Parameter | Value | Unit | Description |
---|---|---|---|
1.300 | mM | Sum of TCA cycle intermediates |
Parameter | Value | Unit | Description |
---|---|---|---|
0.23523 | Hz | Catalytic constant | |
0.4 | mM | Enzyme concentration of CS | |
12.6 | μM | Michaelis constant for AcCoA | |
0.64 | μM | Michaelis constant for OAA | |
0.1 | mM | Acetyl CoA concentration |
Parameter | Value | Unit | Description |
---|---|---|---|
0.1 | Hz | Forward rate constant of ACO | |
2.22 | - | Equilibrium constant of ACO |
$$ \begin{align} J_{IDH3} &= \frac{k_{cat}^{IDH3} E_T^{IDH3} AB}{f_H AB + f_i B + f_a A + f_a f_i} \ f_H & = 1 + \frac{[H^+]m}{K{H1}^{IDH3}} + \frac{K_{H2}^{IDH3}}{[H^+]m} \ A &= [NAD] / K{NAD}^{IDH3} \ B &= ([ISOC] / K_{ISOC}^{IDH3})^n_{IDH3} \ f_a &= \frac{K_A^{IDH3}}{K_A^{IDH3} + [ADP]m} \frac{K{CA}^{IDH3}}{K_{CA}^{IDH3} + [Ca^{2+}]m} \ f_i &= 1 + \frac{[NADH]}{K{NADH}^{IDH3}} \ \end{align} $$
Parameter | Value | Unit | Description |
---|---|---|---|
535 | Hz | Rate constant of IDH3 | |
0.109 | mM | Concentration of IDH3 | |
1 | nM | Ionization constant of IDH3 | |
900 | nM | Ionization constant of IDH3 | |
0.923 | mM | Michaelis constant for NAD | |
1.520 | mM | Michaelis constant for isocitrate | |
2 | - | Cooperativity for isocitrate | |
0.62 | mM | Activation constant by ADP | |
0.5 | μM | Activation constant for calcium | |
0.19 | mM | Inhibition constant by NADH |
$$ \begin{align} J_{KGDH} &= \frac{k_{cat}^{KGDH} E_T^{KGDH} AB}{f_H AB + f_a (A + B)} \ f_H & = 1 + \frac{[H^+]m}{K{H1}^{KGDH}} + \frac{K_{H2}^{KGDH}}{[H^+]m} \ A &= [NAD] / K{NAD}^{KGDH} \ B &= ([\alpha KG] / K_{AKG}^{KGDH})^n_{KGDH} \ f_a &= \frac{K_{MG}^{KGDH}}{K_{MG}^{KGDH} + [Mg^{2+}]m} \frac{K{CA}^{KGDH}}{K_{CA}^{KGDH} + [Ca^{2+}]_m} \ \end{align} $$
Parameter | Value | Unit | Description |
---|---|---|---|
17.9 | Hz | Rate constant of KGDH | |
0.5 | mM | Concentration of KGDH | |
40 | nM | Ionization constant of KGDH | |
70 | nM | Ionization constant of KGDH | |
38.7 | mM | Michaelis constant for NAD | |
30 | mM | Michaelis constant for αKG | |
1.2 | - | Hill coefficient for αKG | |
30.8 | μM | Activation constant for Mg | |
0.15 | μM | Activation constant for Ca |
$$ \begin{align} J_{SL} &= k_f^{SL} ([SCoA][ADP]m[Pi]m - [SUC][ATP]m[CoA]/K{eq}^{app}) \ K{eq}^{app} &= K{eq}^{SL} \frac{P_{SUC}P_{ATP}}{P_{Pi}P_{ADP}} \ \end{align} $$
Parameter | Value | Unit | Description |
---|---|---|---|
28.4 | 1Hz/mM² | Forward rate constant of SL | |
3.11 | - | Equilibrium constant of SL | |
[CoA] | 0.020 | mM | Coenzyme A concentration |
See OXPHOS part: complex II (Succinate dehydrogenase).
Parameter | Value | Unit | Description |
---|---|---|---|
8.3 | Hz | Forward rate constant | |
1.0 | - | Equilibrium constant |
$$ \begin{align} J_{MDH} &= \frac{k_{cat}^{MDH} E_T^{MDH} AB f_a f_i}{(1+A)(1+B)} \ A &= \frac{[MAL]}{K_{MAL}^{MDH}}\frac{K_{OAA}^{MDH}}{K_{OAA}^{MDH} + [OAA]} \ B &= [NAD] / K_{NAD}^{MDH} \ f_a &= k_{offset}^{MDH} + \left( 1 + \frac{[H^+]m}{K{H1}^{MDH}} (1 + \frac{[H^+]m}{K{H2}^{MDH}}) \right)^{-1} \ f_i &= \left( 1 + \frac{K_{H3}^{MDH}}{[H^+]m} (1 + \frac{K{H4}^{MDH}}{[H^+]_m}) \right)^{2} \ \end{align} $$
Parameter | Value | Units | Description |
---|---|---|---|
125.9 | Hz | Rate constant | |
154 | μM | ||
11.31 | nM | Ionization constant | |
26.7 | mM | Ionization constant | |
6.68 | pM | Ionization constant | |
5.62 | nM | Ionization constant | |
0.0399 | - | Offset of MDH pH activation factor | |
224.4 | μM | Michaelis constant for NAD | |
1.493 | mM | Michaelis constant for malate | |
31 | μM | Inhibition constant for oxaloacetate |
Parameter | Value | Units | Description |
---|---|---|---|
21.7 | Hz/mM | Forward rate constant | |
0.0015 | Hz | Rate constant of aspartate consumption | |
6.6 | - | Equilibrium constant | |
[GLU] | 30 | mM | Glutamate concentration |
$$ \begin{align} P_{C1} &= 1 - P_{O1} - P_{O2} - P_{C2} \ v_{o1c1} &= -k_a^-P_{O1} + k_a^+[Ca^{2+}]{ss}^n P{C1} \ v_{o1o2} &= k_b^+ [Ca^{2+}]{ss}^m{RyR} P_{O1} - k_b^- P_{O2} \ v_{o1c2} &= k_c^+ P_{O1} - k_c^- P_{C2} \ \dot{P_{O1}} &= -v_{o1c1} - v_{o1o2} - v_{o1c2} \ \dot{P_{O2}} &= v_{o1o2} \ \dot{P_{C2}} &= v_{o1c2} \ J_{rel} &= r_{ryr} (P_{O1} + P_{O2})([Ca^{2+}]{JSR} - [Ca^{2+}]{ss}) \ \end{align} $$
Parameter | Value | Units | Description |
---|---|---|---|
3600 | Hz | RyR flux channel constant | |
4 | - | Cooperativity parameter | |
3 | - | Cooperativity parameter | |
12.15 | Hz/μM⁴ | RyR rate constant | |
576 | Hz | RyR rate constant | |
0.00405 | Hz/μM³ | RyR rate constant | |
1930 | Hz | RyR rate constant | |
100 | Hz | RyR rate constant | |
0.8 | Hz | RyR rate constant |
Michaelis-Menten dependence of enzyme activity with respect to ATP and mixed-type inhibition of the enzyme by ADP. Reversible during diastole with low cytoplasmic calcium levels.
