAsPHdoPZbgTgwJ6XtQ+F1lqU5f1l47EOjuV8pr99KsD13sr2CYEfCx6P++63H5HhouEEkfy4GphEMNSTdC+wEPjzEax539ycGtf2RoNdvPoCZzQKOA+5y9/XJk9y9D/hWhrFdRvAhdEu4NHHgAdwNVBNMDhzORQRJzVdSG939XuB54AIzG+u/MVcRfCjuIvi2/kWC+R2nu3sPQPge5wPPuft9g17/Ffb0kIzI3bvc3cPrlppZXXhP7icYnj12DL/LaO7XT929OeXcToI5GYcgMg403CCSP8kPuM1mdnBK+++B95rZdHffPeg163mzhvC5PnxeED6vSXNuurZ0FhPMEXhlmHNmjXCNBcBWd29Kc2wVwdDJdIKkaLTuAv4LKCL4YPwUsD/Qk3LODKAqfM+9uHujmW0jGCoYUTgk8BngcuBggnuUalqW8acazf0a6u9DfZp2kZxTkiCSB2a2ADiV4EPm1SFO+wDwzUFt8eEuO+h5LIxw2GOY93zTh+4Q8eTTZnd/IPzz/Wb2G4L5A7eb2V+E3/pzGcd/AP8f8L8EdRx2Egz1vBX4GmOb7D2aOIf7+yCSd0oSRPLjSoIPhY+Qfi3+vxL0NHxzFNdOfrs8LM2xdG3prAXeBWx095dHOnkI64B3mVltapd46HCCeQ2De0rGxN3Xmdk3COYmvJ9gcudOoA04YvD5ZjaNYILh86mXGeYtPgg87O6XDrrOwWnOHe466Yz7/RIZK81JEMmxcFz5Q8CL7v5jd79j8AO4DVhiZsdle3133wE8QzCGPdCNbmYlwMczvMyt4fP1qUv7Uq41M4Nr3Enwb8hnBr323cBS4G5Pv4JjrP4TaAH+xcyKwve4B1hqZu8adO5nwhiXp7S1h891aa4dZ9A3fjOrJFgJMdhw10nnTqK5XyKjpp4Ekdw7i2Dc/KZhzvkVwSz7q4CnR/EenySY2/AnM/suwYfmXxJUdoQRvuW6+9Nm9i8EEwGfN7NfEsyknwMcA5ydcq2h3AxcAXzagtLEDxOM438M2AF8LuvfKgPu3mxm/0WwfPOvCBKezxFUdLwzvB+vAe8gKAP9MHtPHk1ODP2amf2MYJXIS+7+EsHSxL81s/8FHiCYl/Fh9swLSfU0wUTEz4c9Fh3ABnd/cojQbyaC+yUyFupJEMm9q8LnXw91QviB9CpwqZlNyfYN3P0hguGC1wk+XD5H0LtwdXhKVwbX+BJwLkFy8AngOwTr/svIoEciXE3xToIaAscTDJ18APglcIK7b8r8N8rafxJ8k7827E14AzghfO/kXI/jCVYSvNuDGgnJuB8DPk1Qb+FHBL06yQJS/wh8AzgR+DbBh/oPGfTtP7zORoIEYgpBbYbbCGoepBXx/RIZFQtX+4jIPsDMLiH4Nvx+d7896nhEZGJTT4LIBGSB8kFtJQTfhPvZU7pYRGTUNCdBZGIqA94Ix9TXEKybfx9BWeGvufv2KIMTkX2DkgSRiamPoHrjBQSTDY0gWfh7d/9ulIGJyL5DcxJEREQkLc1JEBERkbSUJIiIiEhaShJEREQkLSUJIiIikpaSBBEREUnr/wdxPjDx2cBgMQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot angle vs generalization error\n", + "plt.figure(figsize=(8,8))\n", + "plt.plot(angle_sweep, un_mean_error[:, 1])\n", + "plt.xlabel(\"Angle of Rotation\")\n", + "plt.ylabel(\"Generalization Error (XOR)\")\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 10b0889f75f1d088bf3edd3eeeec8e51db2954a5 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Wed, 8 Dec 2021 16:33:11 -0500 Subject: [PATCH 03/32] Add files via upload --- .../gaussian_xor_rxor_aware_vs_unaware.ipynb | 38 ++++++++++--------- 1 file changed, 21 insertions(+), 17 deletions(-) diff --git a/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb b/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb index 95b0cf8602..7be407526f 100644 --- a/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb +++ b/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb @@ -84,7 +84,7 @@ "sns.set_context(\"talk\")\n", "# plots the mean p-values of the mc_rep experiments with error bars\n", "# dotted green line at p-value = 0.05\n", - "plt.figure(figsize=(8,8))\n", + "plt.figure(figsize=(8, 8))\n", "fn.plot_pval_vs_angle(pvals_100, pvals_500, pvals_1000, angle_sweep)" ] }, @@ -123,9 +123,7 @@ "source": [ "# call the function to run the experiment\n", "# give us arrays with mean_te and mean_error\n", - "mean_te, mean_error = fn.bte_ge_v_angle(\n", - " angle_sweep, task1_sample, task2_sample, mc_rep\n", - ")" + "mean_te, mean_error = fn.bte_ge_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep)" ] }, { @@ -173,7 +171,7 @@ ], "source": [ "# plot angle vs generalization error\n", - "plt.figure(figsize=(8,8))\n", + "plt.figure(figsize=(8, 8))\n", "plt.plot(angle_sweep, mean_error[:, 1])\n", "plt.xlabel(\"Angle of Rotation\")\n", "plt.ylabel(\"Generalization Error (xor)\")\n", @@ -191,7 +189,7 @@ }, { "cell_type": "markdown", - "id": "19ef76d2", + "id": "82991639", "metadata": {}, "source": [ "### 100 task samples" @@ -222,7 +220,9 @@ "outputs": [], "source": [ "# call our function to run the experiment\n", - "un_mean_te, un_mean_error = fn.unaware_bte_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep)" + "un_mean_te, un_mean_error = fn.unaware_bte_v_angle(\n", + " angle_sweep, task1_sample, task2_sample, mc_rep\n", + ")" ] }, { @@ -270,7 +270,7 @@ ], "source": [ "# plot angle vs generalization error\n", - "plt.figure(figsize=(8,8))\n", + "plt.figure(figsize=(8, 8))\n", "plt.plot(angle_sweep, un_mean_error[:, 1])\n", "plt.xlabel(\"Angle of Rotation\")\n", "plt.ylabel(\"Generalization Error (XOR)\")\n", @@ -279,7 +279,7 @@ }, { "cell_type": "markdown", - "id": "73e9b106", + "id": "d5139765", "metadata": {}, "source": [ "### 500 task samples" @@ -315,7 +315,9 @@ "angle_sweep = range(0, 90, 1)\n", "\n", "# call our function to run the experiment\n", - "un_mean_te, un_mean_error = fn.unaware_bte_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep)\n", + "un_mean_te, un_mean_error = fn.unaware_bte_v_angle(\n", + " angle_sweep, task1_sample, task2_sample, mc_rep\n", + ")\n", "# plot angle vs BTE\n", "fn.plot_unaware_bte_v_angle(un_mean_te)" ] @@ -323,7 +325,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "d2f0ba45", + "id": "a6fe41d4", "metadata": {}, "outputs": [ { @@ -341,7 +343,7 @@ ], "source": [ "# plot angle vs generalization error\n", - "plt.figure(figsize=(8,8))\n", + "plt.figure(figsize=(8, 8))\n", "plt.plot(angle_sweep, un_mean_error[:, 1])\n", "plt.xlabel(\"Angle of Rotation\")\n", "plt.ylabel(\"Generalization Error (XOR)\")\n", @@ -350,7 +352,7 @@ }, { "cell_type": "markdown", - "id": "3cadecf3", + "id": "ed4ea3f9", "metadata": {}, "source": [ "### 1000 task samples" @@ -359,7 +361,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "df1b20ff", + "id": "8a19d59a", "metadata": {}, "outputs": [ { @@ -386,7 +388,9 @@ "angle_sweep = range(0, 90, 1)\n", "\n", "# call our function to run the experiment\n", - "un_mean_te, un_mean_error = fn.unaware_bte_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep)\n", + "un_mean_te, un_mean_error = fn.unaware_bte_v_angle(\n", + " angle_sweep, task1_sample, task2_sample, mc_rep\n", + ")\n", "# plot angle vs BTE\n", "fn.plot_unaware_bte_v_angle(un_mean_te)" ] @@ -394,7 +398,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "7c3f2dbb", + "id": "04fb4bed", "metadata": {}, "outputs": [ { @@ -412,7 +416,7 @@ ], "source": [ "# plot angle vs generalization error\n", - "plt.figure(figsize=(8,8))\n", + "plt.figure(figsize=(8, 8))\n", "plt.plot(angle_sweep, un_mean_error[:, 1])\n", "plt.xlabel(\"Angle of Rotation\")\n", "plt.ylabel(\"Generalization Error (XOR)\")\n", From 166143d40faf3820a61a57cf18b085c6ccea85fa Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Thu, 9 Dec 2021 11:51:19 -0500 Subject: [PATCH 04/32] Delete xor_rxor_aware_unaware_fns.py --- .../functions/xor_rxor_aware_unaware_fns.py | 536 ------------------ 1 file changed, 536 deletions(-) delete mode 100644 docs/experiments/functions/xor_rxor_aware_unaware_fns.py diff --git a/docs/experiments/functions/xor_rxor_aware_unaware_fns.py b/docs/experiments/functions/xor_rxor_aware_unaware_fns.py deleted file mode 100644 index 70c218c5f7..0000000000 --- a/docs/experiments/functions/xor_rxor_aware_unaware_fns.py +++ /dev/null @@ -1,536 +0,0 @@ -# import -import numpy as np -from sklearn.datasets import make_blobs -from numpy.random import uniform, normal -import matplotlib.pyplot as plt - -# k sample testing from hyppo -from hyppo.ksample import KSample -from hyppo.tools import rot_ksamp - -from proglearn.forest import LifelongClassificationForest, UncertaintyForest -from proglearn.sims import * -from proglearn.progressive_learner import ProgressiveLearner -from proglearn.deciders import SimpleArgmaxAverage -from proglearn.transformers import ( - TreeClassificationTransformer, - NeuralClassificationTransformer, -) -from proglearn.voters import TreeClassificationVoter, KNNClassificationVoter -from math import log2, ceil -from joblib import Parallel, delayed -import seaborn as sns - - -def generate_gaussian_parity( - n_samples, - centers=None, - class_label=None, - cluster_std=0.25, - center_box=(-1.0, 1.0), - angle_params=None, - random_state=None, -): - """ - Generate 2-dimensional Gaussian XOR distribution. - (Classic XOR problem but each point is the - center of a Gaussian blob distribution) - Parameters - ---------- - n_samples : int - Total number of points divided among the four - clusters with equal probability. - centers : array of shape [n_centers,2], optional (default=None) - The coordinates of the ceneter of total n_centers blobs. - class_label : array of shape [n_centers], optional (default=None) - class label for each blob. - cluster_std : float, optional (default=1) - The standard deviation of the blobs. - center_box : tuple of float (min, max), default=(-1.0, 1.0) - The bounding box for each cluster center when centers are generated at random. - angle_params: float, optional (default=None) - Number of radians to rotate the distribution by. - random_state : int, RandomState instance, default=None - Determines random number generation for dataset creation. Pass an int - for reproducible output across multiple function calls. - Returns - ------- - X : array of shape [n_samples, 2] - The generated samples. - y : array of shape [n_samples] - The integer labels for cluster membership of each sample. - """ - - if random_state != None: - np.random.seed(random_state) - - if centers == None: - centers = np.array([(-0.5, 0.5), (0.5, 0.5), (-0.5, -0.5), (0.5, -0.5)]) - - if class_label == None: - class_label = [0, 1, 1, 0] - - blob_num = len(class_label) - - # get the number of samples in each blob with equal probability - samples_per_blob = np.random.multinomial( - n_samples, 1 / blob_num * np.ones(blob_num) - ) - - X, y = make_blobs( - n_samples=samples_per_blob, - n_features=2, - centers=centers, - cluster_std=cluster_std, - center_box=center_box, - ) - - for blob in range(blob_num): - y[np.where(y == blob)] = class_label[blob] - - if angle_params != None: - R = _generate_2d_rotation(angle_params) - X = X @ R - - return X, y.astype(int) - - -def _generate_2d_rotation(theta=0): - R = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)]]) - - return R - - -def calc_ksample_pval_vs_angle(mc_reps, angle_sweep): - last_angle = max(angle_sweep) + 1 - - # arrays to store stats and pvals, 100 samples - stats_100 = np.empty([last_angle, mc_reps]) - pvals_100 = np.empty([last_angle, mc_reps]) - - # arrays to store stats and pvals. 500 samples - stats_500 = np.empty([last_angle, mc_reps]) - pvals_500 = np.empty([last_angle, mc_reps]) - - # arrays to store stats and pvals, 1000 samples - stats_1000 = np.empty([last_angle, mc_reps]) - pvals_1000 = np.empty([last_angle, mc_reps]) - - # run exp 10 times - for k in range(mc_reps): - for n in angle_sweep: - # 100 samples - n_samples = 100 - xor = generate_gaussian_parity(n_samples, random_state=k) - rxor = generate_gaussian_parity( - n_samples, angle_params=np.radians(n), random_state=k - ) - stats_100[n, k], pvals_100[n, k] = KSample(indep_test="Dcorr").test( - xor[0], rxor[0] - ) - - # 500 samples - n_samples = 500 - xor = generate_gaussian_parity(n_samples, random_state=k) - rxor = generate_gaussian_parity( - n_samples, angle_params=np.radians(n), random_state=k - ) - stats_500[n, k], pvals_500[n, k] = KSample(indep_test="Dcorr").test( - xor[0], rxor[0] - ) - - # 1000 samples - n_samples = 1000 - xor = generate_gaussian_parity(n_samples, random_state=k) - rxor = generate_gaussian_parity( - n_samples, angle_params=np.radians(n), random_state=k - ) - stats_1000[n, k], pvals_1000[n, k] = KSample(indep_test="Dcorr").test( - xor[0], rxor[0] - ) - - return pvals_100, pvals_500, pvals_1000 - - -def plot_pval_vs_angle(pvals_100, pvals_500, pvals_1000, angle_sweep): - # avg the experiments - pval_means_100 = np.mean(pvals_100, axis=1) - pval_means_500 = np.mean(pvals_500, axis=1) - pval_means_1000 = np.mean(pvals_1000, axis=1) - - # add error bars - qunatiles_100 = np.nanquantile(pvals_100, [0.25, 0.75], axis=1) - qunatiles_500 = np.nanquantile(pvals_500, [0.25, 0.75], axis=1) - qunatiles_1000 = np.nanquantile(pvals_1000, [0.25, 0.75], axis=1) - plt.fill_between( - angle_sweep, qunatiles_100[0], qunatiles_100[1], facecolor="r", alpha=0.3 - ) - plt.fill_between( - angle_sweep, qunatiles_500[0], qunatiles_500[1], facecolor="b", alpha=0.3 - ) - plt.fill_between( - angle_sweep, qunatiles_1000[0], qunatiles_1000[1], facecolor="cyan", alpha=0.3 - ) - - # plot - plt.xlabel("Angle of Rotation") - plt.ylabel("P-Value") - plt.title("Angle of Rotation vs K-sample Test P-Value") - plt.plot(angle_sweep, pval_means_100, label="100 samples", color="r") - plt.plot(angle_sweep, pval_means_500, label="500 samples", color="b") - plt.plot(angle_sweep, pval_means_1000, label="1000 samples", color="cyan") - - # draw line at p val = 0.05 - plt.axhline(y=0.05, color="g", linestyle="--") - - plt.show - plt.legend() - - -# calc BTE and gen error, runs aware_experiment function -# modified from xor/rxor experiment in proglearn experiments folder -def bte_ge_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep): - mean_te = np.zeros(len(angle_sweep), dtype=float) - mean_error = np.zeros([len(angle_sweep), 6], dtype=float) - for ii, angle in enumerate(angle_sweep): - error = np.array( - Parallel(n_jobs=-1, verbose=0)( - delayed(aware_experiment)( - task1_sample, - task2_sample, - task2_angle=angle * np.pi / 180, - max_depth=ceil(log2(task1_sample)), - ) - for _ in range(mc_rep) - ) - ) - - mean_te[ii] = np.mean(error[:, 0]) / np.mean(error[:, 1]) - mean_error[ii] = np.mean(error, axis=0) - return mean_te, mean_error - - -# below function from xor/rxor experiment in proglearn experiments folder -def aware_experiment( - n_task1, - n_task2, - n_test=1000, - task1_angle=0, - task2_angle=np.pi / 2, - n_trees=10, - max_depth=None, - random_state=None, -): - - """ - A function to do Odif experiment between two tasks - where the task data is generated using Gaussian parity. - Parameters - ---------- - n_task1 : int - Total number of train sample for task 1. - n_task2 : int - Total number of train dsample for task 2 - n_test : int, optional (default=1000) - Number of test sample for each task. - task1_angle : float, optional (default=0) - Angle in radian for task 1. - task2_angle : float, optional (default=numpy.pi/2) - Angle in radian for task 2. - n_trees : int, optional (default=10) - Number of total trees to train for each task. - max_depth : int, optional (default=None) - Maximum allowable depth for each tree. - random_state : int, RandomState instance, default=None - Determines random number generation for dataset creation. Pass an int - for reproducible output across multiple function calls. - Returns - ------- - errors : array of shape [6] - Elements of the array is organized as single task error task1, - multitask error task1, single task error task2, - multitask error task2, naive UF error task1, - naive UF task2. - """ - - if n_task1 == 0 and n_task2 == 0: - raise ValueError("Wake up and provide samples to train!!!") - - if random_state != None: - np.random.seed(random_state) - - errors = np.zeros(6, dtype=float) - - progressive_learner = LifelongClassificationForest(default_n_estimators=n_trees) - uf1 = LifelongClassificationForest(default_n_estimators=n_trees) - naive_uf = LifelongClassificationForest(default_n_estimators=n_trees) - uf2 = LifelongClassificationForest(default_n_estimators=n_trees) - - # source data - X_task1, y_task1 = generate_gaussian_parity(n_task1, angle_params=task1_angle) - test_task1, test_label_task1 = generate_gaussian_parity( - n_test, angle_params=task1_angle - ) - - # target data - X_task2, y_task2 = generate_gaussian_parity(n_task2, angle_params=task2_angle) - test_task2, test_label_task2 = generate_gaussian_parity( - n_test, angle_params=task2_angle - ) - - if n_task1 == 0: - progressive_learner.add_task(X_task2, y_task2, n_estimators=n_trees) - uf2.add_task(X_task2, y_task2, n_estimators=n_trees) - - errors[0] = 0.5 - errors[1] = 0.5 - - uf_task2 = uf2.predict(test_task2, task_id=0) - l2f_task2 = progressive_learner.predict(test_task2, task_id=0) - - errors[2] = 1 - np.mean(uf_task2 == test_label_task2) - errors[3] = 1 - np.mean(l2f_task2 == test_label_task2) - - errors[4] = 0.5 - errors[5] = 1 - np.mean(uf_task2 == test_label_task2) - elif n_task2 == 0: - progressive_learner.add_task(X_task1, y_task1, n_estimators=n_trees) - uf1.add_task(X_task1, y_task1, n_estimators=n_trees) - - uf_task1 = uf1.predict(test_task1, task_id=0) - l2f_task1 = progressive_learner.predict(test_task1, task_id=0) - - errors[0] = 1 - np.mean(uf_task1 == test_label_task1) - errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) - - errors[2] = 0.5 - errors[3] = 0.5 - - errors[4] = 1 - np.mean(uf_task1 == test_label_task1) - errors[5] = 0.5 - else: - progressive_learner.add_task(X_task1, y_task1, n_estimators=n_trees) - progressive_learner.add_task(X_task2, y_task2, n_estimators=n_trees) - - uf1.add_task(X_task1, y_task1, n_estimators=2 * n_trees) - uf2.add_task(X_task2, y_task2, n_estimators=2 * n_trees) - - naive_uf_train_x = np.concatenate((X_task1, X_task2), axis=0) - naive_uf_train_y = np.concatenate((y_task1, y_task2), axis=0) - naive_uf.add_task(naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees) - - uf_task1 = uf1.predict(test_task1, task_id=0) - l2f_task1 = progressive_learner.predict(test_task1, task_id=0) - uf_task2 = uf2.predict(test_task2, task_id=0) - l2f_task2 = progressive_learner.predict(test_task2, task_id=1) - naive_uf_task1 = naive_uf.predict(test_task1, task_id=0) - naive_uf_task2 = naive_uf.predict(test_task2, task_id=0) - - errors[0] = 1 - np.mean(uf_task1 == test_label_task1) - errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) - errors[2] = 1 - np.mean(uf_task2 == test_label_task2) - errors[3] = 1 - np.mean(l2f_task2 == test_label_task2) - errors[4] = 1 - np.mean(naive_uf_task1 == test_label_task1) - errors[5] = 1 - np.mean(naive_uf_task2 == test_label_task2) - - return errors - - -# below function from xor/rxor experiment in proglearn experiments folder -def plot_bte_v_angle(mean_te): - angle_sweep = range(0, 90, 1) - - sns.set_context("talk") - fig, ax = plt.subplots(1, 1, figsize=(8, 8)) - ax.plot(angle_sweep, mean_te, linewidth=3, c="r") - ax.set_xticks([0, 45, 90]) - ax.set_xlabel("Angle of Rotation (Degrees)") - ax.set_ylabel("Backward Transfer Efficiency (XOR)") - ax.hlines(1, 0, 90, colors="gray", linestyles="dashed", linewidth=1.5) - - ax.set_yticks([0.9, 1, 1.1, 1.2]) - ax.set_ylim(0.89, 1.22) - log_lbl = np.round(np.log([0.9, 1, 1.1, 1.2]), 2) - labels = [item.get_text() for item in ax.get_yticklabels()] - - for ii, _ in enumerate(labels): - labels[ii] = str(log_lbl[ii]) - - ax.set_yticklabels(labels) - - right_side = ax.spines["right"] - right_side.set_visible(False) - top_side = ax.spines["top"] - top_side.set_visible(False) - - -def unaware_experiment( - n_task1, - n_task2, - n_test=1000, - task1_angle=0, - task2_angle=np.pi / 2, - n_trees=10, - max_depth=None, - random_state=None, -): - - """ - A function to do Odif experiment between two tasks - where the task data is generated using Gaussian parity. - Parameters - ---------- - n_task1 : int - Total number of train sample for task 1. - n_task2 : int - Total number of train dsample for task 2 - n_test : int, optional (default=1000) - Number of test sample for each task. - task1_angle : float, optional (default=0) - Angle in radian for task 1. - task2_angle : float, optional (default=numpy.pi/2) - Angle in radian for task 2. - n_trees : int, optional (default=10) - Number of total trees to train for each task. - max_depth : int, optional (default=None) - Maximum allowable depth for each tree. - random_state : int, RandomState instance, default=None - Determines random number generation for dataset creation. Pass an int - for reproducible output across multiple function calls. - Returns - ------- - errors : array of shape [6] - Elements of the array is organized as single task error task1, - multitask error task1, single task error task2, - multitask error task2, naive UF error task1, - naive UF task2. - """ - - if n_task1 == 0 and n_task2 == 0: - raise