-
Notifications
You must be signed in to change notification settings - Fork 50
/
train.py
111 lines (85 loc) · 3.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import gym
import asset
import numpy as np
from HAC import HAC
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train():
#################### Hyperparameters ####################
env_name = "MountainCarContinuous-h-v1"
save_episode = 10 # keep saving every n episodes
max_episodes = 1000 # max num of training episodes
random_seed = 0
render = False
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
"""
Actions (both primitive and subgoal) are implemented as follows:
action = ( network output (Tanh) * bounds ) + offset
clip_high and clip_low bound the exploration noise
"""
# primitive action bounds and offset
action_bounds = env.action_space.high[0]
action_offset = np.array([0.0])
action_offset = torch.FloatTensor(action_offset.reshape(1, -1)).to(device)
action_clip_low = np.array([-1.0 * action_bounds])
action_clip_high = np.array([action_bounds])
# state bounds and offset
state_bounds_np = np.array([0.9, 0.07])
state_bounds = torch.FloatTensor(state_bounds_np.reshape(1, -1)).to(device)
state_offset = np.array([-0.3, 0.0])
state_offset = torch.FloatTensor(state_offset.reshape(1, -1)).to(device)
state_clip_low = np.array([-1.2, -0.07])
state_clip_high = np.array([0.6, 0.07])
# exploration noise std for primitive action and subgoals
exploration_action_noise = np.array([0.1])
exploration_state_noise = np.array([0.02, 0.01])
goal_state = np.array([0.48, 0.04]) # final goal state to be achived
threshold = np.array([0.01, 0.02]) # threshold value to check if goal state is achieved
# HAC parameters:
k_level = 2 # num of levels in hierarchy
H = 20 # time horizon to achieve subgoal
lamda = 0.3 # subgoal testing parameter
# DDPG parameters:
gamma = 0.95 # discount factor for future rewards
n_iter = 100 # update policy n_iter times in one DDPG update
batch_size = 100 # num of transitions sampled from replay buffer
lr = 0.001
# save trained models
directory = "./preTrained/{}/{}level/".format(env_name, k_level)
filename = "HAC_{}".format(env_name)
#########################################################
if random_seed:
print("Random Seed: {}".format(random_seed))
env.seed(random_seed)
torch.manual_seed(random_seed)
np.random.seed(random_seed)
# creating HAC agent and setting parameters
agent = HAC(k_level, H, state_dim, action_dim, render, threshold,
action_bounds, action_offset, state_bounds, state_offset, lr)
agent.set_parameters(lamda, gamma, action_clip_low, action_clip_high,
state_clip_low, state_clip_high, exploration_action_noise, exploration_state_noise)
# logging file:
log_f = open("log.txt","w+")
# training procedure
for i_episode in range(1, max_episodes+1):
agent.reward = 0
agent.timestep = 0
state = env.reset()
# collecting experience in environment
last_state, done = agent.run_HAC(env, k_level-1, state, goal_state, False)
if agent.check_goal(last_state, goal_state, threshold):
print("################ Solved! ################ ")
name = filename + '_solved'
agent.save(directory, name)
# update all levels
agent.update(n_iter, batch_size)
# logging updates:
log_f.write('{},{}\n'.format(i_episode, agent.reward))
log_f.flush()
if i_episode % save_episode == 0:
agent.save(directory, filename)
print("Episode: {}\t Reward: {}".format(i_episode, agent.reward))
if __name__ == '__main__':
train()