$$ \begin{align} J_{up} &= \frac{V_{f}^{up}f_b-V_{r}^{up}r_b}{(1 + f_b + r_b)f_{ATP}^{SERCA}} \ f_b &= \left( \frac{[Ca^{2+}]i}{K{fb}} \right)^{N_{fb}} \ r_b &= \left( \frac{[Ca^{2+}]{NSR}}{K{rb}} \right)^{N_{rb}} \ f_{ATP}^{SERCA} &= \frac{K_{m,up}^{ATP}}{[ATP]_i} ( \frac{[ADP]i}{K{i1, up}} + 1) + \frac{[ADP]i}{K{i2, up}} + 1 \ \end{align} $$
Parameter | Value | Units | Description |
---|---|---|---|
0.2989 | Hz*mM | SERCA forward rate parameter | |
0.3179 | Hz*mM | SERCA reverse rate parameter | |
0.24 | μM | Forward Ca2+ half-saturation constant of SERCA | |
1.64269 | mM | Reverse Ca2+ half-saturation constant of SERCA | |
1.4 | - | Forward cooperativity constant of SERCA | |
1.0 | - | Reverse cooperativity constant of SERCA | |
10 | μM | ATP half-saturation constant for SERCA | |
140 | μM | ADP first inhibition constant for SERCA | |
5.1 | mM | ADP second inhibition constant for SERCA |
GHK current equation
$$ \begin{align} I_K &= \bar G_K X_1 X_K^2 (V - E_K) \ E_K &= \frac{RT}{F} \ln \frac{[K^+]o + P{Na,K}[Na^+]_o}{ [K^+]i + P{Na,K}[Na^+]_i} \ \bar G_K &= 0.282 (mS/cm^2)\sqrt{[K^+]_o /5.4mM} \ X_1 &= (1+ e^{(V_m-40)/40})^{-1} \ \frac{dX_k}{dt} &= \alpha_X - X_k (\alpha_X + \beta_X) \ \alpha_X &= \frac{V_m+30}{1 - e^{-0.148(V_m+30)}} * 0.0719Hz \ \beta_X &= \frac{V_m+30}{e^{0.0687(V_m+30)} -1} * 0.131Hz \ \end{align} $$
$$ \begin{align} \Delta V &= V_m - E_{K1} \ I_{K1} &= \bar G_{K1}K_{1 \infty}\Delta V \ E_{K1} &= \frac{RT}{F} \ln \frac{[K^+]o}{[K^+]i} \ \bar G{K1} &= 0.748(mS/cm^2)\sqrt{[K^+]o / 5.4mM} \ K{1 \infty} &= \frac{\alpha{K_1}}{\alpha_{K_1} + \beta_{K_1}} \ \alpha_{K_1} &= \frac{1.02}{1 + e^{0.2385(\Delta V -59.215)}} * \text{kHz} \ \beta_{K_1} &= \frac{0.4912e^{0.28032(\Delta V + 5.476)} + e^{0.06175(\Delta V -594.31)}}{1 + e^{-0.5143(\Delta V + 4.753)}} * \text{kHz} \end{align} $$
$$ \begin{align} E_{Kp} &= \frac{RT}{F} \ln \frac{[K^+]o}{[K^+]i} \ I{Kp} &= \frac{\bar G{Kp} (V - E_{Kp})}{1 + e^{(7.488-V_m) / 5.98}} \ \end{align} $$
