-
Notifications
You must be signed in to change notification settings - Fork 1
/
visualize_utils.py
executable file
·852 lines (748 loc) · 41.5 KB
/
visualize_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
"""
Copyright (c) 2017 Matterport, Inc.
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license
(https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import os
import random
import itertools
import numpy as np
from skimage.measure import find_contours
import cv2
from models.model import detection_layer, unmold_detections
from models.modules import *
from utils import *
from skimage.transform import resize
import matplotlib.pyplot as plt
def tileImages(image_list, padding_x=5, padding_y=5, background_color=0):
"""Tile images"""
height = image_list[0][0].shape[0]
width = image_list[0][0].shape[1]
result_image = np.full((height * len(image_list) + padding_y * (len(image_list) + 1), width * len(image_list[0]) + padding_x * (len(image_list[0]) + 1), 3), fill_value=background_color, dtype=np.uint8)
for index_y, images in enumerate(image_list):
for index_x, image in enumerate(images):
offset_x = index_x * width + (index_x + 1) * padding_x
offset_y = index_y * height + (index_y + 1) * padding_y
if image.ndim == 2:
image = np.expand_dims(image, axis=-1).tile((1, 1, 3))
pass
result_image[offset_y:offset_y + height, offset_x:offset_x + width] = image
continue
continue
return result_image
############################################################
# Batch visualization
############################################################
def visualizeBatchDeMoN(options, input_dict, results, indexOffset='', prefix='', concise=False):
cornerColorMap = {'gt': np.array([255, 0, 0]), 'pred': np.array([0, 0, 255]), 'inp': np.array([0, 255, 0])}
topdownSize = 256
for batchIndex in range(len(input_dict['image_1'])):
pose = input_dict['pose'][batchIndex]
for resultIndex, result in enumerate(results):
if concise and resultIndex < len(results) - 1:
continue
depth_pred = invertDepth(result['depth'][batchIndex]).detach().cpu().numpy().squeeze()
depth_gt = input_dict['depth'][batchIndex].squeeze()
if depth_pred.shape[0] != depth_gt.shape[0]:
depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0]))
pass
if options.scaleMode != 'variant':
valid_mask = np.logical_and(depth_gt > 1e-4, depth_pred > 1e-4)
depth_gt_values = depth_gt[valid_mask]
depth_pred_values = depth_pred[valid_mask]
scale = np.exp(np.mean(np.log(depth_gt_values) - np.log(depth_pred_values)))
depth_pred *= scale
pass
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth_pred_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred))
if 'flow' in result:
flow_pred = result['flow'][batchIndex, :2].detach().cpu().numpy().transpose((1, 2, 0))
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_flow_pred_' + str(len(results) - 1 - resultIndex) + '.png', cv2.resize(drawFlowImage(flow_pred), (256, 192)))
pass
if 'rotation' in result and resultIndex >= len(results) - 2:
pass
continue
if not concise:
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth_gt.png', drawDepthImage(input_dict['depth'][batchIndex]))
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_image_0.png', (input_dict['image_1'][batchIndex].transpose((1, 2, 0)) + 0.5) * 255)
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_image_1.png', (input_dict['image_2'][batchIndex].transpose((1, 2, 0)) + 0.5) * 255)
flow_gt = input_dict['flow'][batchIndex, :2].transpose((1, 2, 0))
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_flow_gt.png', cv2.resize(drawFlowImage(flow_gt), (256, 192)))
pass
continue
return
def visualizeBatchPair(options, config, inp_pair, detection_pair, indexOffset='', prefix='', suffix='', write_ply=False, write_new_view=False):
detection_images = []
for pair_index, (input_dict, detection_dict) in enumerate(zip(inp_pair, detection_pair)):
image_dict = visualizeBatchDetection(options, config, input_dict, detection_dict, indexOffset=indexOffset, prefix=prefix, suffix='_' + str(pair_index), prediction_suffix=suffix, write_ply=write_ply, write_new_view=write_new_view)
detection_images.append(image_dict['detection'])
continue
detection_image = tileImages([detection_images])
return
def visualizeBatchRefinement(options, config, input_dict, results, indexOffset='', prefix='', suffix='', concise=False):
if not concise:
image = (input_dict['image'].detach().cpu().numpy().transpose((0, 2, 3, 1))[0] + 0.5) * 255
