-
Notifications
You must be signed in to change notification settings - Fork 0
/
big_loading.py
136 lines (119 loc) · 6.31 KB
/
big_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import pickle
import tqdm
import os
import pandas as pd
def splitting_npy(input_file, output_dir, chunk_size):
data = np.load(input_file, allow_pickle=True, mmap_mode="r")
# with open(input_file, "rb") as f:
# np.lib.format.read_array_header_1_0(f)
for s in range(0, data.shape[1], chunk_size):
e = min(s + chunk_size, data.shape[1])
chunk = data[:, s:e]
chunk_file = f"{output_dir}/{input_file}_{s}_{e}.npy"
np.save(chunk_file, chunk)
print(f"saved {chunk_file} with size {chunk.shape}")
def npy_data(root_dir, output_file, masking_ratio, mean_mask_length, mode, distribution, exclude_feats, chunk_size=1000):
"""
Preprocess `.npy` files, compute masks, and save the resulting dataset with metadata for use with `ImputationDataset`.
"""
all_data = {}
for file_name in tqdm.tqdm(os.listdir(root_dir), desc="Preprocessing .npy files"):
if file_name.endswith('.npy'):
file_path = os.path.join(root_dir, file_name)
key = os.path.splitext(file_name)[0]
data = np.load(file_path, mmap_mode="r")
for start in range(0, data.shape[1], chunk_size):
end = min(start + chunk_size, data.shape[1])
chunk = data[:, start:end]
if chunk.shape[0] != 4:
raise ValueError(f"doesnt have 4 channels")
time_points = chunk.shape[1]
clips = time_points // 250
clipped = chunk[:, :clips * 250].reshape(4, clips, 250)
for i in range:
clip = clipped[:, i, :]
clip_key = f"{key}_{start}_{i}"
mask = noise_mask(clip.T, masking_ratio, mean_mask_length, mode, distribution, exclude_feats)
all_data[clip_key] = {
"feature_df": pd.DataFrame(clip.T),
"mask": mask
}
with open(output_file, 'wb') as f:
pickle.dump(
{
"feature_df": pd.concat([entry["feature_df"] for entry in all_data.values()]),
"FileID": list(all_data.keys()),
"mask": [entry["mask"] for entry in all_data.values()]
},
f
)
print(f"Preprocessed data saved to {output_file}")
def noise_mask(X, masking_ratio, lm=3, mode='separate', distribution='geometric', exclude_feats=None):
"""
Creates a random boolean mask of the same shape as X, with 0s at places where a feature should be masked.
Args:
X: (seq_length, feat_dim) numpy array of features corresponding to a single sample
masking_ratio: proportion of seq_length to be masked. At each time step, will also be the proportion of
feat_dim that will be masked on average
lm: average length of masking subsequences (streaks of 0s). Used only when `distribution` is 'geometric'.
mode: whether each variable should be masked separately ('separate'), or all variables at a certain positions
should be masked concurrently ('concurrent')
distribution: whether each mask sequence element is sampled independently at random, or whether
sampling follows a markov chain (and thus is stateful), resulting in geometric distributions of
masked squences of a desired mean length `lm`
exclude_feats: iterable of indices corresponding to features to be excluded from masking (i.e. to remain all 1s)
Returns:
boolean numpy array with the same shape as X, with 0s at places where a feature should be masked
"""
if exclude_feats is not None:
exclude_feats = set(exclude_feats)
if distribution == 'geometric': # stateful (Markov chain)
if mode == 'separate': # each variable (feature) is independent
mask = np.ones(X.shape, dtype=bool)
for m in range(X.shape[1]): # feature dimension
if exclude_feats is None or m not in exclude_feats:
mask[:, m] = geom_noise_mask_single(X.shape[0], lm, masking_ratio) # time dimension
else: # replicate across feature dimension (mask all variables at the same positions concurrently)
mask = np.tile(np.expand_dims(geom_noise_mask_single(X.shape[0], lm, masking_ratio), 1), X.shape[1])
else: # each position is independent Bernoulli with p = 1 - masking_ratio
if mode == 'separate':
mask = np.random.choice(np.array([True, False]), size=X.shape, replace=True,
p=(1 - masking_ratio, masking_ratio))
else:
mask = np.tile(np.random.choice(np.array([True, False]), size=(X.shape[0], 1), replace=True,
p=(1 - masking_ratio, masking_ratio)), X.shape[1])
return mask
def geom_noise_mask_single(L, lm, masking_ratio):
"""
Randomly create a boolean mask of length `L`, consisting of subsequences of average length lm, masking with 0s a `masking_ratio`
proportion of the sequence L. The length of masking subsequences and intervals follow a geometric distribution.
Args:
L: length of mask and sequence to be masked
lm: average length of masking subsequences (streaks of 0s)
masking_ratio: proportion of L to be masked
Returns:
(L,) boolean numpy array intended to mask ('drop') with 0s a sequence of length L
"""
keep_mask = np.ones(L, dtype=bool)
p_m = 1 / lm # probability of each masking sequence stopping. parameter of geometric distribution.
p_u = p_m * masking_ratio / (1 - masking_ratio) # probability of each unmasked sequence stopping. parameter of geometric distribution.
p = [p_m, p_u]
# Start in state 0 with masking_ratio probability
state = int(np.random.rand() > masking_ratio) # state 0 means masking, 1 means not masking
for i in range(L):
keep_mask[i] = state # here it happens that state and masking value corresponding to state are identical
if np.random.rand() < p[state]:
state = 1 - state
return keep_mask
splitting_npy(input_file="all_subs.npy", output_dir=npy_data, chunk_size=1000)
npy_data(
root_dir="npy_data",
output_file="big_npy_output.pkl",
masking_ratio=0.15,
mean_mask_length=3,
mode='separate',
distribution='geometric',
exclude_feats=None,
chunk_size=1000
)