$$ \begin{align} I_{Na} &= \bar G_{Na} m_{Na}^{3} h_{Na} j_{Na} (V_m-E_{Na}) \ E_{Na} &= \frac{RT}{F} \ln \frac{[Na^{+}]o}{[Na^{+}]i} \ \frac{dm{Na}}{dt} &= \alpha{m} - m_{Na}(\alpha_{m} + \beta_{m}) \ \frac{dh_{Na}}{dt} &= \alpha_{h} - h_{Na}(\alpha_{h} + \beta_{h}) \ \frac{dj_{Na}}{dt} &= \alpha_{j} - m_{Na}(\alpha_{j} + \beta_{j}) \ \alpha_{m} &= 0.32kHz \frac{V_m + 47.13}{1 - e^{-0.1(V_m+47.13)}} \ \beta_{m} &= 0.08kHz \times e^{-V_m / 11} \ \ For \ V_m & \ge -40mV \ \alpha_{h} &= \alpha_{j} = 0 \ \beta_{h} &= (0.13 ms (1+e^{-(V_m+10.66)/11.1}))^{-1} \ \beta_{j} &= 0.3kHz\frac{e^{-2.535 \times 10^{-7}V_m}}{1 + e^{-0.1(V_m + 32)}} \ \ For \ V_m & < -40mV \ \alpha_{h} &= 0.135kHz * e^{-(V_m+80)/6.8} \ \alpha_{j} &= (-127140e^{0.2444 V_m}-3.474 \times 10^{-5}e^{-0.04391 V_m})\frac{V_m + 37.78}{1+e^{0.311( V_m +79.23)}} \times \text{kHz} \ \beta_{h} &= (3.56e^{0.079 V_m} + 3.1 \times 10^{5}e^{0.35 V_m}) \times \text{kHz} \ \beta_{j} &= \frac{0.1212e^{-0.01052 V_m}}{1+e^{-0.1378(V_m + 40.14)}} \times \text{kHz} \ \end{align} $$
$$ \begin{align} I_{NaCa} &= k_{NaCa} \cdot f_{Nao } \cdot f_{Cao }\frac{exp(V_mF/RT)\phi_{Na}^3 - \phi_{Ca}}{exp((1 - \eta) V_mF/RT ) + k_{sat}} \ f_{Nao} &= \frac{([Na^+]o)^3}{([Na^+]o)^3 + (K{M,Na}^{NaCa})^3} \ f{Cao} &= \frac{[Ca^+]o}{[Ca^+]o + K{M,Ca}^{NaCa}} \ \phi{Na} &= \frac{[Na^+]_i}{ [Na^+]o} \ \phi{Ca} &= \frac{[Ca^{2+}]_i}{[Ca^{2+}]_o} \ \end{align} $$
$$ \begin{align} I_{Ca,b} &= \bar G_{Ca,b} (V_m - \frac{RT}{2F} \ln \frac{[Ca^{2+}]o}{[Ca^{2+}]i}) \ I{Na,b} &= \bar G{Na,b} (V_m - \frac{RT}{F} \ln \frac{[Na^{+}]_o}{[Na^{+}]_i}) \ \end{align} $$
$$ \begin{align} f_{Ca} &= \frac{([Ca^{2+}]i)^3}{([Ca^{2+}]i)^3 + (K{m}^{nsCa})^3}\ I{nsNa} &= 0.75 \cdot f_{Ca} \cdot \Phi_{Na}(P_{nsNa}, z_{Na}, V_m, [Na^+]i, [Na^+]o) \ I{nsK} &= 0.75 \cdot f{Ca} \cdot \Phi_{K}(P_{nsK}, z_{K}, V_m, [K^+]_i, [K^+]_o) \ \end{align} $$
The Na+/K+ ATPase activity depends on the ATP concentration, as well as the competitive inhibition by ADP.
$$ \begin{align} I_{NaK} &= \bar I_{NaK} \cdot f_{ATP} \cdot f_{Na} \cdot f_{K} \cdot f_{NaK} \ \sigma &= \frac{e^{[Na^+]o / 67.3mM}-1}{7} \ f{NaK} &= (1 + 0.1245 \cdot \exp(-0.1V_m F / RT) + 0.0365 \sigma \cdot \exp(-V_m F / RT))^{-1} \ f_{Na} &= \frac{([Na^+]i)^{1.5}}{([Na^+]i)^{1.5} + (K{m, Na_i})^{1.5}} \ f{K} &= \frac{[K^+]o}{[K^+]o + K{m, K_o}} \ f{ATP} &= \frac{[ATP]i}{[ATP]i + K{M,ATP}^{NaK} / f{ADP}} \ f_{ADP} &= \frac{K_{i,ADP}^{NaK}}{K_{i,ADP}^{NaK} + [ADP]_i} \ \end{align} $$
"Common pool" subspace calcium model.