ValueError("Wake up and provide samples to train!!!") - - if random_state != None: - np.random.seed(random_state) - - errors = np.zeros(6, dtype=float) - - progressive_learner = LifelongClassificationForest(default_n_estimators=n_trees) - uf1 = LifelongClassificationForest(default_n_estimators=n_trees) - naive_uf = LifelongClassificationForest(default_n_estimators=n_trees) - uf2 = LifelongClassificationForest(default_n_estimators=n_trees) - - # source data - X_task1, y_task1 = generate_gaussian_parity(n_task1, angle_params=task1_angle) - test_task1, test_label_task1 = generate_gaussian_parity( - n_test, angle_params=task1_angle - ) - - # target data - X_task2, y_task2 = generate_gaussian_parity(n_task2, angle_params=task2_angle) - test_task2, test_label_task2 = generate_gaussian_parity( - n_test, angle_params=task2_angle - ) - - if KSample(indep_test="Dcorr").test(X_task1, X_task2)[1] <= 0.05: - progressive_learner.add_task(X_task1, y_task1, n_estimators=n_trees) - progressive_learner.add_task(X_task2, y_task2, n_estimators=n_trees) - - uf1.add_task(X_task1, y_task1, n_estimators=2 * n_trees) - uf2.add_task(X_task2, y_task2, n_estimators=2 * n_trees) - - naive_uf_train_x = np.concatenate((X_task1, X_task2), axis=0) - naive_uf_train_y = np.concatenate((y_task1, y_task2), axis=0) - naive_uf.add_task(naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees) - - uf_task1 = uf1.predict(test_task1, task_id=0) - l2f_task1 = progressive_learner.predict(test_task1, task_id=0) - uf_task2 = uf2.predict(test_task2, task_id=0) - l2f_task2 = progressive_learner.predict(test_task2, task_id=1) - naive_uf_task1 = naive_uf.predict(test_task1, task_id=0) - naive_uf_task2 = naive_uf.predict(test_task2, task_id=0) - - errors[0] = 1 - np.mean(uf_task1 == test_label_task1) - errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) - errors[2] = 1 - np.mean(uf_task2 == test_label_task2) - errors[3] = 1 - np.mean(l2f_task2 == test_label_task2) - errors[4] = 1 - np.mean(naive_uf_task1 == test_label_task1) - errors[5] = 1 - np.mean(naive_uf_task2 == test_label_task2) - else: - naive_uf_train_x = np.concatenate((X_task1, X_task2), axis=0) - naive_uf_train_y = np.concatenate((y_task1, y_task2), axis=0) - progressive_learner.add_task( - naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees - ) - - uf1.add_task(X_task1, y_task1, n_estimators=2 * n_trees) - uf2.add_task(X_task2, y_task2, n_estimators=2 * n_trees) - - naive_uf.add_task(naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees) - - uf_task1 = uf1.predict(test_task1, task_id=0) - l2f_task1 = progressive_learner.predict(test_task1, task_id=0) - uf_task2 = uf2.predict(test_task2, task_id=0) - # l2f_task2 = progressive_learner.predict(test_task2, task_id=1) # NOT USED here but is used in task aware setting - naive_uf_task1 = naive_uf.predict(test_task1, task_id=0) - naive_uf_task2 = naive_uf.predict(test_task2, task_id=0) - - errors[0] = 1 - np.mean(uf_task1 == test_label_task1) - errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) - errors[2] = 1 - np.mean(uf_task2 == test_label_task2) - errors[3] = 0 - errors[4] = 1 - np.mean(naive_uf_task1 == test_label_task1) - errors[5] = 1 - np.mean(naive_uf_task2 == test_label_task2) - - return errors - - -# modified function from xor/rxor experiment in proglearn experiments -# returns numpy arrays mean_te and mean_error -def unaware_bte_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep): - mean_te = np.zeros(len(angle_sweep), dtype=float) - mean_error = np.zeros([len(angle_sweep), 6], dtype=float) - for ii, angle in enumerate(angle_sweep): - error = np.array( - Parallel(n_jobs=-1, verbose=0)( - delayed(unaware_experiment)( - task1_sample, - task2_sample, - task2_angle=angle * np.pi / 180, - max_depth=ceil(log2(task1_sample)), - ) - for _ in range(mc_rep) - ) - ) - - mean_te[ii] = np.mean(error[:, 0]) / np.mean(error[:, 1]) - mean_error[ii] = np.mean(error, axis=0) - return mean_te, mean_error - - -# modified plot bte using function from xor/rxor example -def plot_unaware_bte_v_angle(mean_te): - angle_sweep = range(0, 90, 1) - - sns.set_context("talk") - fig, ax = plt.subplots(1, 1, figsize=(8, 8)) - ax.plot(angle_sweep, mean_te, linewidth=3, c="r") - ax.set_xticks([0, 45, 90]) - ax.set_xlabel("Angle of Rotation (Degrees)") - ax.set_ylabel("Backward Transfer Efficiency (XOR)") - ax.hlines(1, 0, 90, colors="gray", linestyles="dashed", linewidth=1.5) - - ax.set_yticks([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2]) - log_lbl = np.round( - np.log([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2]), 2 - ) - labels = [item.get_text() for item in ax.get_yticklabels()] - - for ii, _ in enumerate(labels): - labels[ii] = str(log_lbl[ii]) - - ax.set_yticklabels(labels) - - right_side = ax.spines["right"] - right_side.set_visible(False) - top_side = ax.spines["top"] - top_side.set_visible(False) From 842c1b078b2ec7f5ec7b417ae020ab67c8a7baae Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Thu, 9 Dec 2021 11:51:50 -0500 Subject: [PATCH 05/32] Add files via upload --- .../gaussian_xor_rxor_aware_vs_unaware_fns.py | 526 ++++++++++++++++++ 1 file changed, 526 insertions(+) create mode 100644 docs/experiments/functions/gaussian_xor_rxor_aware_vs_unaware_fns.py diff --git a/docs/experiments/functions/gaussian_xor_rxor_aware_vs_unaware_fns.py b/docs/experiments/functions/gaussian_xor_rxor_aware_vs_unaware_fns.py new file mode 100644 index 0000000000..96c4dc1b20 --- /dev/null +++ b/docs/experiments/functions/gaussian_xor_rxor_aware_vs_unaware_fns.py @@ -0,0 +1,526 @@ +# import +import numpy as np +from sklearn.datasets import make_blobs +import matplotlib.pyplot as plt + +# k sample testing from hyppo +from hyppo.ksample import KSample + +from proglearn.forest import LifelongClassificationForest +from math import log2, ceil +from joblib import Parallel, delayed +import seaborn as sns + + +def generate_gaussian_parity( + n_samples, + centers=None, + class_label=None, + cluster_std=0.25, + center_box=(-1.0, 1.0), + angle_params=None, + random_state=None, +): + """ + Generate 2-dimensional Gaussian XOR distribution. + (Classic XOR problem but each point is the + center of a Gaussian blob distribution) + Parameters + ---------- + n_samples : int + Total number of points divided among the four + clusters with equal probability. + centers : array of shape [n_centers,2], optional (default=None) + The coordinates of the ceneter of total n_centers blobs. + class_label : array of shape [n_centers], optional (default=None) + class label for each blob. + cluster_std : float, optional (default=1) + The standard deviation of the blobs. + center_box : tuple of float (min, max), default=(-1.0, 1.0) + The bounding box for each cluster center when centers are generated at random. + angle_params: float, optional (default=None) + Number of radians to rotate the distribution by. + random_state : int, RandomState instance, default=None + Determines random number generation for dataset creation. Pass an int + for reproducible output across multiple function calls. + Returns + ------- + X : array of shape [n_samples, 2] + The generated samples. + y : array of shape [n_samples] + The integer labels for cluster membership of each sample. + """ + + if random_state != None: + np.random.seed(random_state) + + if centers == None: + centers = np.array([(-0.5, 0.5), (0.5, 0.5), (-0.5, -0.5), (0.5, -0.5)]) + + if class_label == None: + class_label = [0, 1, 1, 0] + + blob_num = len(class_label) + + # get the number of samples in each blob with equal probability + samples_per_blob = np.random.multinomial( + n_samples, 1 / blob_num * np.ones(blob_num) + ) + + X, y = make_blobs( + n_samples=samples_per_blob, + n_features=2, + centers=centers, + cluster_std=cluster_std, + center_box=center_box, + ) + + for blob in range(blob_num): + y[np.where(y == blob)] = class_label[blob] + + if angle_params != None: + R = _generate_2d_rotation(angle_params) + X = X @ R + + return X, y.astype(int) + + +def _generate_2d_rotation(theta=0): + R = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)]]) + + return R + + +def calc_ksample_pval_vs_angle(mc_reps, angle_sweep): + last_angle = max(angle_sweep) + 1 + + # arrays to store stats and pvals, 100 samples + stats_100 = np.empty([last_angle, mc_reps]) + pvals_100 = np.empty([last_angle, mc_reps]) + + # arrays to store stats and pvals. 500 samples + stats_500 = np.empty([last_angle, mc_reps]) + pvals_500 = np.empty([last_angle, mc_reps]) + + # arrays to store stats and pvals, 1000 samples + stats_1000 = np.empty([last_angle, mc_reps]) + pvals_1000 = np.empty([last_angle, mc_reps]) + + # run exp 10 times + for k in range(mc_reps): + for n in angle_sweep: + # 100 samples + n_samples = 100 + xor = generate_gaussian_parity(n_samples, random_state=k) + rxor = generate_gaussian_parity( + n_samples, angle_params=np.radians(n), random_state=k + ) + stats_100[n, k], pvals_100[n, k] = KSample(indep_test="Dcorr").test( + xor[0], rxor[0] + ) + + # 500 samples + n_samples = 500 + xor = generate_gaussian_parity(n_samples, random_state=k) + rxor = generate_gaussian_parity( + n_samples, angle_params=np.radians(n), random_state=k + ) + stats_500[n, k], pvals_500[n, k] = KSample(indep_test="Dcorr").test( + xor[0], rxor[0] + ) + + # 1000 samples + n_samples = 1000 + xor = generate_gaussian_parity(n_samples, random_state=k) + rxor = generate_gaussian_parity( + n_samples, angle_params=np.radians(n), random_state=k + ) + stats_1000[n, k], pvals_1000[n, k] = KSample(indep_test="Dcorr").test( + xor[0], rxor[0] + ) + + return pvals_100, pvals_500, pvals_1000 + + +def plot_pval_vs_angle(pvals_100, pvals_500, pvals_1000, angle_sweep): + # avg the experiments + pval_means_100 = np.mean(pvals_100, axis=1) + pval_means_500 = np.mean(pvals_500, axis=1) + pval_means_1000 = np.mean(pvals_1000, axis=1) + + # add error bars + qunatiles_100 = np.nanquantile(pvals_100, [0.25, 0.75], axis=1) + qunatiles_500 = np.nanquantile(pvals_500, [0.25, 0.75], axis=1) + qunatiles_1000 = np.nanquantile(pvals_1000, [0.25, 0.75], axis=1) + plt.fill_between( + angle_sweep, qunatiles_100[0], qunatiles_100[1], facecolor="r", alpha=0.3 + ) + plt.fill_between( + angle_sweep, qunatiles_500[0], qunatiles_500[1], facecolor="b", alpha=0.3 + ) + plt.fill_between( + angle_sweep, qunatiles_1000[0], qunatiles_1000[1], facecolor="cyan", alpha=0.3 + ) + + # plot + plt.xlabel("Angle of Rotation") + plt.ylabel("P-Value") + plt.title("Angle of Rotation vs K-sample Test P-Value") + plt.plot(angle_sweep, pval_means_100, label="100 samples", color="r") + plt.plot(angle_sweep, pval_means_500, label="500 samples", color="b") + plt.plot(angle_sweep, pval_means_1000, label="1000 samples", color="cyan") + + # draw line at p val = 0.05 + plt.axhline(y=0.05, color="g", linestyle="--") + + plt.show + plt.legend() + + +# calc BTE and gen error, runs aware_experiment function +# modified from xor/rxor experiment in proglearn experiments folder +def bte_ge_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep): + mean_te = np.zeros(len(angle_sweep), dtype=float) + mean_error = np.zeros([len(angle_sweep), 6], dtype=float) + for ii, angle in enumerate(angle_sweep): + error = np.array( + Parallel(n_jobs=-1, verbose=0)( + delayed(aware_experiment)( + task1_sample, + task2_sample, + task2_angle=angle * np.pi / 180, + max_depth=ceil(log2(task1_sample)), + ) + for _ in range(mc_rep) + ) + ) + + mean_te[ii] = np.mean(error[:, 0]) / np.mean(error[:, 1]) + mean_error[ii] = np.mean(error, axis=0) + return mean_te, mean_error + + +# below function from xor/rxor experiment in proglearn experiments folder +def aware_experiment( + n_task1, + n_task2, + n_test=1000, + task1_angle=0, + task2_angle=np.pi / 2, + n_trees=10, + max_depth=None, + random_state=None, +): + + """ + A function to do Odif experiment between two tasks + where the task data is generated using Gaussian parity. + Parameters + ---------- + n_task1 : int + Total number of train sample for task 1. + n_task2 : int + Total number of train dsample for task 2 + n_test : int, optional (default=1000) + Number of test sample for each task. + task1_angle : float, optional (default=0) + Angle in radian for task 1. + task2_angle : float, optional (default=numpy.pi/2) + Angle in radian for task 2. + n_trees : int, optional (default=10) + Number of total trees to train for each task. + max_depth : int, optional (default=None) + Maximum allowable depth for each tree. + random_state : int, RandomState instance, default=None + Determines random number generation for dataset creation. Pass an int + for reproducible output across multiple function calls. + Returns + ------- + errors : array of shape [6] + Elements of the array is organized as single task error task1, + multitask error task1, single task error task2, + multitask error task2, naive UF error task1, + naive UF task2. + """ + + if n_task1 == 0 and n_task2 == 0: + raise ValueError("Wake up and provide samples to train!!!") + + if random_state != None: + np.random.seed(random_state) + + errors = np.zeros(6, dtype=float) + + progressive_learner = LifelongClassificationForest(default_n_estimators=n_trees) + uf1 = LifelongClassificationForest(default_n_estimators=n_trees) + naive_uf = LifelongClassificationForest(default_n_estimators=n_trees) + uf2 = LifelongClassificationForest(default_n_estimators=n_trees) + + # source data + X_task1, y_task1 = generate_gaussian_parity(n_task1, angle_params=task1_angle) + test_task1, test_label_task1 = generate_gaussian_parity( + n_test, angle_params=task1_angle + ) + + # target data + X_task2, y_task2 = generate_gaussian_parity(n_task2, angle_params=task2_angle) + test_task2, test_label_task2 = generate_gaussian_parity( + n_test, angle_params=task2_angle + ) + + if n_task1 == 0: + progressive_learner.add_task(X_task2, y_task2, n_estimators=n_trees) + uf2.add_task(X_task2, y_task2, n_estimators=n_trees) + + errors[0] = 0.5 + errors[1] = 0.5 + + uf_task2 = uf2.predict(test_task2, task_id=0) + l2f_task2 = progressive_learner.predict(test_task2, task_id=0) + + errors[2] = 1 - np.mean(uf_task2 == test_label_task2) + errors[3] = 1 - np.mean(l2f_task2 == test_label_task2) + + errors[4] = 0.5 + errors[5] = 1 - np.mean(uf_task2 == test_label_task2) + elif n_task2 == 0: + progressive_learner.add_task(X_task1, y_task1, n_estimators=n_trees) + uf1.add_task(X_task1, y_task1, n_estimators=n_trees) + + uf_task1 = uf1.predict(test_task1, task_id=0) + l2f_task1 = progressive_learner.predict(test_task1, task_id=0) + + errors[0] = 1 - np.mean(uf_task1 == test_label_task1) + errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) + + errors[2] = 0.5 + errors[3] = 0.5 + + errors[4] = 1 - np.mean(uf_task1 == test_label_task1) + errors[5] = 0.5 + else: + progressive_learner.add_task(X_task1, y_task1, n_estimators=n_trees) + progressive_learner.add_task(X_task2, y_task2, n_estimators=n_trees) + + uf1.add_task(X_task1, y_task1, n_estimators=2 * n_trees) + uf2.add_task(X_task2, y_task2, n_estimators=2 * n_trees) + + naive_uf_train_x = np.concatenate((X_task1, X_task2), axis=0) + naive_uf_train_y = np.concatenate((y_task1, y_task2), axis=0) + naive_uf.add_task(naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees) + + uf_task1 = uf1.predict(test_task1, task_id=0) + l2f_task1 = progressive_learner.predict(test_task1, task_id=0) + uf_task2 = uf2.predict(test_task2, task_id=0) + l2f_task2 = progressive_learner.predict(test_task2, task_id=1) + naive_uf_task1 = naive_uf.predict(test_task1, task_id=0) + naive_uf_task2 = naive_uf.predict(test_task2, task_id=0) + + errors[0] = 1 - np.mean(uf_task1 == test_label_task1) + errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) + errors[2] = 1 - np.mean(uf_task2 == test_label_task2) + errors[3] = 1 - np.mean(l2f_task2 == test_label_task2) + errors[4] = 1 - np.mean(naive_uf_task1 == test_label_task1) + errors[5] = 1 - np.mean(naive_uf_task2 == test_label_task2) + + return errors + + +# below function from xor/rxor experiment in proglearn experiments folder +def plot_bte_v_angle(mean_te): + angle_sweep = range(0, 90, 1) + + sns.set_context("talk") + fig, ax = plt.subplots(1, 1, figsize=(8, 8)) + ax.plot(angle_sweep, mean_te, linewidth=3, c="r") + ax.set_xticks([0, 45, 90]) + ax.set_xlabel("Angle of Rotation (Degrees)") + ax.set_ylabel("Backward Transfer Efficiency (XOR)") + ax.hlines(1, 0, 90, colors="gray", linestyles="dashed", linewidth=1.5) + + ax.set_yticks([0.9, 1, 1.1, 1.2]) + ax.set_ylim(0.89, 1.22) + log_lbl = np.round(np.log([0.9, 1, 1.1, 1.2]), 2) + labels = [item.get_text() for item in ax.get_yticklabels()] + + for ii, _ in enumerate(labels): + labels[ii] = str(log_lbl[ii]) + + ax.set_yticklabels(labels) + + right_side = ax.spines["right"] + right_side.set_visible(False) + top_side = ax.spines["top"] + top_side.set_visible(False) + + +def unaware_experiment( + n_task1, + n_task2, + n_test=1000, + task1_angle=0, + task2_angle=np.pi / 2, + n_trees=10, + max_depth=None, + random_state=None, +): + + """ + A function to do Odif experiment between two tasks + where the task data is generated using Gaussian parity. + Parameters + ---------- + n_task1 : int + Total number of train sample for task 1. + n_task2 : int + Total number of train dsample for task 2 + n_test : int, optional (default=1000) + Number of test sample for each task. + task1_angle : float, optional (default=0) + Angle in radian for task 1. + task2_angle : float, optional (default=numpy.pi/2) + Angle in radian for task 2. + n_trees : int, optional (default=10) + Number of total trees to train for each task. + max_depth : int, optional (default=None) + Maximum allowable depth for each tree. + random_state : int, RandomState instance, default=None + Determines random number generation for dataset creation. Pass an int + for reproducible output across multiple function calls. + Returns + ------- + errors : array of shape [6] + Elements of the array is organized as single task error task1, + multitask error task1, single task error task2, + multitask error task2, naive UF error task1, + naive UF task2. + """ + + if n_task1 == 0 and n_task2 == 0: + raise ValueError("Wake up and provide samples to train!!!") + + if random_state != None: + np.random.seed(random_state) + + errors = np.zeros(6, dtype=float) + + progressive_learner = LifelongClassificationForest(default_n_estimators=n_trees) + uf1 = LifelongClassificationForest(default_n_estimators=n_trees) + naive_uf = LifelongClassificationForest(default_n_estimators=n_trees) + uf2 = LifelongClassificationForest(default_n_estimators=n_trees) + + # source data + X_task1, y_task1 = generate_gaussian_parity(n_task1, angle_params=task1_angle) + test_task1, test_label_task1 = generate_gaussian_parity( + n_test, angle_params=task1_angle + ) + + # target data + X_task2, y_task2 = generate_gaussian_parity(n_task2, angle_params=task2_angle) + test_task2, test_label_task2 = generate_gaussian_parity( + n_test, angle_params=task2_angle + ) + + if KSample(indep_test="Dcorr").test(X_task1, X_task2)[1] <= 0.05: + progressive_learner.add_task(X_task1, y_task1, n_estimators=n_trees) + progressive_learner.add_task(X_task2, y_task2, n_estimators=n_trees) + + uf1.add_task(X_task1, y_task1, n_estimators=2 * n_trees) + uf2.add_task(X_task2, y_task2, n_estimators=2 * n_trees) + + naive_uf_train_x = np.concatenate((X_task1, X_task2), axis=0) + naive_uf_train_y = np.concatenate((y_task1, y_task2), axis=0) + naive_uf.add_task(naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees) + + uf_task1 = uf1.predict(test_task1, task_id=0) + l2f_task1 = progressive_learner.predict(test_task1, task_id=0) + uf_task2 = uf2.predict(test_task2, task_id=0) + l2f_task2 = progressive_learner.predict(test_task2, task_id=1) + naive_uf_task1 = naive_uf.predict(test_task1, task_id=0) + naive_uf_task2 = naive_uf.predict(test_task2, task_id=0) + + errors[0] = 1 - np.mean(uf_task1 == test_label_task1) + errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) + errors[2] = 1 - np.mean(uf_task2 == test_label_task2) + errors[3] = 1 - np.mean(l2f_task2 == test_label_task2) + errors[4] = 1 - np.mean(naive_uf_task1 == test_label_task1) + errors[5] = 1 - np.mean(naive_uf_task2 == test_label_task2) + else: + naive_uf_train_x = np.concatenate((X_task1, X_task2), axis=0) + naive_uf_train_y = np.concatenate((y_task1, y_task2), axis=0) + progressive_learner.add_task( + naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees + ) + + uf1.add_task(X_task1, y_task1, n_estimators=2 * n_trees) + uf2.add_task(X_task2, y_task2, n_estimators=2 * n_trees) + + naive_uf.add_task(naive_uf_train_x, naive_uf_train_y, n_estimators=n_trees) + + uf_task1 = uf1.predict(test_task1, task_id=0) + l2f_task1 = progressive_learner.predict(test_task1, task_id=0) + uf_task2 = uf2.predict(test_task2, task_id=0) + # l2f_task2 = progressive_learner.predict(test_task2, task_id=1) # NOT USED here but is used in task aware setting + naive_uf_task1 = naive_uf.predict(test_task1, task_id=0) + naive_uf_task2 = naive_uf.predict(test_task2, task_id=0) + + errors[0] = 1 - np.mean(uf_task1 == test_label_task1) + errors[1] = 1 - np.mean(l2f_task1 == test_label_task1) + errors[2] = 1 - np.mean(uf_task2 == test_label_task2) + errors[3] = 0 + errors[4] = 1 - np.mean(naive_uf_task1 == test_label_task1) + errors[5] = 1 - np.mean(naive_uf_task2 == test_label_task2) + + return errors + + +# modified function from xor/rxor experiment in proglearn experiments +# returns numpy arrays mean_te and mean_error +def unaware_bte_v_angle(angle_sweep, task1_sample, task2_sample, mc_rep): + mean_te = np.zeros(len(angle_sweep), dtype=float) + mean_error = np.zeros([len(angle_sweep), 6], dtype=float) + for ii, angle in enumerate(angle_sweep): + error = np.array( + Parallel(n_jobs=-1, verbose=0)( + delayed(unaware_experiment)( + task1_sample, + task2_sample, + task2_angle=angle * np.pi / 180, + max_depth=ceil(log2(task1_sample)), + ) + for _ in range(mc_rep) + ) + ) + + mean_te[ii] = np.mean(error[:, 0]) / np.mean(error[:, 1]) + mean_error[ii] = np.mean(error, axis=0) + return mean_te, mean_error + + +# modified plot bte using function from xor/rxor example +def plot_unaware_bte_v_angle(mean_te): + angle_sweep = range(0, 90, 1) + + sns.set_context("talk") + fig, ax = plt.subplots(1, 1, figsize=(8, 8)) + ax.plot(angle_sweep, mean_te, linewidth=3, c="r") + ax.set_xticks([0, 45, 90]) + ax.set_xlabel("Angle of Rotation (Degrees)") + ax.set_ylabel("Backward Transfer Efficiency (XOR)") + ax.hlines(1, 0, 90, colors="gray", linestyles="dashed", linewidth=1.5) + + ax.set_yticks([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2]) + log_lbl = np.round( + np.log([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2]), 2 + ) + labels = [item.get_text() for item in ax.get_yticklabels()] + + for ii, _ in enumerate(labels): + labels[ii] = str(log_lbl[ii]) + + ax.set_yticklabels(labels) + + right_side = ax.spines["right"] + right_side.set_visible(False) + top_side = ax.spines["top"] + top_side.set_visible(False) From fa4c0fda15848e00af2b2bc552973a47a5bafefd Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Thu, 9 Dec 2021 11:52:19 -0500 Subject: [PATCH 06/32] Add files via upload --- .../gaussian_xor_rxor_aware_vs_unaware.ipynb | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb b/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb index 7be407526f..0a0e45bfc7 100644 --- a/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb +++ b/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb @@ -23,7 +23,7 @@ "import seaborn as sns\n", "\n", "# functions to perform the experiments in this notebook\n", - "import functions.xor_rxor_aware_unaware_fns as fn" + "import functions.gaussian_xor_rxor_aware_vs_unaware_fns as fn" ] }, { @@ -189,7 +189,7 @@ }, { "cell_type": "markdown", - "id": "82991639", + "id": "8812f546", "metadata": {}, "source": [ "### 100 task samples" @@ -279,7 +279,7 @@ }, { "cell_type": "markdown", - "id": "d5139765", + "id": "be1421d0", "metadata": {}, "source": [ "### 500 task samples" @@ -325,7 +325,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "a6fe41d4", + "id": "311b2d0c", "metadata": {}, "outputs": [ { @@ -352,7 +352,7 @@ }, { "cell_type": "markdown", - "id": "ed4ea3f9", + "id": "2d5051df", "metadata": {}, "source": [ "### 1000 task samples" @@ -361,7 +361,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "8a19d59a", + "id": "2e6b1fbc", "metadata": {}, "outputs": [ { @@ -398,7 +398,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "04fb4bed", + "id": "92e1cafe", "metadata": {}, "outputs": [ { From 72a78bd41958af14762774190364c3ff395a4166 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Thu, 9 Dec 2021 11:53:17 -0500 Subject: [PATCH 07/32] Update experiments.rst --- docs/experiments.rst | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/experiments.rst b/docs/experiments.rst index 642dbd8c8e..c5e199d238 100644 --- a/docs/experiments.rst +++ b/docs/experiments.rst @@ -21,3 +21,4 @@ The following experiments illustrate specific tests using the ``ProgLearn`` pack experiments/xor_rxor_with_icp experiments/xor_xnor_exp experiments/double_descent_RF + experiments/gaussian_xor_rxor_aware_vs_unaware From 0edbea5324b0966e5ccf3d51a31f0ab64d89b732 Mon Sep 17 00:00:00 2001 From: Haoyin Xu Date: Sat, 11 Dec 2021 09:31:02 -0500 Subject: [PATCH 08/32] DOC update title & rename --- ...r_aware_vs_unaware.ipynb => xor_rxor_aware_vs_unaware.ipynb} | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) rename docs/experiments/{gaussian_xor_rxor_aware_vs_unaware.ipynb => xor_rxor_aware_vs_unaware.ipynb} (99%) diff --git a/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb b/docs/experiments/xor_rxor_aware_vs_unaware.ipynb similarity index 99% rename from docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb rename to docs/experiments/xor_rxor_aware_vs_unaware.ipynb index 0a0e45bfc7..8bbdb710a8 100644 --- a/docs/experiments/gaussian_xor_rxor_aware_vs_unaware.ipynb +++ b/docs/experiments/xor_rxor_aware_vs_unaware.ipynb @@ -5,7 +5,7 @@ "id": "35724379", "metadata": {}, "source": [ - "# Gaussian xor vs rxor in task aware vs unaware settings" + "# Gaussian XOR and Gaussian R-XOR Experiment with Task Unaware Settings" ] }, { From 9e689528c269b7e574e24755b43cdb99c13f141f Mon Sep 17 00:00:00 2001 From: Haoyin Xu Date: Sat, 11 Dec 2021 09:32:38 -0500 Subject: [PATCH 09/32] DOC update title --- docs/experiments.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/experiments.rst b/docs/experiments.rst index c5e199d238..37973cdaf7 100644 --- a/docs/experiments.rst +++ b/docs/experiments.rst @@ -19,6 +19,6 @@ The following experiments illustrate specific tests using the ``ProgLearn`` pack experiments/xor_rxor_exp experiments/xor_rxor_with_cpd experiments/xor_rxor_with_icp + experiments/xor_rxor_with_unaware experiments/xor_xnor_exp experiments/double_descent_RF - experiments/gaussian_xor_rxor_aware_vs_unaware From 1f669fb4ffbea99f750231f9fe38e0c807be3bf8 Mon Sep 17 00:00:00 2001 From: Haoyin Xu Date: Sat, 11 Dec 2021 09:32:58 -0500 Subject: [PATCH 10/32] DOC rename --- ..._rxor_aware_vs_unaware_fns.py => xor_rxor_with_unaware_fns.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename docs/experiments/functions/{gaussian_xor_rxor_aware_vs_unaware_fns.py => xor_rxor_with_unaware_fns.py} (100%) diff --git a/docs/experiments/functions/gaussian_xor_rxor_aware_vs_unaware_fns.py b/docs/experiments/functions/xor_rxor_with_unaware_fns.py similarity index 100% rename from docs/experiments/functions/gaussian_xor_rxor_aware_vs_unaware_fns.py rename to docs/experiments/functions/xor_rxor_with_unaware_fns.py From a51b2f1f20239f5bfa265ba6678d89606385758d Mon Sep 17 00:00:00 2001 From: Haoyin Xu Date: Sat, 11 Dec 2021 09:33:31 -0500 Subject: [PATCH 11/32] DOC rename files --- ..._rxor_aware_vs_unaware.ipynb => xor_rxor_with_unaware.ipynb} | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) rename docs/experiments/{xor_rxor_aware_vs_unaware.ipynb => xor_rxor_with_unaware.ipynb} (99%) diff --git a/docs/experiments/xor_rxor_aware_vs_unaware.ipynb b/docs/experiments/xor_rxor_with_unaware.ipynb similarity index 99% rename from docs/experiments/xor_rxor_aware_vs_unaware.ipynb rename to docs/experiments/xor_rxor_with_unaware.ipynb index 8bbdb710a8..a141f329c7 100644 --- a/docs/experiments/xor_rxor_aware_vs_unaware.ipynb +++ b/docs/experiments/xor_rxor_with_unaware.ipynb @@ -23,7 +23,7 @@ "import seaborn as sns\n", "\n", "# functions to perform the experiments in this notebook\n", - "import functions.gaussian_xor_rxor_aware_vs_unaware_fns as fn" + "import functions.xor_rxor_with_unaware_fns as fn" ] }, { From b963a6f581cd26efabf06708abd56cf047571dbc Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Sat, 7 May 2022 13:18:41 -0400 Subject: [PATCH 12/32] Add files via upload --- ...or_subset_predictProba_bootstrap_exp.ipynb | 205 ++++++++++++++++++ 1 file changed, 205 insertions(+) create mode 100644 docs/experiments/xor_rxor_subset_predictProba_bootstrap_exp.ipynb diff --git a/docs/experiments/xor_rxor_subset_predictProba_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_subset_predictProba_bootstrap_exp.ipynb new file mode 100644 index 0000000000..ef5b28a13a --- /dev/null +++ b/docs/experiments/xor_rxor_subset_predictProba_bootstrap_exp.ipynb @@ -0,0 +1,205 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", + "metadata": { + "tags": [] + }, + "source": [ + "### XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." + ] + }, + { + "cell_type": "markdown", + "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", + "metadata": {}, + "source": [ + "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", + "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", + "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", + "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", + "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", + "5. Train 2 new trees with XOR_new and RXOR_new.\n", + "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", + "7. Calculate L2 distance between the new probabilities (d2).\n", + "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", + "9. This entire experiment is then repeated 100 times to account for randomness.\n", + "\n", + "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." + ] + }, + { + "cell_type": "markdown", + "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", + "metadata": {}, + "source": [ + "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a76c3187-3074-4eab-b82a-7212693acd1d", + "metadata": {}, + "outputs": [], + "source": [ + "# import\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import time\n", + "import xor_rxor_bootstrap_fns as fn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "10\n", + "20\n", + "30\n", + "40\n", + "50\n", + "60\n", + "70\n", + "80\n", + "90\n", + "\n", + "The function took 26973.70 s to compute.\n" + ] + } + ], + "source": [ + "# set angle sweep\n", + "angle_sweep = range(0, 90, 5)\n", + "# data frame to store p values from each run \n", + "p_val_df = pd.DataFrame()\n", + "\n", + "# time experiment\n", + "start = time.time()\n", + "\n", + "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", + "for i in range(100): \n", + " p_val_df[i] = fn.bootstrap(angle_sweep = angle_sweep, n_samples = 100, reps = 1000)\n", + " # print i to monitor experiment progress\n", + " if i%10 == 0: print(i)\n", + "end = time.time()\n", + "\n", + "# entire experiment run time\n", + "print('\\nThe function took {:.2f} s to compute.'.format(end - start))" + ] + }, + { + "cell_type": "markdown", + "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", + "metadata": { + "tags": [] + }, + "source": [ + "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", + "metadata": {}, + "outputs": [], + "source": [ + "# compute mean across each test for each angle\n", + "p_val_df['mean'] = p_val_df.mean(axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot with error bars\n", + "qunatiles = np.nanquantile(p_val_df.iloc[:,:-1], [0.25, 0.75], axis=1)\n", + "plt.fill_between(\n", + " angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3\n", + ")\n", + "plt.plot(angle_sweep, p_val_df['mean'])\n", + "plt.xlabel(\"Angle of Rotation RXOR\")\n", + "plt.ylabel(\"P-Value\")\n", + "plt.title(\"Angle of Rotation vs mean P-Value\")" + ] + }, + { + "cell_type": "markdown", + "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", + "metadata": {}, + "source": [ + "Finally, we can write this dataframe to csv to avoid rerunning the experiment." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", + "metadata": {}, + "outputs": [], + "source": [ + "# optional write to csv\n", + "p_val_df.to_csv('p_val_df_with_mean.csv')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From c6ce9525d9f0fdd1396f8b4b3d5a8624ca6b4ba1 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Sat, 7 May 2022 13:19:11 -0400 Subject: [PATCH 13/32] Add files via upload --- .../functions/xor_rxor_bootstrap_fns.py | 165 ++++++++++++++++++ 1 file changed, 165 insertions(+) create mode 100644 docs/experiments/functions/xor_rxor_bootstrap_fns.py diff --git a/docs/experiments/functions/xor_rxor_bootstrap_fns.py b/docs/experiments/functions/xor_rxor_bootstrap_fns.py new file mode 100644 index 0000000000..840c7685c7 --- /dev/null +++ b/docs/experiments/functions/xor_rxor_bootstrap_fns.py @@ -0,0 +1,165 @@ +import numpy as np +from scipy.spatial import distance +import sklearn.ensemble +from proglearn.sims import generate_gaussian_parity +import random +import math + +def bootstrap(angle_sweep = range(0, 90, 5), n_samples = 100, reps = 1000): + ''' + Runs getPval many times to perform a bootstrap exeriment. + ''' + p_vals = [] + # generate xor + X_xor, y_xor = generate_gaussian_parity(n_samples, angle_params=0) + for angle in angle_sweep: + # print('Processing angle:', angle) + # we can use the same xor as from above but we need a new rxor + # generate rxor with different angles + + X_rxor, y_rxor = generate_gaussian_parity(n_samples, angle_params=math.radians(angle)) + + + # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 + X_xor_0 = X_xor[np.where(y_xor == 0)] + X_xor_1 = X_xor[np.where(y_xor == 1)] + + X_rxor_0 = X_rxor[np.where(y_rxor == 0)] + X_rxor_1 = X_rxor[np.where(y_rxor == 1)] + + # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba + X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) + y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # repeat for rxor + X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) + y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # make sure X_rxor_train is the right size everytime, run into errors sometime + while len(X_rxor_train) != 70: + X_rxor, y_rxor = generate_gaussian_parity(n_samples, angle_params=math.radians(angle)) + # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 + X_xor_0 = X_xor[np.where(y_xor == 0)] + X_xor_1 = X_xor[np.where(y_xor == 1)] + + X_rxor_0 = X_rxor[np.where(y_rxor == 0)] + X_rxor_1 = X_rxor[np.where(y_rxor == 1)] + + # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba + X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) + y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # repeat for rxor + X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) + y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # init the rf's + # xor rf + clf_xor = sklearn.ensemble.RandomForestClassifier(n_estimators=10, min_samples_leaf=int(n_samples/7)) + + # rxor rf + clf_rxor = sklearn.ensemble.RandomForestClassifier(n_estimators=10, min_samples_leaf=int(n_samples/7)) + + # train rfs + # fit the model using the train data + clf_xor.fit(X_xor_train, y_xor_train) + + # fit rxor model + clf_rxor.fit(X_rxor_train, y_rxor_train) + + # concat the test samples from xor and rxor (30 from each), 60 total test samples + X_xor_rxor_test = np.concatenate((X_xor_0[35:], X_rxor_0[35:], X_xor_1[35:], X_rxor_1[35:])) + y_xor_rxor_test = np.concatenate((np.zeros(30), np.ones(30))) + + + # predict proba on the new test data with both rfs + # xor rf + xor_rxor_test_xorRF_probas = clf_xor.predict_proba(X_xor_rxor_test) + + # rxor rf + xor_rxor_test_rxorRF_probas = clf_rxor.predict_proba(X_xor_rxor_test) + + # calc the l2 distance between the probas from xor and rxor rfs + d1 = calcL2(xor_rxor_test_xorRF_probas, xor_rxor_test_rxorRF_probas) + + # concat all xor and rxor samples (100+100=200) + X_xor_rxor_all = np.concatenate((X_xor, X_rxor)) + y_xor_rxor_all = np.concatenate((y_xor, y_rxor)) + + # append the pval + p_vals.append(getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps, n_samples = n_samples)) + + return p_vals + + +def getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps = 1000, n_samples = 100): + ''' + Shuffles xor and rxor, trains trees, predicts, calculates L2 between probas, and calculates p-val to determine whether the 2 distributions are different. + ''' + d1_greater_count = 0 + for i in range(0, reps): + random_idxs = random.sample(range(200), 200) + # subsample 100 samples twice randomly, call one xor and the other rxor + X_xor_new = X_xor_rxor_all[random_idxs[0:100]] + y_xor_new = y_xor_rxor_all[random_idxs[0:100]] + + X_rxor_new = X_xor_rxor_all[random_idxs[100:]] + y_rxor_new = y_xor_rxor_all[random_idxs[100:]] + + # subsample 70 from each and call one xor train and one rxor train + # since we randomly took 100 the pool of 200 samples we should just be able to take the first 70 samples + X_xor_new_train = X_xor_new[0:70] + y_xor_new_train = y_xor_new[0:70] + + X_rxor_new_train = X_rxor_new[0:70] + y_rxor_new_train = y_rxor_new[0:70] + + # train a new forest + # init the rf's + # xor rf + clf_xor_new = sklearn.ensemble.RandomForestClassifier(n_estimators=10, min_samples_leaf=int(n_samples/7)) + clf_xor_new.fit(X_xor_new_train, y_xor_new_train) + + # rxor rf + clf_rxor_new = sklearn.ensemble.RandomForestClassifier(n_estimators=10, min_samples_leaf=int(n_samples/7)) + clf_rxor_new.fit(X_rxor_new_train, y_rxor_new_train) + + # take the remaing 30 and call those test + X_xor_new_test = X_xor_new[70:] + y_xor_new_test = y_xor_new[70:] + + X_rxor_new_test = X_rxor_new[70:] + y_rxor_new_test = y_rxor_new[70:] + + # concat our new samples + X_xor_rxor_new_test = np.concatenate((X_xor_new_test, X_rxor_new_test)) + y_xor_rxor_new_test = np.concatenate((y_xor_new_test, y_rxor_new_test)) + + # predict proba using the original xor and rxor rf's and calc l2 + # new xor rf + xor_rxor_new_test_xorRF_probas = clf_xor_new.predict_proba(X_xor_rxor_new_test) + + # new rxor rf + xor_rxor_new_test_rxorRF_probas = clf_rxor_new.predict_proba(X_xor_rxor_new_test) + + # calc l2 for our new data + d2 = calcL2(xor_rxor_new_test_xorRF_probas, xor_rxor_new_test_rxorRF_probas) + + if d1 > d2: d1_greater_count+=1 + + return (1 - (d1_greater_count/reps)) + +def calcL2(xorRF_probas, rxorRF_probas): + ''' + Returns L2 distance between 2 outputs from clf.predict_proba(). + ''' + # lists to store % label 0 since we only need one of the probas to calc L2 + xors = [] + rxors = [] + + # iterate through the passed probas to store them in our lists + for xor_proba, rxor_proba in zip(xorRF_probas, rxorRF_probas): + xors.append(xor_proba[0]) + rxors.append(rxor_proba[0]) + + return distance.euclidean(xors, rxors) \ No newline at end of file From 92a14c710547b8f8b2277fc9ac2aa948bbc36267 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Sat, 7 May 2022 13:26:07 -0400 Subject: [PATCH 14/32] Update experiments.rst --- docs/experiments.rst | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/experiments.rst b/docs/experiments.rst index 37973cdaf7..fd306b2e4f 100644 --- a/docs/experiments.rst +++ b/docs/experiments.rst @@ -17,6 +17,7 @@ The following experiments illustrate specific tests using the ``ProgLearn`` pack experiments/spiral_exp experiments/spoken_digit_exp experiments/xor_rxor_exp + experiments/xor_rxor_subset_predictProba_bootstrap_exp experiments/xor_rxor_with_cpd experiments/xor_rxor_with_icp experiments/xor_rxor_with_unaware From 1199869ba9d207a42f4b4dce0e12199da7cd7a16 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 12:27:17 -0400 Subject: [PATCH 15/32] Delete xor_rxor_subset_predictProba_bootstrap_exp.ipynb --- ...or_subset_predictProba_bootstrap_exp.ipynb | 205 ------------------ 1 file changed, 205 deletions(-) delete mode 100644 docs/experiments/xor_rxor_subset_predictProba_bootstrap_exp.ipynb diff --git a/docs/experiments/xor_rxor_subset_predictProba_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_subset_predictProba_bootstrap_exp.ipynb deleted file mode 100644 index ef5b28a13a..0000000000 --- a/docs/experiments/xor_rxor_subset_predictProba_bootstrap_exp.ipynb +++ /dev/null @@ -1,205 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", - "metadata": { - "tags": [] - }, - "source": [ - "### XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." - ] - }, - { - "cell_type": "markdown", - "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", - "metadata": {}, - "source": [ - "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", - "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", - "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", - "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", - "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", - "5. Train 2 new trees with XOR_new and RXOR_new.