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image_0.png', image)
image_2 = (input_dict['image_2'].detach().cpu().numpy().transpose((0, 2, 3, 1))[0] + 0.5) * 255
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image_1.png', image_2)
depth_gt = input_dict['depth'].detach().cpu().numpy().squeeze()
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_gt.png', drawDepthImage(depth_gt))
flow_gt = input_dict['flow'][0, :2].detach().cpu().numpy().transpose((1, 2, 0))
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_flow_gt.png', cv2.resize(drawFlowImage(flow_gt), (256, 192)))
pass
numbers = []
for resultIndex, result in enumerate(results):
if 'mask' in result and (options.losses == '' or '0' in options.losses):
masks = result['mask'].detach().cpu().numpy()
masks = np.concatenate([np.maximum(1 - masks.sum(0, keepdims=True), 0), masks], axis=0).transpose((1, 2, 0))
# cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_segmentation_' + str(len(results) - 1 - resultIndex) + '.png', drawSegmentationImage(masks, blackIndex=0) * (masks.max(-1, keepdims=True) > 0.5).astype(np.uint8))
pass
if concise:
continue
if 'depth' in result and (options.losses == '' or '3' in options.losses):
depth_pred = invertDepth(result['depth']).detach().cpu().numpy().squeeze()
if depth_pred.shape[0] != depth_gt.shape[0]:
depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0]))
pass
if options.scaleMode != 'variant':
valid_mask = np.logical_and(depth_gt > 1e-4, depth_pred > 1e-4)
depth_gt_values = depth_gt[valid_mask]
depth_pred_values = depth_pred[valid_mask]
scale = np.exp(np.mean(np.log(depth_gt_values) - np.log(depth_pred_values)))
depth_pred *= scale
pass
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_pred_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred))
pass
if 'plane_depth' in result and (options.losses == '' or '3' in options.losses):
depth_pred = invertDepth(result['plane_depth']).detach().cpu().numpy().squeeze()
if depth_pred.shape[0] != depth_gt.shape[0]:
depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0]))
pass
if options.scaleMode != 'variant':
valid_mask = np.logical_and(depth_gt > 1e-4, depth_pred > 1e-4)
depth_gt_values = depth_gt[valid_mask]
depth_pred_values = depth_pred[valid_mask]
scale = np.exp(np.mean(np.log(depth_gt_values) - np.log(depth_pred_values)))
depth_pred *= scale
pass
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_pred_plane_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred))
pass
if 'flow' in result and (options.losses == '' or '1' in options.losses):
flow_pred = result['flow'][0, :2].detach().cpu().numpy().transpose((1, 2, 0))
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_flow_pred_' + str(len(results) - 1 - resultIndex) + '.png', cv2.resize(drawFlowImage(flow_pred), (256, 192)))
pass
if 'rotation' in result and resultIndex >= len(results) - 2:
pass
if 'plane' in result and resultIndex > 0:
numbers.append(np.linalg.norm(result['plane'].detach().cpu().numpy() - results[0]['plane'].detach().cpu().numpy()))
pass
if 'warped_image' in result and resultIndex >= len(results) - 2:
warped_image = ((result['warped_image'].detach().cpu().numpy().transpose((0, 2, 3, 1))[0] + 0.5) * 255).astype(np.uint8)
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image_warped_' + str(len(results) - 1 - resultIndex) + '.png', warped_image)
pass
if 'plane_depth_one_hot' in result:
depth_pred = invertDepth(result['plane_depth_one_hot']).detach().cpu().numpy().squeeze()
if depth_pred.shape[0] != depth_gt.shape[0]:
depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0]))
pass
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_pred_plane_onehot_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred))
pass
continue
if 'parameter' in options.suffix:
print('plane diff', numbers)
pass
return
def visualizeBatchDetection(options, config, input_dict, detection_dict, indexOffset=0, prefix='', suffix='', prediction_suffix='', write_ply=False, write_new_view=False):
image_dict = {}
images = input_dict['image'].detach().cpu().numpy().transpose((0, 2, 3, 1))
images = unmold_image(images, config)
image = images[0]
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image' + suffix + '.png', image[80:560])
if 'warped_image' in input_dict:
warped_images = input_dict['warped_image'].detach().cpu().numpy().transpose((0, 2, 3, 1))
warped_images = unmold_image(warped_images, config)
warped_image = warped_images[0]