$$ \begin{align} \alpha &= 0.4 e^{(V_m+2) / 10} \ \beta &= 0.4 e^{-(V_m+2) / 13} \ \alpha^\prime &= a \alpha \ \beta^\prime &= \beta / b \ \gamma &= \gamma_0 [Ca^{2+}]{ss} \ C_0 &= 1 - C_0 - C_1 - C_2 - C_3 - C_4 - O - C{Ca0} - C_{Ca1} - C_{Ca2} - C_{Ca3} - C_{Ca4} \ v_{01} &= 4\alpha C_0 - \beta C_1 \ v_{12} &= 3\alpha C_1 - 2\beta C_2 \ v_{23} &= 2\alpha C_2 - 3\beta C_3 \ v_{34} &= \alpha C_3 - 4\beta C_4 \ v_{45} &= f C_4 - g O \ v_{67} &= 4\alpha^\prime C_{Ca0} - \beta^\prime C_{Ca1} \ v_{78} &= 3\alpha^\prime C_{Ca1} - 2\beta^\prime C_{Ca2} \ v_{89} &= 2\alpha^\prime C_{Ca2} - 3\beta^\prime C_{Ca3} \ v_{910} &= \alpha^\prime C_{Ca3} - 4\beta^\prime C_{Ca4} \ v_{06} &= \gamma C_0 - \omega C_{Ca0} \ v_{17} &= a \gamma C_1 - \omega C_{Ca1} / b \ v_{28} &= a^2 \gamma C_2 - \omega C_{Ca2} / b^2 \ v_{39} &= a^3 \gamma C_3 - \omega C_{Ca3} / b^3 \ v_{410} &= a^4 \gamma C_4 - \omega C_{Ca4} / b^4 \ \end{align} $$
$$ \begin{align} \frac{dC_0}{dt} &= -v_{01} -v_{06} \ \frac{dC_1}{dt} &= v_{01} - v_{12} - v_{17} \ \frac{dC_2}{dt} &= v_{12} - v_{23} - v_{28} \ \frac{dC_3}{dt} &= v_{23} - v_{34} - v_{34} \ \frac{dC_4}{dt} &= v_{34} - v_{45} - v_{410} \ \frac{dO}{dt} &= v_{45} \ \frac{dC_{Ca0}}{dt} &= v_{06} - v_{67} \ \frac{dC_{Ca1}}{dt} &= v_{17} + v_{67} - v_{78} \ \frac{dC_{Ca2}}{dt} &= v_{28} + v_{78} - v_{89} \ \frac{dC_{Ca3}}{dt} &= v_{39} + v_{89} - v_{910} \ I_{Ca}^{max} &= \Phi_{Ca}(P_{Ca}, z_{Ca}, V_m, 0.001, 0.341[Ca^{2+}]o) \ I{Ca} &= 6 I_{Ca}^{max} \cdot y_{Ca} \cdot O \ I_{Ca,K} &= y_{Ca} \cdot O \cdot \Phi_{Ca}(P_{K}, z_{K}, V_m, [K^+]i, [K^+]o) \ P{K} &= P{K}^{max} \frac{I_{Ca}^{half}}{I_{Ca}^{half} + I_{Ca}^{max}} \ y_\infty &= \frac{1}{1 + e^{(V_m + 55) / 7.5}} + \frac{0.5}{1 + e^{(-V_m + 21) / 6}} \ \tau_y &= 20ms + \frac{600ms}{1 + e^{(V_m + 30) / 9.5}} \ \frac{dy_{Ca}}{dt} &= \frac{y_\infty - y_{Ca}}{\tau_y} \ \end{align} $$
Parameter | Value | Units | Description |
---|---|---|---|
2 | Mode transition parameter | ||
2 | Mode transition parameter | ||
187.5 | Hz/μM | Mode transition parameter | |
10 | Hz | Mode transition parameter | |
300 | Hz | Transition rate into open state | |
2000 | Hz | Transition rate into open state | |
cm/s | L-type Ca2+ channel permeability to Ca2+ | ||
cm/s | L-type Ca2+ channel permeability to K+ | ||
ICa level that reduces equation Pk by half |
Modified rate expression incorporating the ATP-dependence of pump activity. Plasma membrane calcium ATPase (PMCA) rate exhibits two different K0.5 values for ATP.
$$ \begin{align} I_{pCa} &= I_{max}^{PMCA} \times \frac{[Ca^{2+}]i}{[Ca^{2+}]i + K{M, Ca}^{PMCA}} \times f{ATP} \ f_{ATP} &= \frac{[ATP]i}{[ATP]i + K{M2,ATP}^{PMCA}} + \frac{[ATP]i}{[ATP]i + K{M1,ATP}^{PMCA} / f{ADP}} \ f{ADP} &= \frac{K{i,ADP}^{PMCA}}{K_{i,ADP}^{PMCA} + [ADP]_i} \ \end{align} $$
Parameter | Value | Units | Description |
---|---|---|---|
Maximum sarcolemmal Ca2+ pump current | |||
Ca2+ half-saturation constant for sarcolemmal Ca2+ pump | |||
First ATP half-saturation constant for sarcolemmal Ca2+ pump | |||
Second ATP half-saturation constant for sarcolemmal Ca2+ pump | |||
ADP inhibition constant for sarcolemmal Ca2+ pump |
$$ \begin{align} \frac{d[Na^+]i}{dt} &= -(I{Na} + 3I_{NaCa} + 3I_{NaK})\frac{A_{cap}}{V_{myo}F} + (V_{NHE} - 3V_{NaCa}) \frac{V_{mito}}{V_{myo}} \ \frac{d[K^+]i}{dt} &= -(I{Ks} + I_{Kr} + I_{K1} + I_{Kp} + I_{Ca,K}-2I_{NaK})\frac{A_{cap}}{V_{myo}F} \ C_m\frac{dV_m}{dt} &= -(I_{Na} + I_{CaL} + I_{Kr} + I_{Ks} + I_{K1} + I_{Kp} + I_{NaCa} + I_{NaK} + I_{pCa} + I_{Ca, b} + I_{K_{ATP}} + I_{stim}) \ β_i &= \frac{(K_m^{CMDN} + [Ca^{2+}]i)^2}{ (K_m^{CMDN} + [Ca^{2+}]i)^2 + K_m^{CMDN} \cdot [CMDN]{tot}} \ β{SR} &= \frac{(K_m^{CSQN} + [Ca^{2+}]{SR})^2}{(K_m^{CSQN} + [Ca^{2+}]{SR})^2 + K_m^{CSQN} \cdot [CSQN]{tot}} \ \frac{d[Ca^{2+}]i}{dt} &= \beta_i(J{xfer}\frac{V{ss}}{V_{myo}} - J_{up} - J_{trpn} - (I_{Ca,b} -2I_{NaCa} + I_{pCa})\frac{A_{cap}}{2V_{myo}F} + (V_{NaCa} - V_{uni})\frac{V_{mito}}{V_{myo}}) \ \frac{d[Ca^{2+}]{SR}}{dt} &= \beta{SR}(J_{up}\frac{V_{myo}}{V_{SR}} - J_{rel}\frac{V_{ss}}{V_{SR}}) \ \end{align} $$
Symbol | Value | Units | Description |