\n", - "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", - "7. Calculate L2 distance between the new probabilities (d2).\n", - "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", - "9. This entire experiment is then repeated 100 times to account for randomness.\n", - "\n", - "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." - ] - }, - { - "cell_type": "markdown", - "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", - "metadata": {}, - "source": [ - "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "a76c3187-3074-4eab-b82a-7212693acd1d", - "metadata": {}, - "outputs": [], - "source": [ - "# import\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "import time\n", - "import xor_rxor_bootstrap_fns as fn" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "10\n", - "20\n", - "30\n", - "40\n", - "50\n", - "60\n", - "70\n", - "80\n", - "90\n", - "\n", - "The function took 26973.70 s to compute.\n" - ] - } - ], - "source": [ - "# set angle sweep\n", - "angle_sweep = range(0, 90, 5)\n", - "# data frame to store p values from each run \n", - "p_val_df = pd.DataFrame()\n", - "\n", - "# time experiment\n", - "start = time.time()\n", - "\n", - "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", - "for i in range(100): \n", - " p_val_df[i] = fn.bootstrap(angle_sweep = angle_sweep, n_samples = 100, reps = 1000)\n", - " # print i to monitor experiment progress\n", - " if i%10 == 0: print(i)\n", - "end = time.time()\n", - "\n", - "# entire experiment run time\n", - "print('\\nThe function took {:.2f} s to compute.'.format(end - start))" - ] - }, - { - "cell_type": "markdown", - "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", - "metadata": { - "tags": [] - }, - "source": [ - "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", - "metadata": {}, - "outputs": [], - "source": [ - "# compute mean across each test for each angle\n", - "p_val_df['mean'] = p_val_df.mean(axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot with error bars\n", - "qunatiles = np.nanquantile(p_val_df.iloc[:,:-1], [0.25, 0.75], axis=1)\n", - "plt.fill_between(\n", - " angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3\n", - ")\n", - "plt.plot(angle_sweep, p_val_df['mean'])\n", - "plt.xlabel(\"Angle of Rotation RXOR\")\n", - "plt.ylabel(\"P-Value\")\n", - "plt.title(\"Angle of Rotation vs mean P-Value\")" - ] - }, - { - "cell_type": "markdown", - "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", - "metadata": {}, - "source": [ - "Finally, we can write this dataframe to csv to avoid rerunning the experiment." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", - "metadata": {}, - "outputs": [], - "source": [ - "# optional write to csv\n", - "p_val_df.to_csv('p_val_df_with_mean.csv')" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From ab0bc888ece4620728baa3c22b94673d33da5e39 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 12:27:33 -0400 Subject: [PATCH 16/32] Add files via upload --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 204 ++++++++++++++++++ 1 file changed, 204 insertions(+) create mode 100644 docs/experiments/xor_rxor_bootstrap_exp.ipynb diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb new file mode 100644 index 0000000000..47269ad38d --- /dev/null +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -0,0 +1,204 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", + "metadata": { + "tags": [] + }, + "source": [ + "### XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." + ] + }, + { + "cell_type": "markdown", + "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", + "metadata": {}, + "source": [ + "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", + "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", + "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", + "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", + "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", + "5. Train 2 new trees with XOR_new and RXOR_new.\n", + "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", + "7. Calculate L2 distance between the new probabilities (d2).\n", + "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", + "9. This entire experiment is then repeated 100 times to account for randomness.\n", + "\n", + "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." + ] + }, + { + "cell_type": "markdown", + "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", + "metadata": {}, + "source": [ + "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a76c3187-3074-4eab-b82a-7212693acd1d", + "metadata": {}, + "outputs": [], + "source": [ + "# import\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import time\n", + "import xor_rxor_bootstrap_fns as fn\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "10\n", + "20\n", + "30\n", + "40\n", + "50\n", + "60\n", + "70\n", + "80\n", + "90\n", + "\n", + "The function took 26973.70 s to compute.\n" + ] + } + ], + "source": [ + "# set angle sweep\n", + "angle_sweep = range(0, 90, 5)\n", + "# data frame to store p values from each run\n", + "p_val_df = pd.DataFrame()\n", + "\n", + "# time experiment\n", + "start = time.time()\n", + "\n", + "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", + "for i in range(100):\n", + " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", + " # print i to monitor experiment progress\n", + " if i % 10 == 0:\n", + " print(i)\n", + "end = time.time()\n", + "\n", + "# entire experiment run time\n", + "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n" + ] + }, + { + "cell_type": "markdown", + "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", + "metadata": { + "tags": [] + }, + "source": [ + "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", + "metadata": {}, + "outputs": [], + "source": [ + "# compute mean across each test for each angle\n", + "p_val_df[\"mean\"] = p_val_df.mean(axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot with error bars\n", + "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", + "plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3)\n", + "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", + "plt.xlabel(\"Angle of Rotation RXOR\")\n", + "plt.ylabel(\"P-Value\")\n", + "plt.title(\"Angle of Rotation vs mean P-Value\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", + "metadata": {}, + "source": [ + "Finally, we can write this dataframe to csv to avoid rerunning the experiment." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", + "metadata": {}, + "outputs": [], + "source": [ + "# optional write to csv\n", + "p_val_df.to_csv(\"p_val_df_with_mean.csv\")\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file From 4ebd2df6b3bcd0e5e621d4d96bcdbf9fc3ccfa44 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 12:28:23 -0400 Subject: [PATCH 17/32] Update experiments.rst --- docs/experiments.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/experiments.rst b/docs/experiments.rst index fd306b2e4f..b02e1c920c 100644 --- a/docs/experiments.rst +++ b/docs/experiments.rst @@ -16,8 +16,8 @@ The following experiments illustrate specific tests using the ``ProgLearn`` pack experiments/recruitment_across_datasets experiments/spiral_exp experiments/spoken_digit_exp + experiments/xor_rxor_bootstrap_exp experiments/xor_rxor_exp - experiments/xor_rxor_subset_predictProba_bootstrap_exp experiments/xor_rxor_with_cpd experiments/xor_rxor_with_icp experiments/xor_rxor_with_unaware From e4fa4c58b9a8b8e911ef261ae93d5fac51044f21 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 12:28:58 -0400 Subject: [PATCH 18/32] Delete xor_rxor_bootstrap_fns.py --- .../functions/xor_rxor_bootstrap_fns.py | 165 ------------------ 1 file changed, 165 deletions(-) delete mode 100644 docs/experiments/functions/xor_rxor_bootstrap_fns.py diff --git a/docs/experiments/functions/xor_rxor_bootstrap_fns.py b/docs/experiments/functions/xor_rxor_bootstrap_fns.py deleted file mode 100644 index 840c7685c7..0000000000 --- a/docs/experiments/functions/xor_rxor_bootstrap_fns.py +++ /dev/null @@ -1,165 +0,0 @@ -import numpy as np -from scipy.spatial import distance -import sklearn.ensemble -from proglearn.sims import generate_gaussian_parity -import random -import math - -def bootstrap(angle_sweep = range(0, 90, 5), n_samples = 100, reps = 1000): - ''' - Runs getPval many times to perform a bootstrap exeriment. - ''' - p_vals = [] - # generate xor - X_xor, y_xor = generate_gaussian_parity(n_samples, angle_params=0) - for angle in angle_sweep: - # print('Processing angle:', angle) - # we can use the same xor as from above but we need a new rxor - # generate rxor with different angles - - X_rxor, y_rxor = generate_gaussian_parity(n_samples, angle_params=math.radians(angle)) - - - # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 - X_xor_0 = X_xor[np.where(y_xor == 0)] - X_xor_1 = X_xor[np.where(y_xor == 1)] - - X_rxor_0 = X_rxor[np.where(y_rxor == 0)] - X_rxor_1 = X_rxor[np.where(y_rxor == 1)] - - # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba - X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) - y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) - - # repeat for rxor - X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) - y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) - - # make sure X_rxor_train is the right size everytime, run into errors sometime - while len(X_rxor_train) != 70: - X_rxor, y_rxor = generate_gaussian_parity(n_samples, angle_params=math.radians(angle)) - # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 - X_xor_0 = X_xor[np.where(y_xor == 0)] - X_xor_1 = X_xor[np.where(y_xor == 1)] - - X_rxor_0 = X_rxor[np.where(y_rxor == 0)] - X_rxor_1 = X_rxor[np.where(y_rxor == 1)] - - # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba - X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) - y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) - - # repeat for rxor - X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) - y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) - - # init the rf's - # xor rf - clf_xor = sklearn.ensemble.RandomForestClassifier(n_estimators=10, min_samples_leaf=int(n_samples/7)) - - # rxor rf - clf_rxor = sklearn.ensemble.RandomForestClassifier(n_estimators=10, min_samples_leaf=int(n_samples/7)) - - # train rfs - # fit the model using the train data - clf_xor.fit(X_xor_train, y_xor_train) - - # fit rxor model - clf_rxor.fit(X_rxor_train, y_rxor_train) - - # concat the test samples from xor and rxor (30 from each), 60 total test samples - X_xor_rxor_test = np.concatenate((X_xor_0[35:], X_rxor_0[35:], X_xor_1[35:], X_rxor_1[35:])) - y_xor_rxor_test = np.concatenate((np.zeros(30), np.ones(30))) - - - # predict proba on the new test data with both rfs - # xor rf - xor_rxor_test_xorRF_probas = clf_xor.predict_proba(X_xor_rxor_test) - - # rxor rf - xor_rxor_test_rxorRF_probas = clf_rxor.predict_proba(X_xor_rxor_test) - - # calc the l2 distance between the probas from xor and rxor rfs - d1 = calcL2(xor_rxor_test_xorRF_probas, xor_rxor_test_rxorRF_probas) - - # concat all xor and rxor samples (100+100=200) - X_xor_rxor_all = np.concatenate((X_xor, X_rxor)) - y_xor_rxor_all = np.concatenate((y_xor, y_rxor)) - - # append the pval - p_vals.append(getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps, n_samples = n_samples)) - - return p_vals - - -def getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps = 1000, n_samples = 100): - ''' - Shuffles xor and rxor, trains trees, predicts, calculates L2 between probas, and calculates p-val to determine whether the 2 distributions are different. - ''' - d1_greater_count = 0 - for i in range(0, reps): - random_idxs = random.sample(range(200), 200) - # subsample 100 samples twice randomly, call one xor and the other rxor - X_xor_new = X_xor_rxor_all[random_idxs[0:100]] - y_xor_new = y_xor_rxor_all[random_idxs[0:100]] - - X_rxor_new = X_xor_rxor_all[random_idxs[100:]] - y_rxor_new = y_xor_rxor_all[random_idxs[100:]] - - # subsample 70 from each and call one xor train and one rxor train - # since we randomly took 100 the pool of 200 samples we should just be able to take the first 70 samples - X_xor_new_train = X_xor_new[0:70] - y_xor_new_train = y_xor_new[0:70] - - X_rxor_new_train = X_rxor_new[0:70] - y_rxor_new_train = y_rxor_new[0:70] - - # train a new forest - # init the rf's - # xor rf - clf_xor_new = sklearn.ensemble.RandomForestClassifier(n_estimators=10, min_samples_leaf=int(n_samples/7)) - clf_xor_new.fit(X_xor_new_train, y_xor_new_train) - - # rxor rf - clf_rxor_new = sklearn.ensemble.RandomForestClassifier(n_estimators=10, min_samples_leaf=int(n_samples/7)) - clf_rxor_new.fit(X_rxor_new_train, y_rxor_new_train) - - # take the remaing 30 and call those test - X_xor_new_test = X_xor_new[70:] - y_xor_new_test = y_xor_new[70:] - - X_rxor_new_test = X_rxor_new[70:] - y_rxor_new_test = y_rxor_new[70:] - - # concat our new samples - X_xor_rxor_new_test = np.concatenate((X_xor_new_test, X_rxor_new_test)) - y_xor_rxor_new_test = np.concatenate((y_xor_new_test, y_rxor_new_test)) - - # predict proba using the original xor and rxor rf's and calc l2 - # new xor rf - xor_rxor_new_test_xorRF_probas = clf_xor_new.predict_proba(X_xor_rxor_new_test) - - # new rxor rf - xor_rxor_new_test_rxorRF_probas = clf_rxor_new.predict_proba(X_xor_rxor_new_test) - - # calc l2 for our new data - d2 = calcL2(xor_rxor_new_test_xorRF_probas, xor_rxor_new_test_rxorRF_probas) - - if d1 > d2: d1_greater_count+=1 - - return (1 - (d1_greater_count/reps)) - -def calcL2(xorRF_probas, rxorRF_probas): - ''' - Returns L2 distance between 2 outputs from clf.predict_proba(). - ''' - # lists to store % label 0 since we only need one of the probas to calc L2 - xors = [] - rxors = [] - - # iterate through the passed probas to store them in our lists - for xor_proba, rxor_proba in zip(xorRF_probas, rxorRF_probas): - xors.append(xor_proba[0]) - rxors.append(rxor_proba[0]) - - return distance.euclidean(xors, rxors) \ No newline at end of file From 12979f69e425e0975fd01146b1443737e5cbb852 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 12:29:19 -0400 Subject: [PATCH 19/32] Add files via upload --- .../functions/xor_rxor_bootstrap_fns.py | 184 ++++++++++++++++++ 1 file changed, 184 insertions(+) create mode 100644 docs/experiments/functions/xor_rxor_bootstrap_fns.py diff --git a/docs/experiments/functions/xor_rxor_bootstrap_fns.py b/docs/experiments/functions/xor_rxor_bootstrap_fns.py new file mode 100644 index 0000000000..a72542c22a --- /dev/null +++ b/docs/experiments/functions/xor_rxor_bootstrap_fns.py @@ -0,0 +1,184 @@ +import numpy as np +from scipy.spatial import distance +import sklearn.ensemble +from proglearn.sims import generate_gaussian_parity +import random +import math + + +def bootstrap(angle_sweep=range(0, 90, 5), n_samples=100, reps=1000): + """ + Runs getPval many times to perform a bootstrap exeriment. + """ + p_vals = [] + # generate xor + X_xor, y_xor = generate_gaussian_parity(n_samples, angle_params=0) + for angle in angle_sweep: + # print('Processing angle:', angle) + # we can use the same xor as from above but we need a new rxor + # generate rxor with different angles + + X_rxor, y_rxor = generate_gaussian_parity( + n_samples, angle_params=math.radians(angle) + ) + + # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 + X_xor_0 = X_xor[np.where(y_xor == 0)] + X_xor_1 = X_xor[np.where(y_xor == 1)] + + X_rxor_0 = X_rxor[np.where(y_rxor == 0)] + X_rxor_1 = X_rxor[np.where(y_rxor == 1)] + + # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba + X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) + y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # repeat for rxor + X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) + y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # make sure X_rxor_train is the right size everytime, run into errors sometime + while len(X_rxor_train) != 70: + X_rxor, y_rxor = generate_gaussian_parity( + n_samples, angle_params=math.radians(angle) + ) + # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 + X_xor_0 = X_xor[np.where(y_xor == 0)] + X_xor_1 = X_xor[np.where(y_xor == 1)] + + X_rxor_0 = X_rxor[np.where(y_rxor == 0)] + X_rxor_1 = X_rxor[np.where(y_rxor == 1)] + + # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba + X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) + y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # repeat for rxor + X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) + y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # init the rf's + # xor rf + clf_xor = sklearn.ensemble.RandomForestClassifier( + n_estimators=10, min_samples_leaf=int(n_samples / 7) + ) + + # rxor rf + clf_rxor = sklearn.ensemble.RandomForestClassifier( + n_estimators=10, min_samples_leaf=int(n_samples / 7) + ) + + # train rfs + # fit the model using the train data + clf_xor.fit(X_xor_train, y_xor_train) + + # fit rxor model + clf_rxor.fit(X_rxor_train, y_rxor_train) + + # concat the test samples from xor and rxor (30 from each), 60 total test samples + X_xor_rxor_test = np.concatenate( + (X_xor_0[35:], X_rxor_0[35:], X_xor_1[35:], X_rxor_1[35:]) + ) + y_xor_rxor_test = np.concatenate((np.zeros(30), np.ones(30))) + + # predict proba on the new test data with both rfs + # xor rf + xor_rxor_test_xorRF_probas = clf_xor.predict_proba(X_xor_rxor_test) + + # rxor rf + xor_rxor_test_rxorRF_probas = clf_rxor.predict_proba(X_xor_rxor_test) + + # calc the l2 distance between the probas from xor and rxor rfs + d1 = calcL2(xor_rxor_test_xorRF_probas, xor_rxor_test_rxorRF_probas) + + # concat all xor and rxor samples (100+100=200) + X_xor_rxor_all = np.concatenate((X_xor, X_rxor)) + y_xor_rxor_all = np.concatenate((y_xor, y_rxor)) + + # append the pval + p_vals.append( + getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps, n_samples=n_samples) + ) + + return p_vals + + +def getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps=1000, n_samples=100): + """ + Shuffles xor and rxor, trains trees, predicts, calculates L2 between probas, and calculates p-val to determine whether the 2 distributions are different. + """ + d1_greater_count = 0 + for i in range(0, reps): + random_idxs = random.sample(range(200), 200) + # subsample 100 samples twice randomly, call one xor and the other rxor + X_xor_new = X_xor_rxor_all[random_idxs[0:100]] + y_xor_new = y_xor_rxor_all[random_idxs[0:100]] + + X_rxor_new = X_xor_rxor_all[random_idxs[100:]] + y_rxor_new = y_xor_rxor_all[random_idxs[100:]] + + # subsample 70 from each and call one xor train and one rxor train + # since we randomly took 100 the pool of 200 samples we should just be able to take the first 70 samples + X_xor_new_train = X_xor_new[0:70] + y_xor_new_train = y_xor_new[0:70] + + X_rxor_new_train = X_rxor_new[0:70] + y_rxor_new_train = y_rxor_new[0:70] + + # train a new forest + # init the rf's + # xor rf + clf_xor_new = sklearn.ensemble.RandomForestClassifier( + n_estimators=10, min_samples_leaf=int(n_samples / 7) + ) + clf_xor_new.fit(X_xor_new_train, y_xor_new_train) + + # rxor rf + clf_rxor_new = sklearn.ensemble.RandomForestClassifier( + n_estimators=10, min_samples_leaf=int(n_samples / 7) + ) + clf_rxor_new.fit(X_rxor_new_train, y_rxor_new_train) + + # take the remaing 30 and call those test + X_xor_new_test = X_xor_new[70:] + y_xor_new_test = y_xor_new[70:] + + X_rxor_new_test = X_rxor_new[70:] + y_rxor_new_test = y_rxor_new[70:] + + # concat our new samples + X_xor_rxor_new_test = np.concatenate((X_xor_new_test, X_rxor_new_test)) + y_xor_rxor_new_test = np.concatenate((y_xor_new_test, y_rxor_new_test)) + + # predict proba using the original xor and rxor rf's and calc l2 + # new xor rf + xor_rxor_new_test_xorRF_probas = clf_xor_new.predict_proba(X_xor_rxor_new_test) + + # new rxor rf + xor_rxor_new_test_rxorRF_probas = clf_rxor_new.predict_proba( + X_xor_rxor_new_test + ) + + # calc l2 for our new data + d2 = calcL2(xor_rxor_new_test_xorRF_probas, xor_rxor_new_test_rxorRF_probas) + + if d1 > d2: + d1_greater_count += 1 + + return 1 - (d1_greater_count / reps) + + +def calcL2(xorRF_probas, rxorRF_probas): + """ + Returns L2 distance between 2 outputs from clf.predict_proba(). + """ + # lists to store % label 0 since we only need one of the probas to calc L2 + xors = [] + rxors = [] + + # iterate through the passed probas to store them in our lists + for xor_proba, rxor_proba in zip(xorRF_probas, rxorRF_probas): + xors.append(xor_proba[0]) + rxors.append(rxor_proba[0]) + + return distance.euclidean(xors, rxors) From 1f4a2d61dd0c8054aa2fb090a64ba5314a4989ec Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 12:34:08 -0400 Subject: [PATCH 20/32] Add files via upload --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 387 +++++++++--------- 1 file changed, 183 insertions(+), 204 deletions(-) diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb index 47269ad38d..1744dc6b08 100644 --- a/docs/experiments/xor_rxor_bootstrap_exp.ipynb +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -1,204 +1,183 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", - "metadata": { - "tags": [] - }, - "source": [ - "### XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." - ] - }, - { - "cell_type": "markdown", - "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", - "metadata": {}, - "source": [ - "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", - "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", - "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", - "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", - "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", - "5. Train 2 new trees with XOR_new and RXOR_new.\n", - "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", - "7. Calculate L2 distance between the new probabilities (d2).\n", - "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", - "9. This entire experiment is then repeated 100 times to account for randomness.\n", - "\n", - "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." - ] - }, - { - "cell_type": "markdown", - "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", - "metadata": {}, - "source": [ - "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "a76c3187-3074-4eab-b82a-7212693acd1d", - "metadata": {}, - "outputs": [], - "source": [ - "# import\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "import time\n", - "import xor_rxor_bootstrap_fns as fn\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "10\n", - "20\n", - "30\n", - "40\n", - "50\n", - "60\n", - "70\n", - "80\n", - "90\n", - "\n", - "The function took 26973.70 s to compute.\n" - ] - } - ], - "source": [ - "# set angle sweep\n", - "angle_sweep = range(0, 90, 5)\n", - "# data frame to store p values from each run\n", - "p_val_df = pd.DataFrame()\n", - "\n", - "# time experiment\n", - "start = time.time()\n", - "\n", - "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", - "for i in range(100):\n", - " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", - " # print i to monitor experiment progress\n", - " if i % 10 == 0:\n", - " print(i)\n", - "end = time.time()\n", - "\n", - "# entire experiment run time\n", - "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n" - ] - }, - { - "cell_type": "markdown", - "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", - "metadata": { - "tags": [] - }, - "source": [ - "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", - "metadata": {}, - "outputs": [], - "source": [ - "# compute mean across each test for each angle\n", - "p_val_df[\"mean\"] = p_val_df.mean(axis=1)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot with error bars\n", - "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", - "plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3)\n", - "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", - "plt.xlabel(\"Angle of Rotation RXOR\")\n", - "plt.ylabel(\"P-Value\")\n", - "plt.title(\"Angle of Rotation vs mean P-Value\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", - "metadata": {}, - "source": [ - "Finally, we can write this dataframe to csv to avoid rerunning the experiment." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", - "metadata": {}, - "outputs": [], - "source": [ - "# optional write to csv\n", - "p_val_df.to_csv(\"p_val_df_with_mean.csv\")\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", + "metadata": { + "tags": [] + }, + "source": [ + "### XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." + ] + }, + { + "cell_type": "markdown", + "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", + "metadata": {}, + "source": [ + "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", + "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", + "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", + "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", + "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", + "5. Train 2 new trees with XOR_new and RXOR_new.\n", + "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", + "7. Calculate L2 distance between the new probabilities (d2).\n", + "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", + "9. This entire experiment is then repeated 100 times to account for randomness.\n", + "\n", + "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." + ] + }, + { + "cell_type": "markdown", + "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", + "metadata": {}, + "source": [ + "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a76c3187-3074-4eab-b82a-7212693acd1d", + "metadata": {}, + "outputs": [], + "source": [ + "# import\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import time\n", + "import xor_rxor_bootstrap_fns as fn\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# set angle sweep\n", + "angle_sweep = range(0, 90, 5)\n", + "# data frame to store p values from each run\n", + "p_val_df = pd.DataFrame()\n", + "\n", + "# time experiment\n", + "start = time.time()\n", + "\n", + "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", + "for i in range(100):\n", + " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", + "end = time.time()\n", + "\n", + "# entire experiment run time\n", + "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n", + "# The function took 26973.70 s to compute." + ] + }, + { + "cell_type": "markdown", + "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", + "metadata": { + "tags": [] + }, + "source": [ + "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", + "metadata": {}, + "outputs": [], + "source": [ + "# compute mean across each test for each angle\n", + "p_val_df[\"mean\"] = p_val_df.mean(axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot with error bars\n", + "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", + "plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3)\n", + "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", + "plt.xlabel(\"Angle of Rotation RXOR\")\n", + "plt.ylabel(\"P-Value\")\n", + "plt.title(\"Angle of Rotation vs mean P-Value\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", + "metadata": {}, + "source": [ + "Finally, we can write this dataframe to csv to avoid rerunning the experiment." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", + "metadata": {}, + "outputs": [], + "source": [ + "# optional write to csv\n", + "p_val_df.to_csv(\"p_val_df_with_mean.csv\")\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From b266a17a511c44ff2ddef95562445516ddeb885d Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 12:34:44 -0400 Subject: [PATCH 21/32] Delete xor_rxor_bootstrap_exp.ipynb --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 183 ------------------ 1 file changed, 183 deletions(-) delete mode 100644 docs/experiments/xor_rxor_bootstrap_exp.ipynb diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb deleted file mode 100644 index 1744dc6b08..0000000000 --- a/docs/experiments/xor_rxor_bootstrap_exp.ipynb +++ /dev/null @@ -1,183 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", - "metadata": { - "tags": [] - }, - "source": [ - "### XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." - ] - }, - { - "cell_type": "markdown", - "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", - "metadata": {}, - "source": [ - "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", - "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", - "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", - "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", - "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", - "5. Train 2 new trees with XOR_new and RXOR_new.\n", - "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", - "7. Calculate L2 distance between the new probabilities (d2).\n", - "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", - "9. This entire experiment is then repeated 100 times to account for randomness.\n", - "\n", - "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." - ] - }, - { - "cell_type": "markdown", - "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", - "metadata": {}, - "source": [ - "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "a76c3187-3074-4eab-b82a-7212693acd1d", - "metadata": {}, - "outputs": [], - "source": [ - "# import\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "import time\n", - "import xor_rxor_bootstrap_fns as fn\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# set angle sweep\n", - "angle_sweep = range(0, 90, 5)\n", - "# data frame to store p values from each run\n", - "p_val_df = pd.DataFrame()\n", - "\n", - "# time experiment\n", - "start = time.time()\n", - "\n", - "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", - "for i in range(100):\n", - " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", - "end = time.time()\n", - "\n", - "# entire experiment run time\n", - "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n", - "# The function took 26973.70 s to compute." - ] - }, - { - "cell_type": "markdown", - "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", - "metadata": { - "tags": [] - }, - "source": [ - "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", - "metadata": {}, - "outputs": [], - "source": [ - "# compute mean across each test for each angle\n", - "p_val_df[\"mean\"] = p_val_df.mean(axis=1)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot with error bars\n", - "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", - "plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3)\n", - "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", - "plt.xlabel(\"Angle of Rotation RXOR\")\n", - "plt.ylabel(\"P-Value\")\n", - "plt.title(\"Angle of Rotation vs mean P-Value\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", - "metadata": {}, - "source": [ - "Finally, we can write this dataframe to csv to avoid rerunning the experiment." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", - "metadata": {}, - "outputs": [], - "source": [ - "# optional write to csv\n", - "p_val_df.to_csv(\"p_val_df_with_mean.csv\")\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From 677a706c11a3136d79e0397c36cdd87a645e524a Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 12:34:57 -0400 Subject: [PATCH 22/32] Add files via upload --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 183 ++++++++++++++++++ 1 file changed, 183 insertions(+) create mode 100644 docs/experiments/xor_rxor_bootstrap_exp.ipynb diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb new file mode 100644 index 0000000000..cb510f9651 --- /dev/null +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", + "metadata": { + "tags": [] + }, + "source": [ + "### XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." + ] + }, + { + "cell_type": "markdown", + "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", + "metadata": {}, + "source": [ + "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", + "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", + "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", + "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", + "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", + "5. Train 2 new trees with XOR_new and RXOR_new.\n", + "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", + "7. Calculate L2 distance between the new probabilities (d2).\n", + "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", + "9. This entire experiment is then repeated 100 times to account for randomness.\n", + "\n", + "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." + ] + }, + { + "cell_type": "markdown", + "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", + "metadata": {}, + "source": [ + "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a76c3187-3074-4eab-b82a-7212693acd1d", + "metadata": {}, + "outputs": [], + "source": [ + "# import\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import time\n", + "import xor_rxor_bootstrap_fns as fn\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# set angle sweep\n", + "angle_sweep = range(0, 90, 5)\n", + "# data frame to store p values from each run\n", + "p_val_df = pd.DataFrame()\n", + "\n", + "# time experiment\n", + "start = time.time()\n", + "\n", + "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", + "for i in range(100):\n", + " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", + "end = time.time()\n", + "\n", + "# entire experiment run time\n", + "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n", + "# The function took 26973.70 s to compute.\n" + ] + }, + { + "cell_type": "markdown", + "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", + "metadata": { + "tags": [] + }, + "source": [ + "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", + "metadata": {}, + "outputs": [], + "source": [ + "# compute mean across each test for each angle\n", + "p_val_df[\"mean\"] = p_val_df.mean(axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot with error bars\n", + "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", + "plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3)\n", + "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", + "plt.xlabel(\"Angle of Rotation RXOR\")\n", + "plt.ylabel(\"P-Value\")\n", + "plt.title(\"Angle of Rotation vs mean P-Value\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", + "metadata": {}, + "source": [ + "Finally, we can write this dataframe to csv to avoid rerunning the experiment." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", + "metadata": {}, + "outputs": [], + "source": [ + "# optional write to csv\n", + "p_val_df.to_csv(\"p_val_df_with_mean.csv\")\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From b3dda271aa00d68bfa4930ed65d9983ba8a66ea4 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 19:48:11 -0400 Subject: [PATCH 23/32] Add files via upload --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb index cb510f9651..5c1496609d 100644 --- a/docs/experiments/xor_rxor_bootstrap_exp.ipynb +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -49,7 +49,7 @@ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import time\n", - "import xor_rxor_bootstrap_fns as fn\n" + "import xor_rxor_bootstrap_fns as fn" ] }, { @@ -76,7 +76,7 @@ "\n", "# entire experiment run time\n", "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n", - "# The function took 26973.70 s to compute.