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image' + suffix + '_warped.png', warped_image[80:560])
pass
if 'warped_depth' in input_dict:
warped_depth = input_dict['warped_depth'].detach().cpu().numpy()
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + '_warped.png', drawDepthImage(warped_depth[80:560]))
pass
if 'warped_mask' in input_dict:
warped_mask = input_dict['warped_mask'].detach().cpu().numpy()[0]
pass
if 'depth' in input_dict:
depths = input_dict['depth'].detach().cpu().numpy()
depth_gt = depths[0]
savedpath = options.test_dir + '/' + str(indexOffset) + '_depth_gt' + suffix + '.png'
disp_to_img = resize(depth_gt, output_shape=(480, 640))
plt.imsave(savedpath, disp_to_img, cmap='plasma')
# cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_gt' + suffix + '.png', drawDepthImage(depth_gt[80:560]))
pass
# gr_depth
if 'gt_depth' in input_dict:
depths = input_dict['depth'].detach().cpu().numpy()
depth_gt = depths[0]
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_gt' + suffix + '.png', drawDepthImage(depth_gt[80:560]))
pass
windows = (0, 0, images.shape[1], images.shape[2])
windows = (0, 0, images.shape[1], images.shape[2])
class_colors = ColorPalette(config.NUM_CLASSES).getColorMap().tolist()
if 'mask' in input_dict:
box_image = image.copy()
boxes = input_dict['bbox'][0].detach().cpu().numpy()
masks = input_dict['mask'][0].detach().cpu().numpy()
if config.NUM_PARAMETER_CHANNELS > 0:
depths = masks[:, :, :, 1]
masks = masks[:, :, :, 0]
pass
segmentation_image = image * 0.0
for box, mask in zip(boxes, masks):
box = np.round(box).astype(np.int32)
mask = cv2.resize(mask, (box[3] - box[1], box[2] - box[0]))
segmentation_image[box[0]:box[2], box[1]:box[3]] = np.minimum(segmentation_image[box[0]:box[2], box[1]:box[3]] + np.expand_dims(mask, axis=-1) * np.random.randint(255, size=(3, ), dtype=np.int32), 255)
continue
# cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_segmentation' + suffix + '.png', segmentation_image.astype(np.uint8)[80:560])
if config.NUM_PARAMETER_CHANNELS > 0 and not config.OCCLUSION:
depth_image = np.zeros((image.shape[0], image.shape[1]))
for box, patch_depth in zip(boxes, depths):
box = np.round(box).astype(np.int32)
patch_depth = cv2.resize(patch_depth, (box[3] - box[1], box[2] - box[0]), cv2.INTER_NEAREST)
depth_image[box[0]:box[2], box[1]:box[3]] = patch_depth
continue
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_patch' + suffix + '.png', drawDepthImage(depth_image[80:560]))
pass
pass
if 'boundary' in detection_dict:
boundary_pred = detection_dict['boundary'].detach().cpu().numpy()[0]
boundary_gt = input_dict['boundary'].detach().cpu().numpy()[0]
for name, boundary in [('gt', boundary_gt), ('pred', boundary_pred)]:
boundary_image = image.copy()
boundary_image[boundary[0] > 0.5] = np.array([255, 0, 0])
boundary_image[boundary[1] > 0.5] = np.array([0, 0, 255])
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_boundary' + suffix + '_' + name + '.png', boundary_image)
continue
pass
if 'depth' in detection_dict:
depth_pred = detection_dict['depth'][0].detach().cpu().numpy()
np.save(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '.npy', depth_pred[80:560])
# cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '.png', drawDepthImage(depth_pred[80:560]))
if options.debug:
valid_mask = (depth_gt > 1e-4) * (input_dict['segmentation'].detach().cpu().numpy()[0] >= 0) * (detection_dict['mask'].detach().cpu().numpy().squeeze() > 0.5)
pass
pass
if 'depth_np' in detection_dict:
# cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '_np.png', drawDepthImage(detection_dict['depth_np'].squeeze().detach().cpu().numpy()[80:560]))
pass
if 'depth_ori' in detection_dict:
# cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '_ori.png', drawDepthImage(detection_dict['depth_ori'].squeeze().detach().cpu().numpy()[80:560]))
pass
if 'detection' in detection_dict and len(detection_dict['detection']) > 0:
detections = detection_dict['detection'].detach().cpu().numpy()
detection_masks = detection_dict['masks'].detach().cpu().numpy().transpose((1, 2, 0))
if 'flag' in detection_dict:
detection_flags = detection_dict['flag']
else:
detection_flags = {}
pass
instance_image, normal_image, depth_image = draw_instances(config, image, depth_gt, detections[:, :4], detection_masks > 0.5, detections[:, 4].astype(np.int32), detections[:, 6:], detections[:, 5], draw_mask=True, transform_planes=False, detection_flags=detection_flags)