---|---|---|---|
Maximal Na channel conductance | |||
Maximal plateau K channel conductance | |||
IK conductance | |||
IK1 conductance | |||
Na+ permeability ratio of K+ channel | |||
NCX current | |||
Dissociation constant of sodium for NCX | |||
Dissociation constant of calcium for NCX | |||
NCX saturation factor at negative potentials | |||
Voltage dependence of NCX | |||
Nonspecific channel current Na permeability | |||
Nonspecific channel current K permeability | |||
Ca2+ half-saturation constant for nonspecific current | |||
Maximum background current Ca2+ conductance | |||
Maximum background current Na+ conductance | |||
Hz | Time constant for transfer from subspace to myoplasm | ||
Hz | Time constant for transfer from NSR to JSR | ||
Ca2+ half saturation constant for calmodulin | |||
Ca2+ half saturation constant for calsequestrin | |||
Total troponin high-affinity sites | |||
Total troponin low-affinity sites | |||
Total myoplasmic calmodulin concentration | |||
Total NSR calsequestrin concentration |
The rate of ATP hydrolysis associated with force generation through actomyosin ATPase depends explicitly on both ATP and ADP. 1
$$ \begin{align} f_{01} &= 3f_{XB} \ f_{12} &= 10f_{XB} \ f_{23} &= 7f_{XB} \ g_{01} &= g_{XB}^{min} \ g_{12} &= 2g_{XB}^{min} \ g_{23} &= 3g_{XB}^{min} \ g_{01,SL} &= \phi \cdot g_{01} \ g_{12,SL} &= \phi \cdot g_{12} \ g_{23,SL} &= \phi \cdot g_{23} \ g_{01,SL, off} &= \phi \cdot g_{off} \ \phi &= 1 + \frac{2.3-SL}{(2.3-1.7)^{1.6}} \ K_{Ca}^{trop} &= \frac{k^-{ltrpn}}{k^+{ltrpn}} \ K_{1/2}^{trop} &= \left( 1 + \frac{K_{Ca}^{trop}}{1.7 \cdot 10^{-3} - 0.8 \cdot 10^{-3}\frac{(SL-1.7)}{0.6}} \right)^{-1} \ N_{trop} &= 3.5 \cdot SL - 2.0 \ k_{np}^{trop} &= k_{pn}^{trop} \left( \frac{[LTRPNCa]}{K_{1/2}^{trop}[LTRPN]{tot}} \right) ^{N{trop}} \ \Sigma PATHS &= g_{01}g_{12}g_{23} + f_{01}g_{12}g_{23} + f_{01}f_{12}g_{23} + f_{01}f_{12}f_{23} \ P1_{max} &= \frac{f_{01}g_{12}g_{23}}{\Sigma PATHS} \ P2_{max} &= \frac{f_{01}f_{12}g_{23}}{\Sigma PATHS} \ P3_{max} &= \frac{f_{01}f_{12}f_{23}}{\Sigma PATHS} \ Force &= \zeta \frac{[P_1] + 2[P_2] + 3[P_3] + [N_1]}{P1_{max} + 2P2_{max} + 3P3_{max}} \ Force_{norm} &= \frac{[P_1] + [P_2] + [P_3] + [N_1]}{P1_{max} + P2_{max} + P3_{max}} \ \end{align} $$
$$ \begin{align} v_{01} &= f_{01} [P_0] - g_{01(SL)} [P_1] \ v_{12} &= f_{12} [P_1] - g_{21(SL)} [P_2] \ v_{23} &= f_{23} [P_2] - g_{23(SL)} [P_3] \ v_{04} &= k_{pn}^{trop} [P_0] - k_{np}^{trop} [N_0] \ [N_0] &= 1 - [P_0] - [P_1] - [P_2] - [P_3] - [N_1] \ v_{15} &= k_{pn}^{trop} [P_1] - k_{np}^{trop} [N_1] \ v_{54} &= g_{01,off} [N_1] \ [HTRPN] &= [HTRPN]{tot} - [HTRPNCa] \ [LTRPN] &= [LTRPN]{tot} - [LTRPNCa] \ f_{ATP}^{AM} &= \frac{[ATP]i}{[ATP]i + K{m,AM}^{ATP}/f{ADP}^{AM} } \ f_{ADP}^{AM} &= \frac{K_{i,AM}^{ADP}}{[ADP]i + K{i,AM}^{ADP}} \ V_{AM} &= V_{max}^{AM} \cdot f_{ATP}^{AM} \cdot \frac{f_{01}[P_0] + f_{12}[P_1] + f_{23}[P_2]}{f_{01} + f_{12} + f_{23}} \ J_{trpn} &= \frac{d[HTRPNCa]}{dt} + \frac{d[LTRPNCa]}{dt} \ \frac{d[HTRPNCa]}{dt} &= k^{+}{htrpn}[Ca^{2+}]i[HTRPN] - k^{-}{htrpn}[HTRPNCa] \ \frac{d[LTRPNCa]}{dt} &= k^{+}{ltrpn}[Ca^{2+}]i[LTRPN] - k^{-}{ltrpn}(1-\frac{2}{3}Force_{norm})[LTRPNCa] \ \frac{d[P_0]}{dt} &= - v_{01} - v_{04} \ \frac{d[P_1]}{dt} &= v_{01} - v_{12} - v_{15} \ \frac{d[P_2]}{dt} &= v_{12} - v_{23} \ \frac{d[P_3]}{dt} &= v_{23} \ \frac{d[N_1]}{dt} &= v_{15} - v_{54} \ \end{align} $$
Symbol | Value | Units | Description |
---|---|---|---|
Transition rate from tropomyosin permissive to non-permissive | |||
Sarcomere length | |||
Transition rate from weak to strong crossbridge | |||
Minimum transition rate from strong to weak crossbridge | |||
Conversion factor normalizing to physiological force | |||
Conversion factor normalizing to physiological force | |||
ATP half-saturation constant of AM ATPase | |||
ADP inhibition constant of AM ATPase | |||
Ca2+ on-rate for troponin high-affinity sites | |||
Ca2+ off-rate for troponin high-affinity sites | |||
Ca2+ on-rate for troponin low-affinity sites | |||
Ca2+ off-rate for troponin low-affinity sites |
Assuming single electron transfer for each redox reaction.