\n" + "# The function took 26973.70 s to compute." ] }, { @@ -97,7 +97,7 @@ "outputs": [], "source": [ "# compute mean across each test for each angle\n", - "p_val_df[\"mean\"] = p_val_df.mean(axis=1)\n" + "p_val_df[\"mean\"] = p_val_df.mean(axis=1)" ] }, { @@ -136,7 +136,7 @@ "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", "plt.xlabel(\"Angle of Rotation RXOR\")\n", "plt.ylabel(\"P-Value\")\n", - "plt.title(\"Angle of Rotation vs mean P-Value\")\n" + "plt.title(\"Angle of Rotation vs mean P-Value\")" ] }, { @@ -155,7 +155,7 @@ "outputs": [], "source": [ "# optional write to csv\n", - "p_val_df.to_csv(\"p_val_df_with_mean.csv\")\n" + "p_val_df.to_csv(\"p_val_df_with_mean.csv\")" ] } ], From 6814dea43d5b51b75e6b080c955a18ddab7363f6 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 19:48:48 -0400 Subject: [PATCH 24/32] Add files via upload --- .../functions/xor_rxor_bootstrap_fns.py | 368 +++++++++--------- 1 file changed, 184 insertions(+), 184 deletions(-) diff --git a/docs/experiments/functions/xor_rxor_bootstrap_fns.py b/docs/experiments/functions/xor_rxor_bootstrap_fns.py index a72542c22a..b7b333ccb9 100644 --- a/docs/experiments/functions/xor_rxor_bootstrap_fns.py +++ b/docs/experiments/functions/xor_rxor_bootstrap_fns.py @@ -1,184 +1,184 @@ -import numpy as np -from scipy.spatial import distance -import sklearn.ensemble -from proglearn.sims import generate_gaussian_parity -import random -import math - - -def bootstrap(angle_sweep=range(0, 90, 5), n_samples=100, reps=1000): - """ - Runs getPval many times to perform a bootstrap exeriment. - """ - p_vals = [] - # generate xor - X_xor, y_xor = generate_gaussian_parity(n_samples, angle_params=0) - for angle in angle_sweep: - # print('Processing angle:', angle) - # we can use the same xor as from above but we need a new rxor - # generate rxor with different angles - - X_rxor, y_rxor = generate_gaussian_parity( - n_samples, angle_params=math.radians(angle) - ) - - # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 - X_xor_0 = X_xor[np.where(y_xor == 0)] - X_xor_1 = X_xor[np.where(y_xor == 1)] - - X_rxor_0 = X_rxor[np.where(y_rxor == 0)] - X_rxor_1 = X_rxor[np.where(y_rxor == 1)] - - # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba - X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) - y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) - - # repeat for rxor - X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) - y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) - - # make sure X_rxor_train is the right size everytime, run into errors sometime - while len(X_rxor_train) != 70: - X_rxor, y_rxor = generate_gaussian_parity( - n_samples, angle_params=math.radians(angle) - ) - # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 - X_xor_0 = X_xor[np.where(y_xor == 0)] - X_xor_1 = X_xor[np.where(y_xor == 1)] - - X_rxor_0 = X_rxor[np.where(y_rxor == 0)] - X_rxor_1 = X_rxor[np.where(y_rxor == 1)] - - # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba - X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) - y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) - - # repeat for rxor - X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) - y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) - - # init the rf's - # xor rf - clf_xor = sklearn.ensemble.RandomForestClassifier( - n_estimators=10, min_samples_leaf=int(n_samples / 7) - ) - - # rxor rf - clf_rxor = sklearn.ensemble.RandomForestClassifier( - n_estimators=10, min_samples_leaf=int(n_samples / 7) - ) - - # train rfs - # fit the model using the train data - clf_xor.fit(X_xor_train, y_xor_train) - - # fit rxor model - clf_rxor.fit(X_rxor_train, y_rxor_train) - - # concat the test samples from xor and rxor (30 from each), 60 total test samples - X_xor_rxor_test = np.concatenate( - (X_xor_0[35:], X_rxor_0[35:], X_xor_1[35:], X_rxor_1[35:]) - ) - y_xor_rxor_test = np.concatenate((np.zeros(30), np.ones(30))) - - # predict proba on the new test data with both rfs - # xor rf - xor_rxor_test_xorRF_probas = clf_xor.predict_proba(X_xor_rxor_test) - - # rxor rf - xor_rxor_test_rxorRF_probas = clf_rxor.predict_proba(X_xor_rxor_test) - - # calc the l2 distance between the probas from xor and rxor rfs - d1 = calcL2(xor_rxor_test_xorRF_probas, xor_rxor_test_rxorRF_probas) - - # concat all xor and rxor samples (100+100=200) - X_xor_rxor_all = np.concatenate((X_xor, X_rxor)) - y_xor_rxor_all = np.concatenate((y_xor, y_rxor)) - - # append the pval - p_vals.append( - getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps, n_samples=n_samples) - ) - - return p_vals - - -def getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps=1000, n_samples=100): - """ - Shuffles xor and rxor, trains trees, predicts, calculates L2 between probas, and calculates p-val to determine whether the 2 distributions are different. - """ - d1_greater_count = 0 - for i in range(0, reps): - random_idxs = random.sample(range(200), 200) - # subsample 100 samples twice randomly, call one xor and the other rxor - X_xor_new = X_xor_rxor_all[random_idxs[0:100]] - y_xor_new = y_xor_rxor_all[random_idxs[0:100]] - - X_rxor_new = X_xor_rxor_all[random_idxs[100:]] - y_rxor_new = y_xor_rxor_all[random_idxs[100:]] - - # subsample 70 from each and call one xor train and one rxor train - # since we randomly took 100 the pool of 200 samples we should just be able to take the first 70 samples - X_xor_new_train = X_xor_new[0:70] - y_xor_new_train = y_xor_new[0:70] - - X_rxor_new_train = X_rxor_new[0:70] - y_rxor_new_train = y_rxor_new[0:70] - - # train a new forest - # init the rf's - # xor rf - clf_xor_new = sklearn.ensemble.RandomForestClassifier( - n_estimators=10, min_samples_leaf=int(n_samples / 7) - ) - clf_xor_new.fit(X_xor_new_train, y_xor_new_train) - - # rxor rf - clf_rxor_new = sklearn.ensemble.RandomForestClassifier( - n_estimators=10, min_samples_leaf=int(n_samples / 7) - ) - clf_rxor_new.fit(X_rxor_new_train, y_rxor_new_train) - - # take the remaing 30 and call those test - X_xor_new_test = X_xor_new[70:] - y_xor_new_test = y_xor_new[70:] - - X_rxor_new_test = X_rxor_new[70:] - y_rxor_new_test = y_rxor_new[70:] - - # concat our new samples - X_xor_rxor_new_test = np.concatenate((X_xor_new_test, X_rxor_new_test)) - y_xor_rxor_new_test = np.concatenate((y_xor_new_test, y_rxor_new_test)) - - # predict proba using the original xor and rxor rf's and calc l2 - # new xor rf - xor_rxor_new_test_xorRF_probas = clf_xor_new.predict_proba(X_xor_rxor_new_test) - - # new rxor rf - xor_rxor_new_test_rxorRF_probas = clf_rxor_new.predict_proba( - X_xor_rxor_new_test - ) - - # calc l2 for our new data - d2 = calcL2(xor_rxor_new_test_xorRF_probas, xor_rxor_new_test_rxorRF_probas) - - if d1 > d2: - d1_greater_count += 1 - - return 1 - (d1_greater_count / reps) - - -def calcL2(xorRF_probas, rxorRF_probas): - """ - Returns L2 distance between 2 outputs from clf.predict_proba(). - """ - # lists to store % label 0 since we only need one of the probas to calc L2 - xors = [] - rxors = [] - - # iterate through the passed probas to store them in our lists - for xor_proba, rxor_proba in zip(xorRF_probas, rxorRF_probas): - xors.append(xor_proba[0]) - rxors.append(rxor_proba[0]) - - return distance.euclidean(xors, rxors) +import numpy as np +from scipy.spatial import distance +import sklearn.ensemble +from proglearn.sims import generate_gaussian_parity +import random +import math + + +def bootstrap(angle_sweep=range(0, 90, 5), n_samples=100, reps=1000): + """ + Runs getPval many times to perform a bootstrap exeriment. + """ + p_vals = [] + # generate xor + X_xor, y_xor = generate_gaussian_parity(n_samples, angle_params=0) + for angle in angle_sweep: + # print('Processing angle:', angle) + # we can use the same xor as from above but we need a new rxor + # generate rxor with different angles + + X_rxor, y_rxor = generate_gaussian_parity( + n_samples, angle_params=math.radians(angle) + ) + + # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 + X_xor_0 = X_xor[np.where(y_xor == 0)] + X_xor_1 = X_xor[np.where(y_xor == 1)] + + X_rxor_0 = X_rxor[np.where(y_rxor == 0)] + X_rxor_1 = X_rxor[np.where(y_rxor == 1)] + + # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba + X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) + y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # repeat for rxor + X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) + y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # make sure X_rxor_train is the right size everytime, run into errors sometime + while len(X_rxor_train) != 70: + X_rxor, y_rxor = generate_gaussian_parity( + n_samples, angle_params=math.radians(angle) + ) + # we want to pick 70 samples from xor/rxor to train trees so we need to first subset each into arrays with only xor_0/1 and rxor_0/1 + X_xor_0 = X_xor[np.where(y_xor == 0)] + X_xor_1 = X_xor[np.where(y_xor == 1)] + + X_rxor_0 = X_rxor[np.where(y_rxor == 0)] + X_rxor_1 = X_rxor[np.where(y_rxor == 1)] + + # we can concat the first 35 samples from each pair to use to tatal 70 samples for training and 30 for predict proba + X_xor_train = np.concatenate((X_xor_0[0:35], X_xor_1[0:35])) + y_xor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # repeat for rxor + X_rxor_train = np.concatenate((X_rxor_0[0:35], X_rxor_1[0:35])) + y_rxor_train = np.concatenate((np.zeros(35), np.ones(35))) + + # init the rf's + # xor rf + clf_xor = sklearn.ensemble.RandomForestClassifier( + n_estimators=10, min_samples_leaf=int(n_samples / 7) + ) + + # rxor rf + clf_rxor = sklearn.ensemble.RandomForestClassifier( + n_estimators=10, min_samples_leaf=int(n_samples / 7) + ) + + # train rfs + # fit the model using the train data + clf_xor.fit(X_xor_train, y_xor_train) + + # fit rxor model + clf_rxor.fit(X_rxor_train, y_rxor_train) + + # concat the test samples from xor and rxor (30 from each), 60 total test samples + X_xor_rxor_test = np.concatenate( + (X_xor_0[35:], X_rxor_0[35:], X_xor_1[35:], X_rxor_1[35:]) + ) + y_xor_rxor_test = np.concatenate((np.zeros(30), np.ones(30))) + + # predict proba on the new test data with both rfs + # xor rf + xor_rxor_test_xorRF_probas = clf_xor.predict_proba(X_xor_rxor_test) + + # rxor rf + xor_rxor_test_rxorRF_probas = clf_rxor.predict_proba(X_xor_rxor_test) + + # calc the l2 distance between the probas from xor and rxor rfs + d1 = calcL2(xor_rxor_test_xorRF_probas, xor_rxor_test_rxorRF_probas) + + # concat all xor and rxor samples (100+100=200) + X_xor_rxor_all = np.concatenate((X_xor, X_rxor)) + y_xor_rxor_all = np.concatenate((y_xor, y_rxor)) + + # append the pval + p_vals.append( + getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps, n_samples=n_samples) + ) + + return p_vals + + +def getPval(X_xor_rxor_all, y_xor_rxor_all, d1, reps=1000, n_samples=100): + """ + Shuffles xor and rxor, trains trees, predicts, calculates L2 between probas, and calculates p-val to determine whether the 2 distributions are different. + """ + d1_greater_count = 0 + for i in range(0, reps): + random_idxs = random.sample(range(200), 200) + # subsample 100 samples twice randomly, call one xor and the other rxor + X_xor_new = X_xor_rxor_all[random_idxs[0:100]] + y_xor_new = y_xor_rxor_all[random_idxs[0:100]] + + X_rxor_new = X_xor_rxor_all[random_idxs[100:]] + y_rxor_new = y_xor_rxor_all[random_idxs[100:]] + + # subsample 70 from each and call one xor train and one rxor train + # since we randomly took 100 the pool of 200 samples we should just be able to take the first 70 samples + X_xor_new_train = X_xor_new[0:70] + y_xor_new_train = y_xor_new[0:70] + + X_rxor_new_train = X_rxor_new[0:70] + y_rxor_new_train = y_rxor_new[0:70] + + # train a new forest + # init the rf's + # xor rf + clf_xor_new = sklearn.ensemble.RandomForestClassifier( + n_estimators=10, min_samples_leaf=int(n_samples / 7) + ) + clf_xor_new.fit(X_xor_new_train, y_xor_new_train) + + # rxor rf + clf_rxor_new = sklearn.ensemble.RandomForestClassifier( + n_estimators=10, min_samples_leaf=int(n_samples / 7) + ) + clf_rxor_new.fit(X_rxor_new_train, y_rxor_new_train) + + # take the remaing 30 and call those test + X_xor_new_test = X_xor_new[70:] + y_xor_new_test = y_xor_new[70:] + + X_rxor_new_test = X_rxor_new[70:] + y_rxor_new_test = y_rxor_new[70:] + + # concat our new samples + X_xor_rxor_new_test = np.concatenate((X_xor_new_test, X_rxor_new_test)) + y_xor_rxor_new_test = np.concatenate((y_xor_new_test, y_rxor_new_test)) + + # predict proba using the original xor and rxor rf's and calc l2 + # new xor rf + xor_rxor_new_test_xorRF_probas = clf_xor_new.predict_proba(X_xor_rxor_new_test) + + # new rxor rf + xor_rxor_new_test_rxorRF_probas = clf_rxor_new.predict_proba( + X_xor_rxor_new_test + ) + + # calc l2 for our new data + d2 = calcL2(xor_rxor_new_test_xorRF_probas, xor_rxor_new_test_rxorRF_probas) + + if d1 > d2: + d1_greater_count += 1 + + return 1 - (d1_greater_count / reps) + + +def calcL2(xorRF_probas, rxorRF_probas): + """ + Returns L2 distance between 2 outputs from clf.predict_proba(). + """ + # lists to store % label 0 since we only need one of the probas to calc L2 + xors = [] + rxors = [] + + # iterate through the passed probas to store them in our lists + for xor_proba, rxor_proba in zip(xorRF_probas, rxorRF_probas): + xors.append(xor_proba[0]) + rxors.append(rxor_proba[0]) + + return distance.euclidean(xors, rxors) \ No newline at end of file From b58e9b51948af5c4ee215bcae049338a3a9f0a3f Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 19:53:28 -0400 Subject: [PATCH 25/32] Add files via upload --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb index 5c1496609d..26b825a6a9 100644 --- a/docs/experiments/xor_rxor_bootstrap_exp.ipynb +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -45,10 +45,11 @@ "outputs": [], "source": [ "# import\n", - "import numpy as np\n", + "import time\n", + "\n", "import matplotlib.pyplot as plt\n", + "import numpy as np\n", "import pandas as pd\n", - "import time\n", "import xor_rxor_bootstrap_fns as fn" ] }, From 4ab0c0b3e139c94e5cb84d95cd5945ba2e9327c2 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 20:07:41 -0400 Subject: [PATCH 26/32] Add files via upload --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 349 +++++++++--------- 1 file changed, 168 insertions(+), 181 deletions(-) diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb index 26b825a6a9..01878226c0 100644 --- a/docs/experiments/xor_rxor_bootstrap_exp.ipynb +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -1,184 +1,171 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", - "metadata": { - "tags": [] - }, - "source": [ - "### XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." - ] - }, - { - "cell_type": "markdown", - "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", - "metadata": {}, - "source": [ - "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", - "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", - "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", - "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", - "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", - "5. Train 2 new trees with XOR_new and RXOR_new.\n", - "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", - "7. Calculate L2 distance between the new probabilities (d2).\n", - "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", - "9. This entire experiment is then repeated 100 times to account for randomness.\n", - "\n", - "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." - ] - }, - { - "cell_type": "markdown", - "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", - "metadata": {}, - "source": [ - "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "a76c3187-3074-4eab-b82a-7212693acd1d", - "metadata": {}, - "outputs": [], - "source": [ - "# import\n", - "import time\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "import xor_rxor_bootstrap_fns as fn" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# set angle sweep\n", - "angle_sweep = range(0, 90, 5)\n", - "# data frame to store p values from each run\n", - "p_val_df = pd.DataFrame()\n", - "\n", - "# time experiment\n", - "start = time.time()\n", - "\n", - "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", - "for i in range(100):\n", - " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", - "end = time.time()\n", - "\n", - "# entire experiment run time\n", - "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n", - "# The function took 26973.70 s to compute." - ] - }, - { - "cell_type": "markdown", - "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", - "metadata": { - "tags": [] - }, - "source": [ - "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", - "metadata": {}, - "outputs": [], - "source": [ - "# compute mean across each test for each angle\n", - "p_val_df[\"mean\"] = p_val_df.mean(axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" + "cells": [ + { + "cell_type": "markdown", + "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", + "metadata": {"tags": []}, + "source": [ + "# XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." + ], + }, + { + "cell_type": "markdown", + "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", + "metadata": {}, + "source": [ + "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", + "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", + "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", + "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", + "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", + "5. Train 2 new trees with XOR_new and RXOR_new.\n", + "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", + "7. Calculate L2 distance between the new probabilities (d2).\n", + "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", + "9. This entire experiment is then repeated 100 times to account for randomness.\n", + "\n", + "Finally, we take the mean of the p-values across each 100 tests for each angle and plot.", + ], + }, + { + "cell_type": "markdown", + "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", + "metadata": {}, + "source": [ + "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." + ], + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a76c3187-3074-4eab-b82a-7212693acd1d", + "metadata": {}, + "outputs": [], + "source": [ + "# import\n", + "import time\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xor_rxor_bootstrap_fns as fn", + ], + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", + "metadata": {"tags": []}, + "outputs": [], + "source": [ + "# set angle sweep\n", + "angle_sweep = range(0, 90, 5)\n", + "# data frame to store p values from each run\n", + "p_val_df = pd.DataFrame()\n", + "\n", + "# time experiment\n", + "start = time.time()\n", + "\n", + "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", + "for i in range(100):\n", + " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", + "end = time.time()\n", + "\n", + "# entire experiment run time\n", + 'print("\\nThe function took {:.2f} s to compute.".format(end - start))\n', + "# The function took 26973.70 s to compute.", + ], + }, + { + "cell_type": "markdown", + "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", + "metadata": {"tags": []}, + "source": [ + "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " + ], + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", + "metadata": {}, + "outputs": [], + "source": [ + "# compute mean across each test for each angle\n", + 'p_val_df["mean"] = p_val_df.mean(axis=1)', + ], + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result", + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", + "text/plain": ["