image_dict['detection'] = instance_image
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_segmentation' + suffix + prediction_suffix + '.png', instance_image[80:560])
else:
image_dict['detection'] = np.zeros(image.shape, dtype=image.dtype)
pass
if write_new_view and False:
detection_masks = detection_dict['masks']
pose = np.eye(4)
pose[:3, :3] = np.matmul(axisAngleToRotationMatrix(np.array([-1, 0, 0]), np.pi / 18 * 0), axisAngleToRotationMatrix(np.array([0, 0, -1]), np.pi / 18))
pose[:3, 3] = np.array([-0.4, 0, 0])
drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_new_view' + suffix + prediction_suffix + '.png', detection_masks[:, 80:560].detach().cpu().numpy(), detection_dict['plane_XYZ'].detach().cpu().numpy().transpose((0, 2, 3, 1))[:, 80:560], input_dict['camera'].detach().cpu().numpy(), pose)
depth = depth_gt[80:560]
ranges = config.getRanges(input_dict['camera']).detach().cpu().numpy()
XYZ_gt = ranges * np.expand_dims(depth, axis=-1)
drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_new_view_depth_gt' + suffix + prediction_suffix + '.png', np.expand_dims(depth > 1e-4, 0), np.expand_dims(XYZ_gt, 0), input_dict['camera'].detach().cpu().numpy(), pose)
depth = detection_dict['depth_np'].squeeze()[80:560]
ranges = config.getRanges(input_dict['camera']).detach().cpu().numpy()
XYZ_gt = ranges * np.expand_dims(depth, axis=-1)
drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_new_view_depth_pred' + suffix + prediction_suffix + '.png', np.expand_dims(depth > 1e-4, 0), np.expand_dims(XYZ_gt, 0), input_dict['camera'].detach().cpu().numpy(), pose)
pass
if write_new_view:
detection_masks = detection_dict['masks'][:, 80:560].detach().cpu().numpy()
XYZ_pred = detection_dict['plane_XYZ'].detach().cpu().numpy().transpose((0, 2, 3, 1))[:, 80:560]
depth = depth_gt[80:560]
ranges = config.getRanges(input_dict['camera']).detach().cpu().numpy()
XYZ_gt = np.expand_dims(ranges * np.expand_dims(depth, axis=-1), 0)
valid_mask = np.expand_dims(depth > 1e-4, 0).astype(np.float32)
camera = input_dict['camera'].detach().cpu().numpy()
valid_mask = np.expand_dims(cv2.resize(valid_mask[0], (256, 192)), 0)
XYZ_gt = np.expand_dims(cv2.resize(XYZ_gt[0], (256, 192)), 0)
detection_masks = np.stack([cv2.resize(detection_masks[c], (256, 192)) for c in range(len(detection_masks))], axis=0)
XYZ_pred = np.stack([cv2.resize(XYZ_pred[c], (256, 192)) for c in range(len(XYZ_pred))], axis=0)
locations = [np.array([-0.4, 0, 0]), np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([0.4, 0, 0])]
angle_pairs = [(np.array([-1, 0, 0, np.pi / 18 * 0]), np.array([0, 0, -1, np.pi / 18])), (np.array([0, 0, 0, 0]), np.array([0, 0, 0, 0])), (np.array([0, 0, 0, 0]), np.array([0, 0, 0, 0])), (np.array([-1, 0, 0, np.pi / 18 * 0]), np.array([0, 0, 1, np.pi / 18]))]
num_frames = [25, 10, 25]
for c in range(len(locations) - 1):
if c == 2:
continue
for frame in range(num_frames[c]):
ratio = float(frame + 1) / num_frames[c]
location = locations[c] + (locations[c + 1] - locations[c]) * ratio
angle_pair = [angle_pairs[c][dim] + (angle_pairs[c + 1][dim] - angle_pairs[c][dim]) * ratio for dim in range(2)]
pose = np.eye(4)
pose[:3, :3] = np.matmul(axisAngleToRotationMatrix(angle_pair[0][:3], angle_pair[0][3]), axisAngleToRotationMatrix(angle_pair[1][:3], angle_pair[1][3]))
pose[:3, 3] = location
index_offset = sum(num_frames[:c]) + frame
drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_video/' + str(index_offset) + '.png', detection_masks, XYZ_pred, camera, pose)
drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_video_gt/' + str(index_offset) + '.png', valid_mask, XYZ_gt, camera, pose)
continue
continue
exit(1)
pass
if write_ply:
print('writePLYFileMask')
detection_masks = detection_dict['masks']
if 'plane_XYZ' not in detection_dict:
plane_XYZ = planeXYZModule(config.getRanges(input_dict['camera']), detection_dict['detection'][:, 6:9], width=config.IMAGE_MAX_DIM, height=config.IMAGE_MIN_DIM)
plane_XYZ = plane_XYZ.transpose(1, 2).transpose(0, 1).transpose(2, 3).transpose(1, 2)
zeros = torch.zeros(int(plane_XYZ.shape[0]), 3, (config.IMAGE_MAX_DIM - config.IMAGE_MIN_DIM) // 2, config.IMAGE_MAX_DIM).cuda()
plane_XYZ = torch.cat([zeros, plane_XYZ, zeros], dim=2)
detection_dict['plane_XYZ'] = plane_XYZ
pass
print(options.test_dir + '/' + str(indexOffset) + '_model' + suffix + prediction_suffix + '.ply')