$$ \begin{align} \nu &= \exp((\Delta\Psi_m - \Delta\Psi_B) F/ RT) \ a_{12} &= k_{12} ([H^+]m)^2 \ a{21} &= k_{21} \ a_{65} &= k_{65} ([H^+]i)^2 \ a{56} &= k_{56} \ a_{61} &= k_{61} / \nu \ a_{16} &= k_{16} \nu \ a_{23} &= k_{23} \sqrt{[NADH]} \ a_{32} &= k_{32} \ a_{34} &= k_{34} \ a_{43} &= k_{43} \sqrt{[NAD^+]} \ a_{47} &= C1_{inhib} \cdot K_{47} \sqrt{[Q_n][H^+]m} \ a{74} &= k_{74} \ a_{57} &= C1_{inhib} \cdot K_{57} \sqrt{[QH_2]} \ a_{75} &= k_{75} \ k_{42}^\prime &= k_{42} \ a_{42} &= k_{42}^\prime [O_2] \ K_{eq}^{ROS} &= \exp((E_{FMN} - E_{sox}) F / RT) \ a_{24} &= a_{42} K_{eq}^{ROS} [O_2^{ \cdot -}]m \ a{25} &= a_{52} = 0 \ \end{align} $$
Parameter | Value | Units | Desc. |
---|---|---|---|
5 | mM | Concentration of complex I (Adjustable) |
|
50 | mV | Phase boundary potential | |
6.3396E11 | |||
5 | Hz | ||
100 | Hz | ||
2.5119E13 | |||
1E7 | Hz | ||
130 | Hz | ||
3886.7 | |||
9.1295E6 | Hz | ||
639.1364 | Hz | ||
3.2882 | |||
1.5962E7 | Hz/mM | ||
65.2227 | Hz | ||
24615 | Hz | ||
1166.7 | |||
6.0318 | Hz/mM | ||
-375 | mV | Midpoint potential of flavin mononucleotide | |
-150 | mV | Midpoint potential of superoxide |
$$ \begin{align} f_Q &= \frac{[Q]n}{[Q]n + [QH_2]n} \ f{OAA} &= \frac{K{i, OAA}}{[OAA] + K{i, OAA}} \ f_{FUM} &= \frac{K_{i, FUM}}{[FUM] + K_{i, FUM}} \ f_{SUC} &= \frac{[SUC]}{[SUC] + K_{m, SUC} / f_{OAA} / f_{FUM}} \ J_{SDH} &= V_{SDH} C2_{inhib} f_{SUC} \frac{f_Q}{f_Q + K_{m, Q}} \ J_{c2} &= J_{SDH} \ \end{align} $$
Parameter | Value | Units | Desc. |
---|---|---|---|
250 | mM / minute | Maximum rate of SDH | |
0.150 | mM | Inhibition constant for oxaloacetate | |
0.6 | - | Michaelis constant for CoQ | |
0.150 | mM | Inhibition constant for fumarate | |
0.6 | - | Michaelis constant for succinate |
$$ \begin{align} f_{hi} & = [H^+]{i} / 10^{-7}M \ v{1} &= v_{Q}^{C1} + v_{Q}^{C2} \ v_2 &= k_d([QH_2]{n} - [QH_2]{p}) \ k_{3} &= k_{03}K_{eq3}f_{hi} \ k_{-3} &= k_{03} \ v_{3} &= k_3[QH_2]{p} [FeS]{ox} - k_{-3}[Q^-]p [FeS]{rd} \ k_{4, ox} &= k_{04}K_{eq4, ox} \exp(-\alpha\delta_1\Delta\Psi_m F/ RT) \ k_{4, rd} &= k_{04}K_{eq4, rd} \exp(-\alpha\delta_1\Delta\Psi_m F/ RT) \ k_{-4, ox} &= k_{04} \exp(\alpha(1-\delta_1)\Delta\Psi_m F/ RT) \ k_{-4, rd} &= k_{04} \exp(\alpha(1-\delta_1)\Delta\Psi_m F/ RT) \ v_{4, ox} &= k_{4, ox}[Q^-]p [b1] - k{-4, ox}[Q]{p} [b2] \ v{4, rd} &= k_{4, rd}[Q^-]p [b3] - k{-4, rd}[Q]{p} [b4] \ v{5} &= k_d([Q]{p} - [Q]{n}) \ k_{6} &= K_{06}K_{eq6} \exp( -\beta\delta_2\Delta\Psi_m / V_T) \ k_{-6} &= k_{06} \exp( \beta(1-\delta_2)\Delta\Psi_m / V_T) \ v_{6} &= k_{6} [b2] - k_{-6} [b3] \ k_{7, ox} &= k_{07, ox}K_{eq7, ox}\exp(-\gamma\delta_3\Delta\Psi_m F/ RT) \ k_{7, rd} &= k_{07, rd}K_{eq7, rd}\exp(-\gamma\delta_3\Delta\Psi_m F/ RT) \ k_{-7, ox} &= k_{07, ox} \exp(\gamma(1-\delta_3)\Delta\Psi_m F/ RT) \ k_{-7, rd} &= k_{07, rd} \exp(\gamma(1-\delta_3)\Delta\Psi_m F/ RT) \ v_{7, ox} &= (k_{7, ox}[Q]{n}[b3] - k{-7, ox}[Q^-]n [b1])C3{inhib} \ v_{7, rd} &= (k_{7, rd}[Q]{n}[b4] - k{-7, rd}[Q^-]n [b2])C3{inhib} \ \end{align} $$