"], + }, + "metadata": {"needs_background": "light"}, + "output_type": "display_data", + }, + ], + "source": [ + "# plot with error bars\n", + "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", + 'plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor="r", alpha=0.3)\n', + 'plt.plot(angle_sweep, p_val_df["mean"])\n', + 'plt.xlabel("Angle of Rotation RXOR")\n', + 'plt.ylabel("P-Value")\n', + 'plt.title("Angle of Rotation vs mean P-Value")', + ], + }, + { + "cell_type": "markdown", + "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", + "metadata": {}, + "source": [ + "Finally, we can write this dataframe to csv to avoid rerunning the experiment." + ], + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", + "metadata": {}, + "outputs": [], + "source": [ + "# optional write to csv\n", + 'p_val_df.to_csv("p_val_df_with_mean.csv")', + ], + }, + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3", + }, + "language_info": { + "codemirror_mode": {"name": "ipython", "version": 3}, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8", + }, }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot with error bars\n", - "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", - "plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3)\n", - "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", - "plt.xlabel(\"Angle of Rotation RXOR\")\n", - "plt.ylabel(\"P-Value\")\n", - "plt.title(\"Angle of Rotation vs mean P-Value\")" - ] - }, - { - "cell_type": "markdown", - "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", - "metadata": {}, - "source": [ - "Finally, we can write this dataframe to csv to avoid rerunning the experiment." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", - "metadata": {}, - "outputs": [], - "source": [ - "# optional write to csv\n", - "p_val_df.to_csv(\"p_val_df_with_mean.csv\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 + "nbformat": 4, + "nbformat_minor": 5, } From 0b4d1a12a70199131943e0e4ba44582943fad862 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 20:08:26 -0400 Subject: [PATCH 27/32] Add files via upload --- docs/experiments/functions/xor_rxor_bootstrap_fns.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/experiments/functions/xor_rxor_bootstrap_fns.py b/docs/experiments/functions/xor_rxor_bootstrap_fns.py index b7b333ccb9..428a21cf20 100644 --- a/docs/experiments/functions/xor_rxor_bootstrap_fns.py +++ b/docs/experiments/functions/xor_rxor_bootstrap_fns.py @@ -181,4 +181,4 @@ def calcL2(xorRF_probas, rxorRF_probas): xors.append(xor_proba[0]) rxors.append(rxor_proba[0]) - return distance.euclidean(xors, rxors) \ No newline at end of file + return distance.euclidean(xors, rxors) From a6917c53c0e1ffbdbb42c05696f2add76961205a Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 20:17:55 -0400 Subject: [PATCH 28/32] Add files via upload --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 348 +++++++++--------- 1 file changed, 180 insertions(+), 168 deletions(-) diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb index 01878226c0..30ffa58ec7 100644 --- a/docs/experiments/xor_rxor_bootstrap_exp.ipynb +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -1,171 +1,183 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", - "metadata": {"tags": []}, - "source": [ - "# XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." - ], - }, - { - "cell_type": "markdown", - "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", - "metadata": {}, - "source": [ - "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", - "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", - "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", - "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", - "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", - "5. Train 2 new trees with XOR_new and RXOR_new.\n", - "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", - "7. Calculate L2 distance between the new probabilities (d2).\n", - "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", - "9. This entire experiment is then repeated 100 times to account for randomness.\n", - "\n", - "Finally, we take the mean of the p-values across each 100 tests for each angle and plot.", - ], - }, - { - "cell_type": "markdown", - "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", - "metadata": {}, - "source": [ - "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." - ], - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "a76c3187-3074-4eab-b82a-7212693acd1d", - "metadata": {}, - "outputs": [], - "source": [ - "# import\n", - "import time\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "import xor_rxor_bootstrap_fns as fn", - ], - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", - "metadata": {"tags": []}, - "outputs": [], - "source": [ - "# set angle sweep\n", - "angle_sweep = range(0, 90, 5)\n", - "# data frame to store p values from each run\n", - "p_val_df = pd.DataFrame()\n", - "\n", - "# time experiment\n", - "start = time.time()\n", - "\n", - "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", - "for i in range(100):\n", - " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", - "end = time.time()\n", - "\n", - "# entire experiment run time\n", - 'print("\\nThe function took {:.2f} s to compute.".format(end - start))\n', - "# The function took 26973.70 s to compute.", - ], - }, - { - "cell_type": "markdown", - "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", - "metadata": {"tags": []}, - "source": [ - "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " - ], - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", - "metadata": {}, - "outputs": [], - "source": [ - "# compute mean across each test for each angle\n", - 'p_val_df["mean"] = p_val_df.mean(axis=1)', - ], - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result", - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", - "text/plain": ["
"], - }, - "metadata": {"needs_background": "light"}, - "output_type": "display_data", - }, - ], - "source": [ - "# plot with error bars\n", - "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", - 'plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor="r", alpha=0.3)\n', - 'plt.plot(angle_sweep, p_val_df["mean"])\n', - 'plt.xlabel("Angle of Rotation RXOR")\n', - 'plt.ylabel("P-Value")\n', - 'plt.title("Angle of Rotation vs mean P-Value")', - ], - }, - { - "cell_type": "markdown", - "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", - "metadata": {}, - "source": [ - "Finally, we can write this dataframe to csv to avoid rerunning the experiment." - ], - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", - "metadata": {}, - "outputs": [], - "source": [ - "# optional write to csv\n", - 'p_val_df.to_csv("p_val_df_with_mean.csv")', - ], - }, - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3", - }, - "language_info": { - "codemirror_mode": {"name": "ipython", "version": 3}, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8", - }, + "cells": [ + { + "cell_type": "markdown", + "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", + "metadata": { + "tags": [] + }, + "source": [ + "# XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." + ] + }, + { + "cell_type": "markdown", + "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", + "metadata": {}, + "source": [ + "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", + "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", + "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", + "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", + "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", + "5. Train 2 new trees with XOR_new and RXOR_new.\n", + "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", + "7. Calculate L2 distance between the new probabilities (d2).\n", + "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", + "9. This entire experiment is then repeated 100 times to account for randomness.\n", + "\n", + "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." + ] + }, + { + "cell_type": "markdown", + "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", + "metadata": {}, + "source": [ + "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a76c3187-3074-4eab-b82a-7212693acd1d", + "metadata": {}, + "outputs": [], + "source": [ + "# import\n", + "import time\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xor_rxor_bootstrap_fns as fn" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# set angle sweep\n", + "angle_sweep = range(0, 90, 5)\n", + "# data frame to store p values from each run\n", + "p_val_df = pd.DataFrame()\n", + "\n", + "# time experiment\n", + "start = time.time()\n", + "\n", + "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", + "for i in range(100):\n", + " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", + "end = time.time()\n", + "\n", + "# entire experiment run time\n", + "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n", + "# The function took 26973.70 s to compute." + ] + }, + { + "cell_type": "markdown", + "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", + "metadata": { + "tags": [] + }, + "source": [ + "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", + "metadata": {}, + "outputs": [], + "source": [ + "# compute mean across each test for each angle\n", + "p_val_df[\"mean\"] = p_val_df.mean(axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" }, - "nbformat": 4, - "nbformat_minor": 5, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot with error bars\n", + "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", + "plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3)\n", + "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", + "plt.xlabel(\"Angle of Rotation RXOR\")\n", + "plt.ylabel(\"P-Value\")\n", + "plt.title(\"Angle of Rotation vs mean P-Value\")" + ] + }, + { + "cell_type": "markdown", + "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", + "metadata": {}, + "source": [ + "Finally, we can write this dataframe to csv to avoid rerunning the experiment." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", + "metadata": {}, + "outputs": [], + "source": [ + "# optional write to csv\n", + "p_val_df.to_csv(\"p_val_df_with_mean.csv\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } From fa1d083f9908721144eb22f2c8bbe83876948229 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 20:33:19 -0400 Subject: [PATCH 29/32] Shorter title, added subsections More consistent with other XOR experiments. --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 34 ++++++++++++++++++- 1 file changed, 33 insertions(+), 1 deletion(-) diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb index 30ffa58ec7..8ccc98bcdb 100644 --- a/docs/experiments/xor_rxor_bootstrap_exp.ipynb +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -7,7 +7,15 @@ "tags": [] }, "source": [ - "# XOR RXOR RF bootstrap experiment across angle range 0-90 in increments of 5 degrees." + "# Gaussian XOR and Gaussian R-XOR Random Forest Bootstrap experiment" + ] + }, + { + "cell_type": "markdown", + "id": "fa57f1bb", + "metadata": {}, + "source": [ + "## Overview" ] }, { @@ -29,6 +37,14 @@ "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." ] }, + { + "cell_type": "markdown", + "id": "5f10072f", + "metadata": {}, + "source": [ + "## Running the Experiment" + ] + }, { "cell_type": "markdown", "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", @@ -79,6 +95,14 @@ "# The function took 26973.70 s to compute." ] }, + { + "cell_type": "markdown", + "id": "65ebd653", + "metadata": {}, + "source": [ + "## Visualizing the Results" + ] + }, { "cell_type": "markdown", "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", @@ -139,6 +163,14 @@ "plt.title(\"Angle of Rotation vs mean P-Value\")" ] }, + { + "cell_type": "markdown", + "id": "cc990f97", + "metadata": {}, + "source": [ + "## Saving our Results" + ] + }, { "cell_type": "markdown", "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", From 766720801b84511406dd3333a3111b91720ae99b Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 20:34:27 -0400 Subject: [PATCH 30/32] Add files via upload --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb index 8ccc98bcdb..2c2e50592b 100644 --- a/docs/experiments/xor_rxor_bootstrap_exp.ipynb +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -7,7 +7,7 @@ "tags": [] }, "source": [ - "# Gaussian XOR and Gaussian R-XOR Random Forest Bootstrap experiment" + "# Gaussian XOR and Gaussian R-XOR Random Forest Bootstrap Experiment" ] }, { From 9c6a1fdd87414e19dc5cc2814e9796b8ece6ab3a Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 20:35:19 -0400 Subject: [PATCH 31/32] Delete xor_rxor_bootstrap_exp.ipynb --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 215 ------------------ 1 file changed, 215 deletions(-) delete mode 100644 docs/experiments/xor_rxor_bootstrap_exp.ipynb diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb deleted file mode 100644 index 2c2e50592b..0000000000 --- a/docs/experiments/xor_rxor_bootstrap_exp.ipynb +++ /dev/null @@ -1,215 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", - "metadata": { - "tags": [] - }, - "source": [ - "# Gaussian XOR and Gaussian R-XOR Random Forest Bootstrap Experiment" - ] - }, - { - "cell_type": "markdown", - "id": "fa57f1bb", - "metadata": {}, - "source": [ - "## Overview" - ] - }, - { - "cell_type": "markdown", - "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", - "metadata": {}, - "source": [ - "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", - "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", - "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", - "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", - "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", - "5. Train 2 new trees with XOR_new and RXOR_new.\n", - "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", - "7. Calculate L2 distance between the new probabilities (d2).\n", - "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", - "9. This entire experiment is then repeated 100 times to account for randomness.\n", - "\n", - "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." - ] - }, - { - "cell_type": "markdown", - "id": "5f10072f", - "metadata": {}, - "source": [ - "## Running the Experiment" - ] - }, - { - "cell_type": "markdown", - "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", - "metadata": {}, - "source": [ - "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a76c3187-3074-4eab-b82a-7212693acd1d", - "metadata": {}, - "outputs": [], - "source": [ - "# import\n", - "import time\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "import xor_rxor_bootstrap_fns as fn" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# set angle sweep\n", - "angle_sweep = range(0, 90, 5)\n", - "# data frame to store p values from each run\n", - "p_val_df = pd.DataFrame()\n", - "\n", - "# time experiment\n", - "start = time.time()\n", - "\n", - "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", - "for i in range(100):\n", - " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", - "end = time.time()\n", - "\n", - "# entire experiment run time\n", - "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n", - "# The function took 26973.70 s to compute." - ] - }, - { - "cell_type": "markdown", - "id": "65ebd653", - "metadata": {}, - "source": [ - "## Visualizing the Results" - ] - }, - { - "cell_type": "markdown", - "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", - "metadata": { - "tags": [] - }, - "source": [ - "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", - "metadata": {}, - "outputs": [], - "source": [ - "# compute mean across each test for each angle\n", - "p_val_df[\"mean\"] = p_val_df.mean(axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot with error bars\n", - "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", - "plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3)\n", - "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", - "plt.xlabel(\"Angle of Rotation RXOR\")\n", - "plt.ylabel(\"P-Value\")\n", - "plt.title(\"Angle of Rotation vs mean P-Value\")" - ] - }, - { - "cell_type": "markdown", - "id": "cc990f97", - "metadata": {}, - "source": [ - "## Saving our Results" - ] - }, - { - "cell_type": "markdown", - "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", - "metadata": {}, - "source": [ - "Finally, we can write this dataframe to csv to avoid rerunning the experiment." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", - "metadata": {}, - "outputs": [], - "source": [ - "# optional write to csv\n", - "p_val_df.to_csv(\"p_val_df_with_mean.csv\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From 58d71e16e9df7bee97558fe8fa2e7b921e71c672 Mon Sep 17 00:00:00 2001 From: Kevin Feng <89429238+kfenggg@users.noreply.github.com> Date: Mon, 9 May 2022 20:35:53 -0400 Subject: [PATCH 32/32] Shorter title, added subsections more consistent with other XOR experiments --- docs/experiments/xor_rxor_bootstrap_exp.ipynb | 215 ++++++++++++++++++ 1 file changed, 215 insertions(+) create mode 100644 docs/experiments/xor_rxor_bootstrap_exp.ipynb diff --git a/docs/experiments/xor_rxor_bootstrap_exp.ipynb b/docs/experiments/xor_rxor_bootstrap_exp.ipynb new file mode 100644 index 0000000000..2c2e50592b --- /dev/null +++ b/docs/experiments/xor_rxor_bootstrap_exp.ipynb @@ -0,0 +1,215 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbec258d-c58d-4218-ae9b-14bc01295e26", + "metadata": { + "tags": [] + }, + "source": [ + "# Gaussian XOR and Gaussian R-XOR Random Forest Bootstrap Experiment" + ] + }, + { + "cell_type": "markdown", + "id": "fa57f1bb", + "metadata": {}, + "source": [ + "## Overview" + ] + }, + { + "cell_type": "markdown", + "id": "d51addd4-5e62-4121-b09a-4b9b3624f359", + "metadata": {}, + "source": [ + "In this experiment, we are interested in learning at which angles RXOR is significantly different from XOR to warrant training a new Random Forest. We will do this for each angle in the angle sweep by:\n", + "1. Generating 100 XOR and 100 RXOR samples and training their respective trees on randomly selected 70 samples from each.\n", + "2. Concatenating the remaing 30 samples from both distributions (60 samples total) and pushing them through both XOR and RXOR random forests to get an array of probabilities for each sample. \n", + "3. Calculate L2 distance between the 2 arrays of probabilities. We will call this d1.\n", + "4. Concatenate ALL XOR and RXOR samples (200 total) and randomly select 70 samples to be XOR_new and 70 samples to be RXOR_new (bootstrap).\n", + "5. Train 2 new trees with XOR_new and RXOR_new.\n", + "6. Use the remaining 60 samples to calculate probabilities from both new trees.\n", + "7. Calculate L2 distance between the new probabilities (d2).\n", + "8. Repeat steps 4-7 1000 times and calculate p-value by 1 - ((# of times d1 > d2)/1000).\n", + "9. This entire experiment is then repeated 100 times to account for randomness.\n", + "\n", + "Finally, we take the mean of the p-values across each 100 tests for each angle and plot." + ] + }, + { + "cell_type": "markdown", + "id": "5f10072f", + "metadata": {}, + "source": [ + "## Running the Experiment" + ] + }, + { + "cell_type": "markdown", + "id": "699c54f3-2eee-45f7-93a2-3fa2ed07852c", + "metadata": {}, + "source": [ + "We will start by importing dependencies and running the experiment outlined above. This will take quite a while." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a76c3187-3074-4eab-b82a-7212693acd1d", + "metadata": {}, + "outputs": [], + "source": [ + "# import\n", + "import time\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xor_rxor_bootstrap_fns as fn" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f1606f8-4a2c-4dd7-9f9c-ba873f873267", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# set angle sweep\n", + "angle_sweep = range(0, 90, 5)\n", + "# data frame to store p values from each run\n", + "p_val_df = pd.DataFrame()\n", + "\n", + "# time experiment\n", + "start = time.time()\n", + "\n", + "# run the experiment for 100 repetitions, bootstrap each experiment for 1000 reps\n", + "for i in range(100):\n", + " p_val_df[i] = fn.bootstrap(angle_sweep=angle_sweep, n_samples=100, reps=1000)\n", + "end = time.time()\n", + "\n", + "# entire experiment run time\n", + "print(\"\\nThe function took {:.2f} s to compute.\".format(end - start))\n", + "# The function took 26973.70 s to compute." + ] + }, + { + "cell_type": "markdown", + "id": "65ebd653", + "metadata": {}, + "source": [ + "## Visualizing the Results" + ] + }, + { + "cell_type": "markdown", + "id": "68b85968-6853-4c3c-9fc3-d97c3bff8f73", + "metadata": { + "tags": [] + }, + "source": [ + "Next, we compute the mean across each test for each angle. We will use this to the mean p-value for each angle with errors bars for the 25th and 75th percentiles. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "29c30725-cae7-42a0-80f9-ed1336ecde13", + "metadata": {}, + "outputs": [], + "source": [ + "# compute mean across each test for each angle\n", + "p_val_df[\"mean\"] = p_val_df.mean(axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "496fca00-c10b-4396-ad0e-b6ed188f04ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Angle of Rotation vs mean P-Value')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7F0lEQVR4nO3dd3xddf348df7ZrbZHelK00E3owUKMqqAqAwRHCAgKuIAZChDRb8/HDi+DlSULwgi2wGioCIiiCBb6IDu3XQkXWmSpknTZt7374/PCb1Nb5Kbce654/18PO4jufeenPO5J8l5n896f0RVMcYYk75CQRfAGGNMsCwQGGNMmrNAYIwxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGAOIiKfEZFXfdiviMgDIrJbROYP9v4HSkQuEZF/BV0Ocyi//ibNARYIkpiIvOhdWHOCLksM5gHvB8pU9fiub3r/7B0isldEGkRkiYicE8uO+3qhEJGJIqIiktn5mqr+XlU/EOs+jOP9DTZ7v7caEXlCRMZ02WaciLSLyGFRfv4vIvLT+JXYRGOBIEmJyETg3YAC5wZbmphMADapalMP2/xXVfOBYuBXwKMiUhyHspmBucb7vU3D/e5ui3xTVbcCzwOfinxdRIYBZwMPxaeYpjsWCJLXp4E3gAeBSyPfEJEHReROEfmHiDSKyJuRd2Mi8gERWSMie0TkVyLykoh8PtpBRGSGiDwnInXez3y8uwKJyFgRedLbdr2IfMF7/XPAvcCJ3p3jLT19MFUNA78F8oCp3j6KRORhEdklIptF5GYRCYnITODuiH3Xe9t/UETe9moXlSLynYhDvOx9rfd+5sSutQoROUlEFnjnaIGInBTx3osi8j0Rec07v/8SkRHdnJNVkTUbEcn07pyPEZFcEfmdiNSKSL13nFHd7GeTiHxVRJaKSJOI3Ccio0Tkn14Z/i0iJRHbnyAir3v7XSIip0a8d5lXrkYRqRCRKyLeO1VEqkTkRhGpFpHtInJZT7+vTqpaBzwOHBHl7YfoEgiAi4AVqrpMRL4uIhu8Mq0UkY90cx4Oqc15v4/PRzz/rPf5dovIsyIyIZbypzVVtUcSPoD1wFXAsUAbMCrivQeBOuB4IBP4PfCo994IoAH4qPfel72f/7z3/meAV73v84BK4DJv22OAGuDwbsr0Eu5OPheYA+wCTu+6325+NvK4GcDVQCtQ6r32MPA3oACYCKwFPtfdvoFTgSNxNztHATuBD3vvTcTVpDK7Of4wYDfuwpUJXOw9H+69/yKwAXcHPMR7/qNuPte3gN9HPP8gsNr7/grg78BQ7zMfCxR2s59NuMA/ChgHVANvAUcDOcALwLe9bccBtbi77RCuSa4WGBlRhsMAAU4B9gHHRJy3duC7QJa3j31ASTflepEDfzsjvHL8Nsp2Q4A9wLyI1/4LXOd9fwEw1ivvhUATMCbK7yba7y6yDB/G/W/M9H53NwOvB/3/mugPqxEkIRGZh2tqeUxVF+EuSp/ostkTqjpfVdtxgWCO9/rZuLuwJ7z3bgd2dHOoc3DNOQ+oaruqvoW74zs/SpnG4/oBblLVZlVdjKsFdL0L7MkJ3h19M/BT4JOqWi0iGbiLwzdUtVFVNwE/62nfqvqiqi5T1bCqLgUewV30YvFBYJ2q/tb73I8Aq4EPRWzzgKquVdX9wGMcOL9d/QE4V0SGes8/4b0GLgAPB6aoaoeqLlLVhh7K9X+qulNdU8srwJuq+raqtgB/wQUFgE8CT6vq097nfw5YiPvdo6r/UNUN6rwE/AvXzNipDfiuqrap6tPAXmB6D+W63fu9LQG2Azd03cA7T3/C1WQRkam4wPcH7/0/qeo2r7x/BNbhbmT66grgh6q6yvv7/l9gjtUKemaBIDldCvxLVWu853+gS/MQB1/c9wH53vdjcXf5AKi7jarq5jgTgHd5zQv13j/7JcDoKNuOBepUtTHitc24u9NYvaGqxUAJ8CQHLk4jgGxvfzHtW0TeJSL/8ZqS9gBXevuJxdgux4p2vO7O70FUdT2wCviQFwzO5UAg+C3wLK4vZJuI/EREsnoo186I7/dHed5ZhgnABV1+b/OAMQAicpaIvOE14dXjAkTkuan1LqK9fj7Pl1S1WFXHqeolqrpL3Cisvd7jn952DwEfF5FcXBB/RlWrvTJ9WkQWR5T3CGL/fUWaAPwyYj91uJpPX/4O005m75uYRCIiQ4CPAxki0nkxygGKRWS2qi7pZRfbgbKI/Unk8y4qgZdU9f0xFG0bMExECiKCQTmwNYafPYiq7hWRq4ANInI/sBR3lzoBWBll39FS6P4BuAM4S1WbReQXHLiw9JZyd5t3rEjlwDN9+RwRHsE1L4WAlV5wQFXbgFuAW8R1/j8NrAHu6+dxOlXimme+0PUNcSPMHsfdmf9NVdtE5K+4i+WgUdXf42qika+9IiK1wHm4WsvXvDJNAH4DnI4bMNAhIou7KVPnYIOhuCZOOPjGpBL4gXd8EyOrESSfDwMdwCxcc8QcXHvoK3jV7l78AzhSRD7sdbhdTfQ7fICngGki8ikRyfIex4nroD2IqlYCrwM/9DpBjwI+R5eLQaxUtRbXtPQtVe3ANb/8QEQKvAvHDcDvvM13AmUikh2xiwJcDaVZRI7n4KazXUAYmNzN4Z/2PvcnvM7dC3Hn+6n+fBbgUeADwBc5UBtARE4TkSO9pq8GXLDr6OcxIv0OVwM5Q0QyvN/HqSJShqtZ5eDOQbuInOWVLV4eBn6MG130d++1PFxw3gWuM5voHc6o6i7cDcAnvc/2WVx/R6e7gW+IyOHevopE5AIfPkdKsUCQfC7FtU9vUdUdnQ/c3e8lkaMpovGaky4AfoLrQJyFaz9uibJtI+4icRHuLnkH7p+4u3kLF+M687bh2qy/7bVP99cvgLO9oHIt7m6wAngVd0G939vuBWAFsENEOpvLrgK+KyKNuA7bxyI+1z7gB8BrXhPCCZEH9YLQOcCNuHP0NeCciKa4PlHV7biO0ZOAP0a8NRr4My4IrMJ1tv/ukB30/XiVuLvu/8FdXCuBrwIh73f6Jdz52I0LkE8O9Jh98DCudvVHr28DVV2J6/P5Ly6oHwm81sM+voD7PLXA4bgbELx9/QX3N/qoiDQAy4GzBv9jpBZxTcQmXYlICNdHcImq/ifo8hhj4s9qBGnIazIo9tqL/wfXFvtGwMUyxgTEAkF6OhE35LQGNyTyw97wPmNMGrKmIWOMSXNWIzDGmDSXdPMIRowYoRMnTgy6GMYYk1QWLVpUo6ojo72XdIFg4sSJLFy4MOhiGGNMUhGRrrPl32FNQ8YYk+YsEBhjTJqzQGCMMWnOAoExxqQ5CwTGGJPmLBAYY0yas0BgjDFpzgKBMcakufQKBDt3QsdgrPthjDGpI70CQXU1vP46tByyBosxxqSt9AoEAPX18Mor0NjY66bGGJMO0i8QAOzfD6++Crt2BV0SY4wJXHoGAoD2dnjzTdjcbR4mY4xJC+kbCABUYelSWLnSfW+MMWkovQNBpw0bYOFCG1FkjElLFgg67dhhI4qMMWnJAkGkzhFFDQ1Bl8QYY+LGAkFX+/fDa6/ZiCJjTNqwQBCNjSgyxqQRCwTd6RxRtGKFjSgyxqQ0CwS9qaiwEUXGmJRmgSAWnSOKmpuDLokxxgw6CwSxqq93aSlsRJExJsVYIOiLzhFFtbVBl8QYYwaNBYK+am+HBQugqSnokhhjzKCwQNAfbW0wf777aowxSc4CQX/t3QtvvWVDS40xSc8CwUBUV8OqVUGXwhhjBsQCwUBt2ACVlUGXwhhj+s3XQCAiZ4rIGhFZLyJfj/J+kYj8XUSWiMgKEbnMz/L4ZulS2L076FIYY0y/+BYIRCQDuBM4C5gFXCwis7psdjWwUlVnA6cCPxORbL/K5Jtw2I0k2r8/6JIYY0yf+VkjOB5Yr6oVqtoKPAqc12UbBQpERIB8oA5o97FM/mlpccHAUlEYY5KMn4FgHBDZeF7lvRbpDmAmsA1YBnxZVcNddyQil4vIQhFZuCuR00Pv2QOLFwddCmOM6RM/A4FEea3rWMszgMXAWGAOcIeIFB7yQ6r3qOpcVZ07cuTIwS7n4Nq2DdauDboUxhgTMz8DQRUwPuJ5Ge7OP9JlwBPqrAc2AjN8LFN8rFkD27cHXQpjjImJn4FgATBVRCZ5HcAXAU922WYLcDqAiIwCpgMVPpYpft5+2xLUGWOSgm+BQFXbgWuAZ4FVwGOqukJErhSRK73NvgecJCLLgOeBm1S1xq8yxVVHh0tD0doadEmMMaZHmX7uXFWfBp7u8trdEd9vAz7gZxkCtX+/G0l04okQsrl7xpjEZFcnv9XVwbJlQZfCGGO6ZYEgHrZscUteGmNMArJAEC8rV0Iiz4EwxqQtCwTxogqLFtmCNsaYhGOBIJ5sQRtjTAKyQBBvtqCNMSbBWCAIQnW16zMwxpgEYIEgKBUVsH590KUwxhgLBIFatcqloggfknDVGGPixgJB0Kqq4PXXobk56JIYY9KUBYJEsHs3vPIK1NcHXRJjTBqyQJAompvhtddg69agS2KMSTMWCBJJOOyGlq5aZcNLjTFxY4EgEa1f77KWtifn8s3GmORigSBR7dwJr75qKSmMMb6zQJDIGhtdJ3JNaqzVY4xJTBYIEl1bG7zxBmzcGHRJjDEpygJBMlCF5cth6VKbfGaMGXQWCJLJ5s2udmDrIBtjBpEFgmRTW+v6DRoagi6JMSYWNTWwZInLL1ZTk5A3cr4uXm98sm+fG1F09NEwZkzQpTHGdKetzeUT65pCJjcXCgqgsPDAIz8fQsHcm1sgSFYdHbBwIUyfDtOmBV0aY0w0y5dHzyPW3OwekcvXhkKQl3dwcCgsdEHDZxYIkt2aNVBUBKNGBV0SY0ykHTtcUslYhcNuyHhj48GpZrKyXEAYNQoOO2zwy4n1EaSGvvyxGWP819rqRvkNhrY21ze4ffvg7C8KCwSpYMcOS0dhTCJZuhRaWoIuRcwsEKSCcBi2bQu6FMYYcM06Pt69+8ECQaqw5iFjgtfcDMuWBV2KPrNAkCpqa2H//qBLYUx6W7rUteknGQsEqcRqBcYEZ8sWlzU4CVkgSCW2upkxwdi/H1asCLoU/WaBIJU0NsKePUGXwpj0s3hxUo/cS5tAULO3hW/Or6OpI+iS+Myah4yJr40bk37NkLQJBG9W1PH79Xv56FJhcyr3qW7dausdGxMvTU1ujfEklzaB4INHjeHh00rZ2QofWiK8tDvoEvmkpeXg/CXGGH+ouiahjuRvZkibQAAwb0wuT85WxubAZSuFX1el6M2zNQ8Z47+KCqirC7oUgyKtAgFAeS48cZRy1nD44eYQX1or7Ev+gH4wSzlhjL8aG2H16qBLMWjSLhAADM2AO6YrN00I81QNfGyZUBklU2zS6uhwwcAYM/hU3RoDKbRsrK+BQETOFJE1IrJeRL7ezTanishiEVkhIi/5WZ6DjwtfLIP7ZylVzXDuEuH1+ngdPQ6secgYf6xbl3LDtH0LBCKSAdwJnAXMAi4WkVldtikGfgWcq6qHAxf4VZ7unFYCT85WRmTBp1YI921LkX6DmproC2IYY/pvzx4XCFKMnzWC44H1qlqhqq3Ao8B5Xbb5BPCEqm4BUNVqH8vTrUlD4C9HKacPg+9tDHHjOqE52fsNVG2msTGDKRxOuSahTn4GgnFAZcTzKu+1SNOAEhF5UUQWicino+1IRC4XkYUisnCXT0Mj8zPh7hnKDeVhntglXLBM2JY86cSjs+YhYwbPmjWukzgF+RkIJMprXRtdMoFjgQ8CZwDfFJFDFuBV1XtUda6qzh05cuTgl9QTEvjSePjNjDAbm918gzeTuSmwocE9jDEDs3s3bNgQdCl842cgqALGRzwvA7qunlIFPKOqTapaA7wMzPaxTDF5/3D461FKUQZcskJ4eHsS9xtYrcCYgenocE1CSXsR6J2fgWABMFVEJolINnAR8GSXbf4GvFtEMkVkKPAuICHma08ZCn+drbynGL5VEeKm9UJLMjYNWsoJYwZm1SqXSiKF+RYIVLUduAZ4Fndxf0xVV4jIlSJypbfNKuAZYCkwH7hXVZf7Vaa+KsyEe2cq15Ypj1ULFy4TdiZbv0Fzc9InxDImMLW1Lqlcisv0c+eq+jTwdJfX7u7y/FbgVj/LMRAhgRsnKIfnKzesFc5ZItw9Qzm2MOiS9UFVFfjYt2JMSmprc7mE0kBazizujzOHuyGmQzPgouVJNt9gx46USIxlTNyEw7BgAezbF3RJ4sICQR9Mz3OTz04pcfMNLl8t1CfD8qTt7ZZywpi+ePtt1yyUJiwQ9FFRJvxmhvLNSWFe3A0fXCK8lQxDi230kDGxWbECtnUd4JjaLBD0gwh8biz86UhFgI8vE36T6INzdu1yaxUYY7pXUeEeacYCwQDMKYB/zFFOL4EfbArx+VXC7kRtKrKUE8b0bNu2pF6AfiAsEAxQkZea4juTwrxSDx9cLCxK1Mm81jxkTHS1ta5fIE1ZIBgEIvCZsfD4UUpmyDUV3VUF4URrKtqzJ2VzpRjTb42NboRQCiaTi5UFgkF0ZD48NVs5czj8eHOIz64S6hKtqchqBcYc0NwMb77p5gyksZgCgYiMEpH7ROSf3vNZIvI5f4uWnAoz3epn35sc5vV6OHuxMD+REtdZP4ExTnu7CwL79wddksDFWiN4EJcqYqz3fC1wnQ/lSQki8Kkxbm3k3BBcvFy4szJBmor270+r8dHGRNU5Ycyy8wKxB4IRqvoYEIZ38gjZVNVeHJEPf5+tnD0Cbt0S4tKVQk1r0KXCmoeMWbzYcnBFiDUQNInIcLz1BETkBCCRGjwSVkEm3D5N+d/Dwry5xzUV/TfoM7d9e1p3jJk0t2qVNZF2EWsguAGXQvowEXkNeBi41rdSpRgR+MRol9Y6PwMuWS7cXgkdQTUVtbVZygmTnjZtgvXrgy5Fwokp+6iqviUipwDTcSuPrVHV9O5m74dZXq6imyuEn28J8eJu5SMj3VrJY3PiXJiqKhg7tvftjEkVO3bA8oTJcp9QYgoEUdYSPkZEUNWHfShTSsvPhNumKicVKXdWCd+sCPHNCpiVp7yvBE4fphyZ79Jf+6q6GlpbITvb5wMZkwB274a33krwPDDBiXU9guMivs8FTgfewjURmT4SgY+PggtKlQ37lX/XwfO7hTuq4PaqECOzXC3h9BLl5GIYmuFDITpTTkya5MPOjUkgTU0wf76lYu9BrE1DB/UHiEgR8FtfSpRGRNySmFOGwpVlSl0bvLhbeb5OeKoGHt0ZIieknFTkgsLpw2DMYDYhVVVZIDCpraUF3njD1X6T3Ma9HRQ1tTIsb/Br8f1doWwfMHUwC2JgWBZ8tBQ+Wqq0hmF+g/LvOuH5OvjP7hA3V8DheS4gvK9EOWKgTUj19e5uKS9vsD6CMYmjc8JYki8u09QBd1QK923fy8Uta7nlvCMG/Rix9hH8HW/oKG6k0SzgsUEvjXlHdgjmFcO8YuXbk2BdZxNSnfB/lXB7ZYhSrwnpolHK7IJ+HqiqCqZPH8yiGxM8VVi0yOXXSlKq8FQN/GCTsKNV+FhZFle/d4ovx4q1RvDTiO/bgc2qarOS4kQEpg11j6vKlNo2+I/XhPTkLnhyl/DqXKUkqx87t0BgUtGSJW5ARJJa0wTfrhDeaBAOz1PunB7m2AlDoSDXl+PF2kfwki9HN/0yPAvOL4XzS5U1TXDG4hAPbIcbyvsxImLfPqirg2HDBr+gxgShthYqK4MuRb80tMMvtggPbXeTUb8/OczFoyHD51GEPQYCEWnkQJPQQW8BqqqFvpTKxGx6HpwxTHlwG3x+rEt612dVVRYITOpYty7oEvRZWOGJXfCjTUJtG1w8Cr46oZ+1/H7ocWaxqhaoamGUR4EFgcRxzXiloUP4bX8nC2/bZiknTGrYvdsty5pElu+F85cJX1kXYnyum3T6v1PiFwSgj6OGRKQUN48AAFXdMuglMn12ZD6cWqLct1W4bIz2fd5BWxvs3AljxvhSPmPiJolqA7vb4NbNwiM7XXPvT6eG+ejIOEwmjSLW9QjOFZF1wEbgJWAT8E8fy2X66Noypa7d/VH1i2UkNcmuocHd0CS4DoXfbYfT3hL+uBMuGwMvHKOcXxpMEIDYawTfA04A/q2qR4vIacDF/hXL9NWxhXBCoXLPVuGS0W4dhD6prnZZGTMz3SMj48D3XZ93fm9MIkmC2sCiBvhWhbCiSTihULllsjI9AabxxPrf3KaqtSISEpGQqv5HRH7sa8lMn107XrlkRYg/71Q+2ddWnnC4b1kZRVxA6BogsrLg6KPdV2PiZe9el149QVW3wo83C49XC6Ozlf+bFuacEe7fKBHEGgjqRSQfeBn4vYhU4+YTmARyUhEcXaDctVW4cJSS5eeK1Kpu5mZ7u5vGH2nzZpjiz8QXY6Jaty4hE8p1KDy8HX6+RWgOwxfHKdeMV/L8yB82AD1eKkTkfBHJBc7DpZW4HngG2AB8yP/imb4QcX0FW1uEvwW5+NLGjTYKycTPvn0JudDMxv1w4TLhlo0hji6AZ49WbpqYeEEAeu8svgTYAtwFnIGbO/CQqt6uqrbwbQI6rcSltP5VpQS38E1zsxuSakw8rF+fULWBsMJ92+CsxcLaffCzqWEemqVMHhJ0ybrX2zyCjwBTgOeBLwGVInKXiLwnHoUzfddZK6hoFp4OslawYUOABzdpo7k5oWYRb9oPFy4XvrcxxElF8NzRysdKE6cvoDu9tiKraoNXCzgLOBJYDPyfiCTO2TcHOWM4TBmi3FElhIO6UWposMXBjf/Wr0+IZsiwwv3b4MzFwpomVwu4b6YyKt4rD/ZTzN2JIlICfBS4EBgGPO5XoXyTJiNZQgJXlylr9gn/rguwIFYrMH5qaYEtwc9p3bQfLloufNerBfwrSWoBkXrrLC4QkU+JyNPAKtxKZd8HylX1ujiUb3BNnQoF/c3XnFw+NBLKc91ymIE1n1ZXu2F9xvihoiLQVcfCCg94tYBVTW5m8H0zldFJUguI1FuNYCNwJq6zeLyqXq6qL6gmUM9MX2RkwHHHpUXNIFPgqnHKkr3CK/UBFsRqBcYPbW2waVNgh9/s1QJu2RjiRK8v4PwkqwVE6i0QlKvqJar6d1VtAxCRp+JQLv/k5cExxyTvb6wPPloKY7JdX0FgqqoOnWdgzEBVVLg5LHEWVngwohZw65Qw9ydpLSBSb6OGoq3xNs6nssRPaWlaLMaSHYIrxinzG4Q3g1qoKRwO9M7NpKD2djdXJc62NMPFy4XvbAzxLq8v4IJRqXFP2Z+5p2/HuqGInCkia0RkvYh8vYftjhORDhE5vx/l6Z+pU9Mi2+ZFo2BEVsC1gk2bEmJkh0kRmza5pqE4CSs8tB3OeFtY2QQ/mRLmgZnKmCSvBUTqrbM4V0SuE5E7ROQKEclU1c/GsmMRyQDuBM7CrXF8sYjM6ma7HwPP9r34AzRnTsp3HudmwBfGKq/UC4sbAypEa2tCjfU2SayjI679Tp21gG9XhDi+0NUCPp4itYBIvdUIHgLmAstwF/Sf9WHfxwPrVbVCVVuBR3GpKrq6FjcUNf4LjGZmpkXn8SWjoTgz4FpBRUVwxzapY/Nmd2MRB49Xw5kRtYAHZ6VWLSBSb4Fglqp+UlV/DZwPvLsP+x4HRN4GVtGlf0FExgEfAe7uaUcicrmILBSRhbsGe/WhNOg8zs+Ez45V/l3n/qgDsXdvUuSKNwksHI5bbeCl3fDVdcJsL0dQKtYCIvUWCN5piFPVvnbRRzttXYed/gK4SVV7HAysqveo6lxVnTty5Mg+FiMGadB5fOkYKMhQ7qy0WoFJUpWVLqWEzzbth2vXCNOGwr0zlbEpWguI1Fsa6tki0uB9L8AQ73ksi9dXAeMjnpcBXTORzQUeFRdqRwBni0i7qv41xvIPnqlTob4edvR34d/EVpQJnxoDd1XB+n0wZWgAhaipgT17oKgogIObpKbat/Uy+mlvO3xhlZAh8JuZiZkp1A+9DR/N6LJgfWYfFq9fAEwVkUkikg1cBDzZZf+TVHWiqk4E/gxcFUgQ6HT00ZCfH9jh/fa5sUpOCO7aGmCtwCaYmf6oqnLppn0UVrh+nVCxH+6crozP7f1nUoVvS5d4TUnX4EYDrQIeU9UVInKliFzp13EHJDMTjj8+ZTuPh2e5juO/VkOl/zXs6LZvj0v13qSQONUGflEpPFcn3DxJOanY98MlFD/XsEJVn1bVaap6mKr+wHvtblU9pHNYVT+jqn/2szwxyctzNYMUdflYJUPgrqBGEIXDgUwGMkls+3bfc1Y9Uwu3VwoXlCqfSf3pRYfwNRAkrVGjUrbzeFQOfHwU/LkatgeV+WHz5kDSA5gk5fOi9Kub4Ia1wpx85fuHaUqPDuqOBYLuTJsGo0cHXQpfXDFO6VC4J6i+gra2hEgfbJLAjh1ubQuf1LfB5auF/Az49QzXh5aO0vRjxyhFO4/H58JHSuGRnVATn7k5h9q4MaGWFzQJysfaQLvCNWuEHS1wdxItIuMHCwQ96Zx5nNnbKNvkc1WZ0hKG+7YFVCvYty9lh+qaQbJrlxvS7ZMfbhJe3SN8/zDlmNTONNMrCwS9yc9Pyc7jyUPgnBHw8HZXPQ6EDSU1PVm71rddP17tboI+M8bNGk53FghiMXq06zNIMVeXKU1h4cHtARVg926oC3ItTZOw6up8+9tY0gjfWC+cWKT8v4nWPAkWCGI3fbobTZRCZuTBB4YpD2wXGoMaxGNpJ0w0PtUGqlvhitVCababNJZlV0DAAkHfHHNMynUeX1Om7GkXfhdUc/2OHb7PGDVJpr7e9Q8MspYwfHG1sKfdpY8YlprzRvvFAkFfpGDn8VEF8J5i5b5twv4g1gFXtVqBOZgPI4VU4dsVwqJG4adTlZl5g36IpGaBoK/y82HePBg2LOiSDJprxys1bcJdVcLeIJqItmyJ64pTJoE1NPgymux3O+DRncI1ZcoHRwz67pOeBYL+KCiAk0+G2bODz0tUVgaFveX/69lxhfDuYuX2KuGoN4VzFgvfqRCeqoGd8Zh93NHhZhv7wZbITB7hsC99A2/sgVs2CqeXKDeUW+dwNKnTxhGE8nLXgbxypcuOGE8jRsCsWS6l8+bNsHTpgHb3m5nK/D3KwkZhYQP8cSc8uN3dJ4zPUeYWwtxC5bhCmDIEQoM9/WDjRpg8GUKDdG/S3u6anCoqoKQEDj885fp3kpoqNDa6/oDOR2PjoAfuqma4arUwIRdum6aD/3cbTxn+5cS2QDBQOTlunsH48e5i3OTzEmD5+S4ARI5gGjsWVqxwd9b9lBuC95TAe0rcHVNbGFY2KQsaYFGj8Eo9/GWXu0gXZSrHFrjAMLfA9TPkDvT63dwM27a5Gs5AhMNucfP166HFq85UV7vOx4kT3eivoGtx6UbV/V9EXvQbGgb09xqL/R0ufUSbuhudwmS+2mVmwpFH+rd73/acbkaMgFNPdR1d69cPfpNETo67iJWXH7pmXlYWjBkzqLWSrBDMLnCPz6OowubmA4FhQQO8sNtd/bNFOTIfV2soUE4uhqH9uXnZsKH/gUDVrWC1di3s3x/9/Y0b3TmaNg0mTUrttQeD1NTkFiDqvOjv2RP3JIOq8NX1wqomuH+WMnlIXA8/+HwesWiBYDCFQu5iPW6cqx3U1g58nxkZcNhh7tHTaKXycl+bp0Rg4hD3uGCUqzXUtimLIgLD/dvg1xpixlDlsSP7cQfW0OBWMRvRx968rVthzZrYamNtba72tHnzoTUr0zNVd0FvbXXnMfJrS8uBC38CdPzfvRWeqhFumhDmtJKgSzNAM2b4/ndqgcAP+flw0knuDnXlSveP0lcirrlp+nTIjWGppOHD3VoKfjdNRR4yCz4wHD4w3AWG5g54rk65fp1wxWrhwVn9yOa4YUPsgWDnTli9un/ZKffuhfnzYeRI139QkKbJZhoaXA2q64U98mvn9+3tSZEo8IU6+Mlm4UMjlCvHBV2aARozxi2j6zMLBH4aP/5AZ3JlZew/N3Kku1vt62ig8ePdhTEguRnwoZHQrsr160LcuA5u72sHXXW1u0j3VA2urXWfczBSEOzaBS+95GpUM2ZAdvbA95kMVN05jMPKX/H0nzq4crUwKw9+MiXJ1xYoLIxbnjMLBH7LzoY5cw50Jve00lJhoQsAI0f271jjx7smkoDv2j5SCjtbw/xoc4jR2XDzpD6WZ8MGNzS3qz17YNWqwZ91quqairZtc3dfkyYN3uilRNTWBosW+TJ7N0jP1MK1a4TpQ+G3hytDknnh+awsN3nVx5FCkSwQxMvw4XDKKe4ObN26gzuTc3Pd3WhZ2cA6MHNzobTUNZkE7IpxsKNVuXebMDpb+XxfquhVVe585HgJ4vfudXev233OjtfW5mpvnf0HqbgwUUMDLFiQcmk9ntwF168VjiqAB2cpRcl8ZROBuXNh6NC4HTKZT1fyCYXciJXOzuT6epgyxY2fH6zIX16eEIFABL45Saluhe9vClGaHebcWCs6nUNAx493o4CqquJby2lqchfLESNc/8EAJ+wljK1bYckS34dtxtufq+Fr64S5hXD/TCU/2a9qs2b1fcDEACX7KUtOeXlw4onuDnSwx7SXlro76ZagFiQ+IEPg59OUmhVw4zphRJZyUnGMP7xhgz/DcPuipgZeftkFpMgaSrJRdTWdFMzp9Psd8P82hJhXpPxmZpI3B4FrFZg8Oe6HTeGG0CTgx8SmUGjgk7IGUW7ITeaZNMSl/10V66Cmjo7ESA+h6nIhPf88vPWWq20lQrli1doKb7yRkkHg/m0uCLy3RLl3VgoEgeLi6H1jcWCBIBWVlwddgoMUZbp227wM+MxKYWvwlZW+6+hwTSvz58Nzz8GyZYm/qM6ePa5GU1MTdEkG3a+q4LsbQ5w5XLl7hg58ZnvQcnJc53BAgxSS/fSZaPLzEy476tgceGiWsq8DLl0hwS2PORhaW10fxmuvuZrC6tUuT04iqayEV1+NPss6ianCbVuEn2wOce4I5Y7pSnayX8VCIdc5HMt8Ib+KENiRjb/Gjw+6BIeYnueaibY0w+dXCc2p0Ge5b58bBfbii24+woYNLm9SUMJhWL4cFi9OriasGKjCjzYLv6wULihVbpumZCbzPIFORxwR+I2bBYJUNXZsQi6gc0KR60Be1AjXrRM6En+iauwaGlyn7L//Da+/Hv91Flpa4L//dTmVUoyqSyX9663CJ0crP56iZKRCEJgwwT0ClnhXCjM4MjNdMNiyJeiSHOKcEVDdqnx3Y4hbKuCWyUk+A7QrVTf7ubbW9SWUlroO/FGj/GsD3r0bFi4Mtjbik7DC/9sgPLJT+NxY5eaJKfL3MmyYqw0kAAsEqay8PCEDAcBnx8LOVuXXW4XROcpViTPQaXCFw27FrR07XHAeNcrNS8jPd8OI8/IGHhy2bHEBJ8WaggDa1c0ReGKXcHWZ8pXyFAkCubmuXyBBZrBbIEhlJSXugtNTWosA3TRB2dECP9kcYlR2mI+VBl0in7W3u5FHW7ceeE3EXRQiA0Pn90OH9jzTvLM/wK/V3QLWFobr1gr/qBVuLA9zbeJ1e/VPKATHH59Q81IsEKS68nLXbp2AQgK3TlVq2uCm9W7C2SnJnjK4r1TdyJ79+w/N/RMKuWDQNUB0JuRbuNA1CaWgljBcs0Z4rk74n4lhLk/2LKKRZs92KwsmEAsEqa6szA1vTNBmg+wQ3D1D+fhy4YurhT8e6Ra5Mbjf2d69CVuj80tzh5t8+FK9cMvkMJeOCbpEg2jy5ISa8NkpMRqojH9yclxnZQIryIQHZyolWXDZSmFL6vV3mhjt64DPrhJerocfT0mxINCZXj4BWSBIBwk20ziaUd6Es3Z1E85qk3nCmemzDoXKZrh0pfDGHvj5VOXCVFo8buhQOPbYhF0e1ZqG0kFpqeuQTPChhVOGwn0zlU+sED67UrjXqyWkxKShNNcShm0tsLXz0SxURTzf3gIdCJniZgufHd/km/4aMsR1DvuRW2yQWCBIB53LXq5bF3RJenVsoVvV7IurheMWuArrkJCSnwEFGa4ZKT/y6zuvu2063yuI+Doqm76tkmb6rKmj8wIPVS1Q1SIRF32objv4FxBCGZUN43Lg2AIYNxLG5YQ5pgBm5gX0IQZDbq5LHldc7DqEi4uTYtU7CwTpIkkCAcAZw+GxI5Wle5W9HdDYLuztgIZ22NvhHrv2w952aPSeaw+tnKOzlTOGwxnDlOOLrIYxmNY0ufWBn9998EnNEmVsjrvQn1LiLvLjcqAsF8pyYHQ2ZCV7w3TnRb/zgl9UlFBDQvvC10AgImcCvwQygHtV9Udd3r8EuMl7uhf4oqou8bNMaSsvz62SVlsbdEliMrfQPZye81CEFZo69J0g0RkwGjtgdxu8Ui88uhMe2h6iJFN53zA4c7hycjHJn7UyINtbXPK3P1dDXgZcXaZMG6qU5bgL/chUq4Xl5h58wS8uTtqLfjS+BQIRyQDuBN4PVAELRORJVY0c1L4ROEVVd4vIWcA9wLv8KlPaKy9PmkDQFyHxmoG6+Wv+1BiX9fTleuWZWuGZWvhTdYi8kHJqiQsKp5WQ/CtbxcGedri7Srh/u5sC8dmxLgiUJG7zd/8NHepSQBQVBZoZNB78/NM/HlivqhUAIvIocB7wTiBQ1dcjtn8DSLwBtqlkzBg3EzWeidASxNAMOHO4u+i3huG/e1xQeK4O/lEbIluUecVwxnBXYxieihe2AWgJw2+3wx1VQn278OGRyo3lyvhUvj7Onh33JSOD4mcgGAdURjyvoue7/c8B/4z2hohcDlwOUJ4EQyETVkaGS0SXoikJYpUdcu3Wp5Qo31d4q9EFhWdr4YXdIUIoxxe6oHDGcLeWQroKq1sY/qdbhKoW4d3Fyk0TwhyR6pP+ysvTJgiAv4EgWgth1MZeETkNFwjmRXtfVe/BNRsxd+7cVEpcHH/l5WkfCCJlCBxXCMcVKjdPhBVNyrO1wrN1cMvGELdshKPylTOGK6cWuxEtKdX23YNX6+GHm4QVTcKsPOXhw8K8Jx1SgOTmwuGHB12KuPIzEFQBkWmiyoBtXTcSkaOAe4GzVDX1GrATTXGxy37Z0BB0SRKOCByRD0fkKzdOgA37lGfr4Nla4dbNIW7dDMMylZOKYV6R62xOxaaRFXvdAjCv1AvjcpTbpoY5b2T6BEBmz07ItTz85OenXQBMFZFJwFbgIuATkRuISDnwBPApVV3rY1lMpPJy11dgenTYULhqKFxVpuxoUV7bA6/VC6/Ww1M1brjRhFzl5CKYV6ycWERSd5pWNcPPtgh/3QWFmXDzxDCfHJNmI6vKyhI+JYsffAsEqtouItcAz+KGj96vqitE5Erv/buBbwHDgV+Jm3rdrqpz/SqT8ZSVuYykCZqILhGNzoGPlcLHShVVWL9febXeBYYna+APO0MIyhF5cHKxCwxzCyA3I+iS966+zXUCP7zd1YquGAdfLFOK0uum2A0HTZCFYuJNVJOryX3u3Lm6cOHCoIuR/BYtgm2HtNSZfmgLw9K9rk39tT3C243QpkK2KHML4eRiZV6Ra3ZKlOUVG9vdrN//7Ia7qoTGDhfobijX9O0cP+44GD066FL4RkQWdXejnW4x33QqL7dAMEiyQi41xrGF8GWUpg6Y36DvNCPdujnErUBhhnJCketXGJGljMiCEdkwMgtGZLkhq4M127apwzX1uHQPUOnl9ul8rb79QEQ6rUS5aYIyI5lTOwzU2LEpHQR6Y4EgXY0c6ZJh7d8fdElSTl4GnFbiLrAAu1qV173+hQUNruawLxz9il+c6QUIL0iMyIKRWcrwiOcjstzkuZ2tERd770Jf6T3f3X5w1SMn5Gb9js+FOQVQlhOmLBemDCG9AwC4XEBp2iTUyQJBOhs/HtZaH73fRmbDeSPhvJEHmmH3dbiV2Xa1Qk2b92iFmjZ55/mKve5rY0fv1YRsUcpyYXwOHNV5oY/I7TMiK2EzIAfviCNSKl1Ef1ggSGfl5S4RXZL1E6WCoRlQngHlhww/PfR30RxWL0gcCBiNHS6rauSFPm2Gdw6m0aNhXCqtg9k/FgjS2ZAhbvZk17VyTULJDXkX/BScsxCorCw48sigS5EQ0mmEsInGUnaYdDVrVsonk4uVBYJ0N3p0Qq+cZIwvRo60m6AIFgjSXSjkJpgZky4yM10aCfMOCwTG7oxMepk50/WPmXdYIDAuCV1xcdClMMZ/w4fDxIlBlyLhWCAwjtUKTKrLyLAmoW5YIDBO5xT7oiI309KYVDN9ulu72xzC5hEYJyvLJd3q1NEBzc0uBUV3j46O4MprTF+UlMDkyUGXImFZIDDRZWS4u6ee7qDa2qIHiJ07ob09fmU1piehkGsSshwb3bJAYPovK8s9CgsPfn3/fli2zAUEY4I2bRoUFARdioRmfQRm8A0ZAscfD8ccY/0NJlhFRTBlStClSHhWIzD+GTfOzeBcsQKqqoIujUk3oRDMmWNNQjGwGoHxV3Y2HH00vOtdNonHxNdhhx3abGmiskBg4qO0FE49FSZNCrokJh0UFLi+ARMTaxoy8ZOZ6RYBGTsWliyBvXuDLpFJJLm57g5+MJpypk1zTUMmJhYITPwNGwannOJWR9uwAcLhoEtkgiDixveXlsKoUdaMEyALBCYYoRDMmHGgdlBfH3SJTDxkZ7sLf+fDUqAnBAsEJliFhTBvHlRUwJo1Nls5FRUVHbjrLy62UTwJyAKBCZ6IG+ExZoyrHdTUBF0iMxCZmW7YcOddv60ClvAsEJjEMXQonHgibNkCK1e6FBYmOeTnuzv+0lLXB2QdtUnFAoFJPOXl7qJSV+cS37W0uK+RDwsSwSsocLW4sWMthUOSs0BgElNOjrvIdKczO2q0IBH5CLrPIRRyE+lyc93XnByXi2nvXmhqCr58fZWf7y78dvFPKRYITHKKJTsquCyoLS3Q2tr918jv+zKUVcRd2IcMOfhiH/nIyen+51UPBIWuj5aW2Mvht7y8Axd/G+KZkiwQmNSWmekesS5I0l3gaGtzQx8jL/q5uQNrCxdx/SJDh7q29UhtbYcGh8ZG2LfPBRC/2cU/rVggMCZSXwOHX7Ky3GSrkpKDXw+HXTDorDV09+jPehB5eQfa/IuKBudzmKRggcCYZBIKuXb6/PyetwuHew4UnQ9wS5TaxT+tWSAwJhV1dlJbxlcTAxvsa4wxac4CgTHGpDkLBMYYk+YsEBhjTJqzQGCMMWnO10AgImeKyBoRWS8iX4/yvojI7d77S0XkGD/LY4wx5lC+BQIRyQDuBM4CZgEXi8isLpudBUz1HpcDd/lVHmOMMdH5WSM4HlivqhWq2go8CpzXZZvzgIfVeQMoFpEeMo0ZY4wZbH4GgnFAZcTzKu+1vm6DiFwuIgtFZOGuXbsGvaDGGJPO/JxZHG09uq7ZsmLZBlW9B7gHQER2icjmfpZpBGDLX3XPzk/P7Px0z85NzxLh/Ezo7g0/A0EVMD7ieRmwrR/bHERVR/a3QCKyUFXn9vfnU52dn57Z+emenZueJfr58bNpaAEwVUQmiUg2cBHwZJdtngQ+7Y0eOgHYo6rbfSyTMcaYLnyrEahqu4hcAzwLZAD3q+oKEbnSe/9u4GngbGA9sA+4zK/yGGOMic7X7KOq+jTuYh/52t0R3ytwtZ9l6OKeOB4rGdn56Zmdn+7ZuelZQp8f0XisdmSMMSZhWYoJY4xJcxYIjDEmzaVNIOgt71E6EZHxIvIfEVklIitE5Mve68NE5DkRWed9LeltX6lMRDJE5G0Recp7bufHIyLFIvJnEVnt/R2daOfHEZHrvf+r5SLyiIjkJvq5SYtAEGPeo3TSDtyoqjOBE4CrvfPxdeB5VZ0KPO89T2dfBlZFPLfzc8AvgWdUdQYwG3ee0v78iMg44EvAXFU9Ajdi8iIS/NykRSAgtrxHaUNVt6vqW973jbh/4nG4c/KQt9lDwIcDKWACEJEy4IPAvREv2/kBRKQQeA9wH4CqtqpqPXZ+OmUCQ0QkExiKmySb0OcmXQJBTDmN0pGITASOBt4ERnVO6PO+lgZYtKD9AvgaEI54zc6PMxnYBTzgNZ3dKyJ52PlBVbcCPwW2ANtxk2T/RYKfm3QJBDHlNEo3IpIPPA5cp6oNQZcnUYjIOUC1qi4KuiwJKhM4BrhLVY8Gmkiwpo6geG3/5wGTgLFAnoh8MthS9S5dAkGfcxqlOhHJwgWB36vqE97LOzvTgHtfq4MqX8BOBs4VkU24ZsT3isjvsPPTqQqoUtU3ved/xgUGOz/wPmCjqu5S1TbgCeAkEvzcpEsgiCXvUdoQEcG1765S1Z9HvPUkcKn3/aXA3+JdtkSgqt9Q1TJVnYj7W3lBVT+JnR8AVHUHUCki072XTgdWYucHXJPQCSIy1Ps/Ox3XB5fQ5yZtZhaLyNm4dt/OvEc/CLZEwRGRecArwDIOtIH/D66f4DGgHPcHfYGq1gVSyAQhIqcCX1HVc0RkOHZ+ABCRObiO9GygApcnLISdH0TkFuBC3Oi8t4HPA/kk8LlJm0BgjDEmunRpGjLGGNMNCwTGGJPmLBAYY0yas0BgjDFpzgKBMcakOQsEJm5E5CMioiIyY4D7+YyI3DFIZXpERJaKyPVdXv+OiGwVkcUislJELu5lPxNF5BMxHO+g7URkrojc3v9PcNC+N4nIMu/zvCQiE7zXx4vIRhEZ5j0v8Z5PEJFsEfmFiGzwMmP+zcuz1LnPDu8cLBeRv4tI8WCU1SQWCwQmni4GXsVN0gqciIwGTlLVo1T1tiib3Kaqc3ApA37tzcbuzkSg10DQdTtVXaiqX4q50L07TVWPAl4EbvaOUQncBfzI2+ZHwD2quhn4X6AAmOZlxvwr8IQ3GQpgv6rO8TJp1hHfpWVNnFggMHHh5TU6GfgcEYFARE4VkRcjctv/vvMiJCJne6+9KiK3i7cuQJf9jhSRx0Vkgfc4Oco2uSLygHe3/LaInOa99S+g1LvjfXd3ZVfVdcA+oEScW7075GUicqG32Y+Ad3v7ut67839FRN7yHid1s92pcvB6B3/17ujfEJGjvNe/IyL3e+epQkRiCRz/5eDEirfhZrxeB8wDfiYiQ3ETwa5X1Q7vsz4AtADvjWGfJkX4uni9MRE+jMtfv1ZE6kTkmM5U2Ljsp4fj8j+9BpwsIguBXwPvUdWNIvJIN/v9Je7O/VURKQeeBWZ22eZqAFU90muW+peITAPOBZ7y7vq7JSLHAOtUtVpEPgbMweXgHwEsEJGXcUnXvqKq53g/MxR4v6o2i8hU4BFgbpTtTo041C3A26r6YRF5L/CwdyyAGcBpuLv3NSJyl5fLpjtn4u7u8T57m4h8FXgG+ICqtnrnYkuUhIMLcb+P5yPOQQYuXcJ9PZ0rk5ysRmDi5WJcAje8r5Ft7vNVtUpVw8BiXPPJDKBCVTd623QXCN4H3CEii3H5XApFpKDLNvOA3wKo6mpgMzAthjJfLyJrcKk3vhOxr0dUtUNVdwIvAcdF+dks4Dcisgz4E25BpN5ElvMFYLiIFHnv/UNVW1S1BpewbFQ3+/iPiFTjzssfurx3Fi418hHecyF6Ft7I14d457YWGAY8F8PnMEnGAoHxnbgcPe8F7hWX0fOrwIUR7dAtEZt34Gqq0VKHRxMCTvTaseeo6jhvsZ2DitDPot+mqtNxeWMeFpHcPuzremAnruYwF5eTpzc9pUuPdo6iOQ2YAKwAvvvOjl1uoPfjVqS7XlwGzPXAhCiB8xhcEjnw+gi8fWZjfQQpyQKBiYfzgYdVdYKqTlTV8cBG3B1wd1YDk8UtnAPuYhzNv4BrOp94F7yuXgYu8d6fhkv8tSbWwntpuhfiska+jAtiGSIyErdS13ygEdds06kI2O7Vcj6FS3ZIlO26K+epQE1/1olQ1f3AdcCnvX4HwXUWX6eqW4BbgZ+qahNutayfe00/iMincatqvdBln3twSzB+pZdOc5OELBCYeLgY+EuX1x6nh1E23sXsKuAZEXkVd3e9J8qmXwLmeh2sK4Ero2zzKyDDa6b5I/AZVW2Jsl1PvgvcgEsfvBRYgrtYfs1Ly7wUaBeRJeKGov4KuFRE3sA1QzV5++m6XaTvdH4WXKfypfSTtwrWI7g7+C/g+gI6m3V+BcwQkVOAbwDNwFoRWQdcAHxEo2SjVNW3vc+dEKO+zOCx7KMmYYlIvqru9e5o78R12EYb5mmMGQCrEZhE9gWvo3IFrqnl18EWx5jUZDUCY4xJc1YjMMaYNGeBwBhj0pwFAmOMSXMWCIwxJs1ZIDDGmDT3/wE5djDMFMWASAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot with error bars\n", + "qunatiles = np.nanquantile(p_val_df.iloc[:, :-1], [0.25, 0.75], axis=1)\n", + "plt.fill_between(angle_sweep, qunatiles[0], qunatiles[1], facecolor=\"r\", alpha=0.3)\n", + "plt.plot(angle_sweep, p_val_df[\"mean\"])\n", + "plt.xlabel(\"Angle of Rotation RXOR\")\n", + "plt.ylabel(\"P-Value\")\n", + "plt.title(\"Angle of Rotation vs mean P-Value\")" + ] + }, + { + "cell_type": "markdown", + "id": "cc990f97", + "metadata": {}, + "source": [ + "## Saving our Results" + ] + }, + { + "cell_type": "markdown", + "id": "3aeae5ba-dc05-4454-8bf5-947f6b51cac8", + "metadata": {}, + "source": [ + "Finally, we can write this dataframe to csv to avoid rerunning the experiment." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b21328ff-eb61-405f-9e01-406ecfe7f7e8", + "metadata": {}, + "outputs": [], + "source": [ + "# optional write to csv\n", + "p_val_df.to_csv(\"p_val_df_with_mean.csv\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}