writePLYFileMask(options.test_dir + '/' + str(indexOffset) + '_model' + suffix + prediction_suffix + '.ply', image[80:560], detection_masks[:, 80:560].detach().cpu().numpy(), detection_dict['plane_XYZ'].detach().cpu().numpy().transpose((0, 2, 3, 1))[:, 80:560], write_occlusion='occlusion' in options.suffix)
pose = np.eye(4)
pose[:3, :3] = np.matmul(axisAngleToRotationMatrix(np.array([-1, 0, 0]), np.pi / 18), axisAngleToRotationMatrix(np.array([0, -1, 0]), np.pi / 18))
pose[:3, 3] = np.array([-0.4, 0.3, 0])
current_dir = os.path.dirname(os.path.realpath(__file__))
pose_filename = current_dir + '/' + options.test_dir + '/'+ '/pose_new_view.txt'
print(pose_filename)
with open(pose_filename, 'w') as f:
for row in pose:
for col in row:
f.write(str(col) + '\t')
continue
f.write('\n')
continue
f.close()
pass
model_filename = current_dir + '/' + options.test_dir + '/' + str(indexOffset) + '_model' + suffix + prediction_suffix + '.ply'
output_filename = current_dir + '/' + options.test_dir + '/' + str(indexOffset) + '_model' + suffix + prediction_suffix + '.png'
try:
os.system('../../../Screenshoter/Screenshoter --model_filename=' + model_filename + ' --output_filename=' + output_filename + ' --pose_filename=' + pose_filename)
except:
pass
pass
return image_dict
def visualizeBatchDepth(options, config, input_dict, detection_dict, indexOffset=0, prefix='', suffix='', write_ply=False):
image_dict = {}
images = input_dict['image'].detach().cpu().numpy().transpose((0, 2, 3, 1))
images = unmold_image(images, config)
for batchIndex, image in enumerate(images):
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_image' + suffix + '.png', image)
continue
depths = input_dict['depth'].detach().cpu().numpy()
for batchIndex, depth in enumerate(depths):
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth' + suffix + '.png', drawDepthImage(depth))
continue
if 'depth_np' in detection_dict:
for batchIndex, depth in enumerate(detection_dict['depth_np'].detach().cpu().numpy()):
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth_pred_np' + suffix + '.png', drawDepthImage(depth))
continue
pass
return
def visualizeBatchSingle(options, config, images, image_metas, rpn_rois, depths, dicts, input_dict={}, inference={}, indexOffset=0, prefix='', suffix='', compare_planenet=False):
image = images[0]
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image' + suffix + '.png', image)
depth = depths[0]
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + '.png', drawDepthImage(depth))
windows = (0, 0, images.shape[1], images.shape[2])
class_colors = ColorPalette(config.NUM_CLASSES).getColorMap(returnTuples=True)
instance_colors = ColorPalette(1000).getColorMap(returnTuples=True)
if 'mask' in input_dict:
box_image = image.copy()
boxes = input_dict['bbox'][0].detach().cpu().numpy()
masks = input_dict['mask'][0].detach().cpu().numpy()
for box, mask in zip(boxes, masks):
box = np.round(box).astype(np.int32)
cv2.rectangle(box_image, (box[1], box[0]), (box[3], box[2]), color=(0, 0, 255), thickness=2)
continue
segmentation_image = image * 0.0
for box, mask in zip(boxes, masks):
box = np.round(box).astype(np.int32)
mask = cv2.resize(mask, (box[3] - box[1], box[2] - box[0]))
segmentation_image[box[0]:box[2], box[1]:box[3]] = np.minimum(segmentation_image[box[0]:box[2], box[1]:box[3]] + np.expand_dims(mask, axis=-1) * np.random.randint(255, size=(3, ), dtype=np.int32), 255)
continue
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_detection' + suffix + '.png', segmentation_image.astype(np.uint8))
pass
for name, result_dict in dicts:
if len(rpn_rois) > 0:
detections, keep_indices, ori_rois = detection_layer(config, rpn_rois.unsqueeze(0), result_dict['mrcnn_class'], result_dict['mrcnn_bbox'], result_dict['mrcnn_parameter'], image_metas, return_indices=True)
box_image = image.copy()
for instance_index, box in enumerate(detections.detach().cpu().numpy().astype(np.int32)):
cv2.rectangle(box_image, (box[1], box[0]), (box[3], box[2]), color=class_colors[int(box[4])], thickness=3)
continue
else:
continue
if len(detections) > 0:
detections[:, :4] = ori_rois
detections = detections.detach().cpu().numpy()
mrcnn_mask = result_dict['mrcnn_mask'][keep_indices].detach().cpu().numpy()
if name == 'gt':
class_mrcnn_mask = np.zeros(list(mrcnn_mask.shape) + [config.NUM_CLASSES], dtype=np.float32)
for index, (class_id, mask) in enumerate(zip(detections[:, 4].astype(np.int32), mrcnn_mask)):
if config.GLOBAL_MASK:
class_mrcnn_mask[index, :, :, 0] = mask
else:
class_mrcnn_mask[index, :, :, class_id] = mask
pass
continue
mrcnn_mask = class_mrcnn_mask
else:
mrcnn_mask = mrcnn_mask.transpose((0, 2, 3, 1))
pass
box_image = image.copy()
for instance_index, box in enumerate(detections.astype(np.int32)):
cv2.rectangle(box_image, (box[1], box[0]), (box[3], box[2]), color=tuple(class_colors[int(box[4])]), thickness=3)
continue
final_rois, final_class_ids, final_scores, final_masks, final_parameters = unmold_detections(config, detections, mrcnn_mask, image.shape, windows, debug=False)
result = {
"rois": final_rois,
"class_ids": final_class_ids,
"scores": final_scores,
"masks": final_masks,
"parameters": final_parameters,
}
instance_image, normal_image, depth_image = draw_instances(config, image, depth, result['rois'], result['masks'], result['class_ids'], result['parameters'], result['scores'])
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_detection' + suffix + '_' + name + '.png', instance_image)
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + '_' + name + '.png', depth_image)
else:
print('no detections')
pass
continue
if len(inference) > 0:
instance_image, normal_image, depth_image = draw_instances(config, image, depth, inference['rois'], inference['masks'], inference['class_ids'], inference['parameters'], inference['scores'], draw_mask=True)
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_detection' + suffix + '.png', instance_image)
if compare_planenet:
print(image.shape, image.min(), image.max())
pred_dict = detector.detect(image[80:560])
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_planenet_segmentation.png', drawSegmentationImage(pred_dict['segmentation'], blackIndex=10))
cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_planenet_depth.png', drawDepthImage(pred_dict['depth']))
pass
pass
return
def visualizeBatchBoundary(options, config, images, boundary_pred, boundary_gt, indexOffset=0):
images = (images.detach().cpu().numpy().transpose((0, 2, 3, 1)) + config.MEAN_PIXEL).astype(np.uint8)
boundary_pred = boundary_pred.detach().cpu().numpy()
boundary_gt = boundary_gt.detach().cpu().numpy()
for batchIndex in range(len(images)):
for name, boundary in [('gt', boundary_gt[batchIndex]), ('pred', boundary_pred[batchIndex])]:
image = images[batchIndex].copy()
image[boundary[0] > 0.5] = np.array([255, 0, 0])
image[boundary[1] > 0.5] = np.array([0, 0, 255])
cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_boundary_' + name + '.png', image)
continue
continue
return
############################################################
# Visualization
############################################################
def apply_mask(image, mask, color, alpha=0.5):
"""Apply the given mask to the image.
"""
for c in range(3):
image[:, :, c] = np.where(mask == 1,
np.minimum(image[:, :, c] *
(1 - alpha) + alpha * color[c], 255),
image[:, :, c])
return image
def draw_instances(config, image, depth, boxes, masks, class_ids, parameters,
scores=None, title="",
figsize=(16, 16), ax=None, draw_mask=False, transform_planes=False, statistics=[], detection_flags={}):
"""
boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
masks: [height, width, num_instances]
class_ids: [num_instances]
class_names: list of class names of the dataset
scores: (optional) confidence scores for each box
figsize: (optional) the size of the image.
"""
## Number of instances
N = len(boxes)
if not N:
pass
else:
assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]
## Generate random colors
instance_colors = ColorPalette(N).getColorMap(returnTuples=True)
if len(detection_flags) and False:
for index in range(N):
if detection_flags[index] < 0.5:
instance_colors[index] = (128, 128, 128)
pass
continue
pass
class_colors = ColorPalette(11).getColorMap(returnTuples=True)
class_colors[0] = (128, 128, 128)
## Show area outside image boundaries.
height, width = image.shape[:2]
masked_image = image.astype(np.uint8).copy()
normal_image = np.zeros(image.shape)
depth_image = depth.copy()
for i in range(N):
## Bounding box
if not np.any(boxes[i]):
# Skip this instance. Has no bbox. Likely lost in image cropping.
continue
y1, x1, y2, x2 = boxes[i]
## Label
class_id = class_ids[i]
score = scores[i] if scores is not None else None
x = random.randint(x1, (x1 + x2) // 2)
## Mask
mask = masks[:, :, i]
masked_image = apply_mask(masked_image.astype(np.float32), mask, instance_colors[i]).astype(np.uint8)