$$ \begin{align} f_{hm} & = [H^+]{m} / 10^{-7}M \ k{8, ox} &= k_{08, ox}K_{eq8, ox}\exp(-\gamma\delta_3\Delta\Psi_m F/ T)(f_{hm})^2 \ k_{8, rd} &= k_{08,rd}K_{eq8, rd}\exp(-\gamma\delta_3\Delta\Psi_m F/ T)(f_{hm})^2 \ k_{-8, ox} &= k_{08, ox} \exp(\gamma(1-\delta_3)\Delta\Psi_m F/ RT) \ k_{-8, rd} &= k_{08, rd} \exp(\gamma(1-\delta_3)\Delta\Psi_m F/ RT) \ v_{8, ox} &= (k_{8, ox}[Q^-]{n}[b3] - k{-8, ox}[QH_2]{n}[b1])C3{inhib} \ v_{8, rd} &= (k_{8, rd}[Q^-]{n}[b4] - k{-8, rd}[QH_2]{n}[b2])C3{inhib} \ k_9 &= k_{09}K_{eq9} \ k_{-9} &= k_{09} \ v_{9} &= k_{9}[FeS]{rd}[cytc1]{ox} - k_{-9}[FeS]{ox}[cytc1]{rd}\ k_{10} &= k_{010}K_{eq10} \ k_{-10} &= k_{010} \ v_{10} &= k_{10}[Q^-]p[O_2] - k{-10}[Q]p[O_2^-] \ v{10b} &= v_{10} \ v_{33} &= k_{33}(K_{eq}[cytc1]{rd}[cytc]{ox} - [cytc]{rd}[cytc1]{ox}) \ \rho_{C3}^{\prime} &= \rho_{C3} \cdot mt_{prot} \ \rho_{C4}^{\prime} &= \rho_{C4} \cdot mt_{prot} \ FeS_{rd} &= \rho_{C3}^{\prime} - FeS_{ox} \ cytc1_{rd} &= \rho_{C3}^{\prime} - cytc1_{ox} \ cytc_{rd} &= \rho_{C4}^{\prime} - cytc_{ox} \ [b4] &= \rho_{C3}^{\prime} - [b1] - [b2] - [b3] \ [QH_2]p &= \Sigma Q - [Q]n - [Q]p - [QH_2]n - [Q^-]p - [Q^-]n \ J{hRes}^{C3} &= 2v{3} \ J{ROS, m}^{C3} &= v{10} \ J{ROS, i}^{C3} &= v{10b} \ \end{align} $$
$$ \begin{align} \frac{d[Q]n}{dt} &= v_5 - v{7,ox}- v_{7,rd} - v_1 \ \frac{d[Q^-]n}{dt} &= v{7,ox} + v_{7,rd} - v_{8,ox}- v_{8,rd} \ \frac{d[QH_2]n}{dt} &= v{8,ox} + v_{8,rd} + v_1 - v_2 \ \frac{d[QH_2]p}{dt} &= v_2 -v_3 \ \frac{d[Q^-]p}{dt} &= v_3 - v{10} - v{10b} - v_{4,ox} - v_{4,rd} \ \frac{d[Q]p}{dt} &= v{10} + v_{10b} + v_{4,ox} + v_{4,rd} - v_5 \ \frac{d[b1]}{dt} &= v_{7,ox} + v_{8,ox} - v_{4,ox} \ \frac{d[b2]}{dt} &= v_{4,ox} + v_{7,rd} - v_{8,rd} - v_6 \ \frac{d[b3]}{dt} &= v_6 - v_{4,rd} + v_{7,ox} - v_{8,ox} \ \frac{d[b4]}{dt} &= v_{4,rd} - v_{7,rd} - v_{8,rd} \ \frac{d[FeS]{ox}}{dt} &= v_9 - v_3 \ \frac{d[cytc1]{ox}}{dt} &= v_{33} - v_9 \ \frac{d[cytc]{ox}}{dt} &= V_e - v{33} \ \end{align} $$
Parameter | Value | Unit | Desc. |
---|---|---|---|
1,666.63 | Hz/mM | Reverse rate constant for reaction 3 | |
0.6877 | - | Equilibrium constant for reaction 3 | |
60.67 | Hz/mM | Reverse rate constant for reaction 4 | |
129.9853 | - | Equilibrium constant for reaction 4 (bH oxidized) |
|
13.7484 | - | Equilibrium constant for reaction 4 (bH reduced) |
|
0.5 | - | ||
0.2497 | - | ||
22000 | Hz | Diffusion rate of ubiquinone across the membrane | |
166.67 | Hz/mM | Reverse rate constant for reaction 6 | |
9.4596 | - | Equilibrium constant for reaction 6 | |
0.5 | - | ||
0.5006 | - | ||
13.33 | Hz/mM | Reverse rate constant for reaction 7 (bL oxidized) |
|
3.0748 | - | Equilibrium constant for reaction 7 (bL oxidized) |
|
1.667 | Hz/mM | Reverse rate constant for reaction 7 (bL reduced) |
|
29.0714 | - | Equilibrium constant for reaction 7 (bL reduced) |
|
0.5 | - | ||
0.2497 | - | ||
83.33 | Hz/mM | Reverse rate constant for reaction 8 (bL oxidized) |
|
129.9853 | - | Equilibrium constant for reaction 8 (bL oxidized) |
|
8.333 | Hz/mM | Reverse rate constant for reaction 8 (bL reduced) |
|
9.4596 | - | Equilibrium constant for reaction 8 (bL reduced) |
|
833 | Hz/mM | Reverse rate constant for reaction 9 | |
0.2697 | - | Equilibrium constant for reaction 9 | |
0.8333 | Hz/mM | Reverse rate constant for reaction 10 | |
1.4541 | - | Equilibrium constant for reaction 10 | |
