-
Notifications
You must be signed in to change notification settings - Fork 7
/
test.py
155 lines (126 loc) · 4.81 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from operator import add
import numpy as np
from glob import glob
import cv2
from tqdm import tqdm
import imageio
import torch
from sklearn.metrics import jaccard_score, f1_score, recall_score, precision_score
from model import CompNet
from utils import create_dir, seeding, make_channel_last
from data import load_data
def calculate_metrics(y_true, y_pred):
y_true = y_true.cpu().numpy()
y_pred = y_pred.cpu().numpy()
y_pred = y_pred > 0.5
y_pred = y_pred.astype(np.uint8)
y_true = y_true > 0.5
y_true = y_true.astype(np.uint8)
## Score
score_jaccard = jaccard_score(y_true.reshape(-1), y_pred.reshape(-1), average='binary')
score_f1 = f1_score(y_true.reshape(-1), y_pred.reshape(-1), average='binary')
score_recall = recall_score(y_true.reshape(-1), y_pred.reshape(-1), average='binary')
score_precision = precision_score(y_true.reshape(-1), y_pred.reshape(-1), average='binary', zero_division=0)
return [score_jaccard, score_f1, score_recall, score_precision]
def mask_parse(mask):
mask = np.squeeze(mask)
mask = [mask, mask, mask]
mask = np.transpose(mask, (1, 2, 0))
return mask
if __name__ == "__main__":
""" Seeding """
seeding(42)
""" Folders """
create_dir("results")
""" Load dataset """
path = "/media/nikhil/ML/ml_dataset/Kvasir-SEG/"
(train_x, train_y), (test_x, test_y) = load_data(path)
# """ CVC-ClinicDB """
# test_x = sorted(glob("/media/nikhil/ML/ml_dataset/CVC-612/images/*"))
# test_y = sorted(glob("/media/nikhil/ML/ml_dataset/CVC-612/masks/*"))
""" Hyperparameters """
size = (512, 512)
checkpoint_path = "files/checkpoint.pth"
""" Directories """
create_dir("results")
""" Load the checkpoint """
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = CompNet()
model = model.to(device)
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
model.eval()
""" Testing """
metrics_score = [0.0, 0.0, 0.0, 0.0]
for i, (x, y) in tqdm(enumerate(zip(test_x, test_y)), total=len(test_x)):
name = y.split("/")[-1].split(".")[0]
## Image
image = cv2.imread(x, cv2.IMREAD_COLOR)
image = cv2.resize(image, size)
ori_img = image
image = np.transpose(image, (2, 0, 1))
image = image/255.0
image = np.expand_dims(image, axis=0)
image = image.astype(np.float32)
image = torch.from_numpy(image)
image = image.to(device)
## Mask
mask = cv2.imread(y, cv2.IMREAD_GRAYSCALE)
mask = cv2.resize(mask, size)
ori_mask = mask
mask = np.expand_dims(mask, axis=0)
mask = mask/255.0
mask = np.expand_dims(mask, axis=0)
mask = mask.astype(np.float32)
mask = torch.from_numpy(mask)
mask = mask.to(device)
## Gray
gray = cv2.imread(x, cv2.IMREAD_GRAYSCALE)
gray = cv2.resize(gray, size)
ori_gray = gray
# gray = np.expand_dims(gray, axis=0)
# gray = gray/255.0
# gray = np.expand_dims(gray, axis=0)
# gray = gray.astype(np.float32)
# gray = torch.from_numpy(gray)
# gray = gray.to(device)
with torch.no_grad():
pred_y, pred_m = model(image)
pred_y = torch.sigmoid(pred_y)
pred_m = torch.sigmoid(pred_m)
score = calculate_metrics(mask, pred_y)
metrics_score = list(map(add, metrics_score, score))
## Mask
pred_y = pred_y[0].cpu().numpy()
pred_y = np.squeeze(pred_y, axis=0)
pred_y = pred_y > 0.5
pred_y = pred_y * 255
# pred_y = np.transpose(pred_y, (1, 0))
pred_y = np.array(pred_y, dtype=np.uint8)
## Gray
pred_m = pred_m[0].cpu().numpy()
pred_m = np.squeeze(pred_m, axis=0)
pred_m = pred_m * 255
# pred_m = np.transpose(pred_m, (1, 0))
pred_m = np.array(pred_m, dtype=np.uint8)
ori_img = ori_img
ori_mask = mask_parse(ori_mask)
pred_y = mask_parse(pred_y)
ori_gray = mask_parse(ori_gray)
pred_m = mask_parse(pred_m)
sep_line = np.ones((size[0], 10, 3)) * 255
tmp = [
ori_img, sep_line,
ori_mask, sep_line,
pred_y, sep_line,
ori_gray, sep_line,
pred_m
]
cat_images = np.concatenate(tmp, axis=1)
cv2.imwrite(f"results/{name}.png", cat_images)
jaccard = metrics_score[0]/len(test_x)
f1 = metrics_score[1]/len(test_x)
recall = metrics_score[2]/len(test_x)
precision = metrics_score[3]/len(test_x)
print(f"Jaccard: {jaccard:1.4f} - F1: {f1:1.4f} - Recall: {recall:1.4f} - Precision: {precision:1.4f}")