## Mask Polygon
## Pad to ensure proper polygons for masks that touch image edges.
if draw_mask:
padded_mask = np.zeros(
(mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
padded_mask[1:-1, 1:-1] = mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
## Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
cv2.polylines(masked_image, np.expand_dims(verts.astype(np.int32), 0), True, color=class_colors[class_id])
continue
continue
normal_image = drawNormalImage(normal_image)
depth_image = drawDepthImage(depth_image)
return masked_image.astype(np.uint8), normal_image.astype(np.uint8), depth_image
## Write the reconstruction result to PLY file
def writePLYFileMask(filename, image, masks, plane_XYZ, write_occlusion=False):
width = image.shape[1]
height = image.shape[0]
betweenRegionThreshold = 0.1
nonPlanarRegionThreshold = 0.02
dotThreshold = np.cos(np.deg2rad(30))
faces = []
points = []
masks = np.round(masks)
plane_depths = plane_XYZ[:, :, :, 1] * masks + 10 * (1 - masks)
segmentation = plane_depths.argmin(0)
for mask_index, (mask, XYZ) in enumerate(zip(masks, plane_XYZ)):
indices = np.nonzero(mask > 0.5)
for y, x in zip(indices[0], indices[1]):
if y == height - 1 or x == width - 1:
continue
validNeighborPixels = []
for neighborPixel in [(x, y + 1), (x + 1, y), (x + 1, y + 1)]:
if mask[neighborPixel[1], neighborPixel[0]] > 0.5:
validNeighborPixels.append(neighborPixel)
pass
continue
if len(validNeighborPixels) == 3:
faces.append([len(points) + c for c in range(3)])
points += [(XYZ[pixel[1], pixel[0]], pixel, segmentation[pixel[1], pixel[0]] == mask_index) for pixel in [(x, y), (x + 1, y + 1), (x + 1, y)]]
faces.append([len(points) + c for c in range(3)])
points += [(XYZ[pixel[1], pixel[0]], pixel, segmentation[pixel[1], pixel[0]] == mask_index) for pixel in [(x, y), (x, y + 1), (x + 1, y + 1)]]
elif len(validNeighborPixels) == 2:
faces.append([len(points) + c for c in range(3)])
points += [(XYZ[pixel[1], pixel[0]], pixel, segmentation[pixel[1], pixel[0]] == mask_index) for pixel in [(x, y), (validNeighborPixels[0][0], validNeighborPixels[0][1]), (validNeighborPixels[1][0], validNeighborPixels[1][1])]]
pass
continue
continue
imageFilename = "\ncomment textureless\n"
with open(filename, 'w') as f:
header = """ply
format ascii 1.0"""
header += imageFilename
header += """
element vertex """
header += str(len(points))
header += """
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
element face """
header += str(len(faces))
header += """
property list uchar int vertex_indices
end_header
"""
f.write(header)
for point in points:
X = point[0][0]
Y = point[0][1]
Z = point[0][2]
if not write_occlusion or point[2]:
color = image[point[1][1], point[1][0]]
else:
color = (128, 128, 128)
pass
f.write(str(X) + ' ' + str(Z) + ' ' + str(-Y) + ' ' + str(color[2]) + ' ' + str(color[1]) + ' ' + str(color[0]) + '\n')
continue
for face in faces:
valid = True
f.write('3 ')
for c in face:
f.write(str(c) + ' ')
continue
f.write('\n')
continue
f.close()
pass
return
def drawNewViewDepth(depth_filename, masks, XYZs, camera, pose):
drawNewViewDepth.ply_model_index += 1
faces = []
width, height = masks.shape[2], masks.shape[1]
for mask, XYZ in zip(masks, XYZs):
indices = np.nonzero(mask > 0.5)
for y, x in zip(indices[0], indices[1]):
if y == height - 1 or x == width - 1:
continue
validNeighborPixels = []
for neighborPixel in [(x, y + 1), (x + 1, y), (x + 1, y + 1)]:
if mask[neighborPixel[1], neighborPixel[0]] > 0.5:
validNeighborPixels.append(neighborPixel)
pass
continue
if len(validNeighborPixels) == 3:
faces.append([XYZ[pixel[1], pixel[0]] for pixel in [(x, y), (x + 1, y + 1), (x + 1, y)]])
faces.append([XYZ[pixel[1], pixel[0]] for pixel in [(x, y), (x, y + 1), (x + 1, y + 1)]])
elif len(validNeighborPixels) == 2:
faces.append([XYZ[pixel[1], pixel[0]] for pixel in [(x, y), (validNeighborPixels[0][0], validNeighborPixels[0][1]), (validNeighborPixels[1][0], validNeighborPixels[1][1])]])
pass
continue
continue
faces = np.array(faces)
XYZ = faces.reshape((-1, 3))
XYZ = np.matmul(np.concatenate([XYZ, np.ones((len(XYZ), 1))], axis=-1), pose.transpose())
XYZ = XYZ[:, :3] / XYZ[:, 3:]
points = XYZ[:, :3]
depth = XYZ[:, 1:2]
depth = np.clip(depth / 5 * 255, 0, 255).astype(np.uint8)
colors = cv2.applyColorMap(255 - depth, colormap=cv2.COLORMAP_JET).reshape((-1, 3))
imageFilename = "textureless"
filename = 'test/models/depth_model'+str(drawNewViewDepth.ply_model_index)+'.ply'
with open(filename, 'w') as f:
header = """ply
format ascii 1.0"""
header += imageFilename
header += """
element vertex """
header += str(len(points))
header += """
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
element face """
header += str(len(points) // 3)
header += """
property list uchar int vertex_indices
end_header
"""
f.write(header)
for point, color in zip(points, colors):
X = point[0]
Y = point[1]
Z = point[2]
f.write(str(X) + ' ' + str(Z) + ' ' + str(-Y) + ' ' + str(color[2]) + ' ' + str(color[1]) + ' ' + str(color[0]) + '\n')
continue
faces = np.arange(len(points)).reshape((-1, 3))
for face in faces:
valid = True
f.write('3 ')
for c in face:
f.write(str(c) + ' ')
continue
f.write('\n')
continue
f.close()
pass
return
pose = np.eye(4)
current_dir = os.path.dirname(os.path.realpath(__file__))
pose_filename = current_dir + '/test/pose_new_view.txt'
with open(pose_filename, 'w') as f:
for row in pose:
for col in row:
f.write(str(col) + '\t')
continue
f.write('\n')
continue
f.close()
pass
##
## Orig model render
##
model_filename = current_dir + '/test/model.ply'
output_filename = current_dir + '/' + depth_filename
try:
os.system('../../../Screenshoter/Screenshoter --model_filename=' + model_filename + ' --output_filename=' + output_filename + ' --pose_filename=' + pose_filename)
except:
print('depth rendering failed')
pass
return
drawNewViewDepth.ply_model_index = 0
def rotateModel(model_filename, output_folder):
locations = [np.array([-0.4, 0.3, 0]), np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([0.4, 0.3, 0])]
angle_pairs = [(np.array([-1, 0, 0, np.pi / 18]), np.array([0, -1, 0, np.pi / 18])), (np.array([0, 0, 0, 0]), np.array([0, 0, 0, 0])), (np.array([0, 0, 0, 0]), np.array([0, 0, 0, 0])), (np.array([-1, 0, 0, np.pi / 18]), np.array([0, 1, 0, np.pi / 18]))]
num_frames = [50, 20, 50]
for c in range(len(locations) - 1):
for frame in range(num_frames[c]):
ratio = float(frame + 1) / num_frames[c]
location = locations[c] + (locations[c + 1] - locations[c]) * ratio
angle_pair = [angle_pairs[c][dim] + (angle_pairs[c + 1][dim] - angle_pairs[c][dim]) * ratio for dim in range(2)]
pose = np.eye(4)
pose[:3, :3] = np.matmul(axisAngleToRotationMatrix(angle_pair[0][:3], angle_pair[0][3]), axisAngleToRotationMatrix(angle_pair[1][:3], angle_pair[1][3]))
pose[:3, 3] = location
current_dir = os.path.dirname(os.path.realpath(__file__))
pose_filename = output_folder + '/%04d'%(sum(num_frames[:c]) + frame) + '.txt'
with open(pose_filename, 'w') as f:
for row in pose:
for col in row:
f.write(str(col) + '\t')
continue
f.write('\n')
continue
f.close()
pass
continue
continue
try:
os.system('../../../Recorder/Recorder --model_filename=' + model_filename + ' --output_folder=' + output_folder + ' --pose_folder=' + output_folder + ' --num_frames=' + str(sum(num_frames)))
except:
print('Recording failed')
pass
pass
def visualizeGraph(var, params):
"""Visualize the network"""
from torchviz import make_dot
return make_dot(var, params)
if __name__ == '__main__':
pose = np.eye(4)
current_dir = os.path.dirname(os.path.realpath(__file__))
pose_filename = current_dir + '/test/pose.txt'
with open(pose_filename, 'w') as f:
for row in pose:
for col in row:
f.write(str(col) + '\t')
continue
f.write('\n')
continue
f.close()
pass
test_dir = 'test/occlusion_debug'
indexOffset = 33
model_filename = current_dir + '/test/model.ply'
output_filename = current_dir + '/' + test_dir + '/' + str(indexOffset) + '_model_0_occlusion.png'
print('screenshot', output_filename)
os.system('../../../Screenshoter/Screenshoter --model_filename=' + model_filename + ' --output_filename=' + output_filename + ' --pose_filename=' + pose_filename)
exit(1)