2469.13 | Hz/mM | Reverse rate constant for reaction 33 | |
2.1145 | - | Equilibrium constant for reaction 33 | |
0.325 | mM | Complex III content |
$$ \begin{align} f_{H_{m}} &= \exp(-\delta_5\Delta\Psi_m F/ RT) ([H^+]m /10^{-7}M) \ f{H_{i}} &= \exp((1-\delta_5)\Delta\Psi_m F/ RT) ([H^+]i /10^{-7}M) \ f{C_{rd}} &= [cytc]{rd} \ f{C_{ox}} &= \text{exp}((1-\delta_5)\Delta\Psi_m F/ RT) [cytc]{ox} \ a{12} &= k_{34} f_{C_{rd}}^3 f_{H_{m}}^4 \ a_{14} &= k_{-37} f_{H_{i}} \ a_{21} &= k_{-34} f_{C_{ox}}^3 f_{H_{i}} \ a_{23} &= k_{35} [O_2] C4_{inhib} \ a_{34} &= k_{36} f_{C_{rd}} f_{H_{m}}^3 \ a_{41} &= k_{37} f_{H_{m}} \ a_{43} &= k_{-36} f_{C_{ox}} f_{H_{i}}^2 \ e_1 &= a_{21}a_{41}a_{34} + a_{41}a_{34}a_{23} \ e_2 &= a_{12}a_{41}a_{34} \ e_3 &= a_{23}a_{12}a_{41} + a_{43}a_{14}a_{21} + a_{23}a_{43}a_{12} + a_{23}a_{43}a_{14} \ e_4 &= a_{14}a_{34}a_{21} + a_{34}a_{23}a_{12} + a_{34}a_{23}a_{14} \ \Delta &= e_1 + e_2 + e_3+ e_4 \ Y &= e_1 / \Delta \ Yr &= e_2 / \Delta \ YO &= e_3 / \Delta \ YOH &= e_4 / \Delta \ v_{34} &= \rho_{C4}^\prime (Y \cdot a_{12} - Yr \cdot a_{21}) \ v_{35} &= \rho_{C4}^\prime Yr \cdot a_{23} \ v_{36} &= \rho_{C4}^\prime (YO \cdot a_{34} - YOH \cdot a_{43}) \ v_{37} &= \rho_{C4}^\prime (YOH \cdot a_{41} - Y \cdot a_{14}) \ V_e &= 3v_{34} + v_{35} \ J_{hRes}^{C4} &= v_{34} + 2v_{36} + v_{37} \ J_{O_2} &= v_{35} \ J_{hRes} &= J_{hRes}^{C1} + J_{hRes}^{C3} + J_{hRes}^{C4} \ \rho_{C4}^\prime &= \rho_{C4} \cdot mt_{prot} \end{align} $$
Parameter | Value | Unit | Desc. |
---|---|---|---|
0.325 | mM | Cytochrome c pool | |
0.325 | mM | Complex IV content | |
2.9445E10 | Hz/mM^3 | Rate constant @ pH = 7 | |
290.03 | Hz/mM^3 | Rate constant @ pH = 7 | |
45000 | Hz/mM | ||
4.826E11 | Hz/mM | Rate constant @ pH = 7 | |
4.826 | Hz/mM | Rate constant @ pH = 7 | |
1.7245E8 | Hz | Rate constant @ pH = 7 | |
17.542 | Hz | Rate constant @ pH = 7 |
Parameter | Value | Unit | Desc. |
---|---|---|---|
5 | mM | Concentration of F1-Fo ATPase | |
6.47E5 | M | Apparent equilibrium constant for ATP hydrolysis2 | |
50 | mV | Phase boundary potential | |
1.656E-5 | Hz | Sum of products of rate constants | |
3.373E-7 | Hz | Sum of products of rate constants | |
9.651E-14 | Hz | Sum of products of rate constants | |
4.585E-14 | Hz | Sum of products of rate constants | |
1.346E-4 | - | Sum of products of rate constants | |
7.739E-7 | - | Sum of products of rate constants | |
6.65E-15 | - | Sum of products of rate constants |
Includes inhibition by high levels of hydrogen peroxide
Parameter | Value | Unit | Desc. |
---|---|---|---|
17 | 1/(mM*ms) | Rate constant of catalase | |
0.01 | mM | Extra-matrix concentration of catalase | |
0.05 | 1/mM | Hydrogen peroxide inhibition factor |
Based on (McADAM, 1976) model.
Parameter | Value | Unit | Desc. |
---|---|---|---|
1200 | 1/(mM*ms) | Rate constant for EA -> EB | |
24 | 1/(mM*ms) | Rate constant for EB -> EC | |
0.24 | 1/s | Rate constant for EC -> EA | |
500 | μM | Inhibition constant for H2O2 | |
3 | μM | Concentration of Cu,ZnSOD (cytosolic) |
Dalziel type Ping-pong mechanism.
Parameter | Value | Unit | Desc. |
---|---|---|---|
10 | μM | GPX content | |
5 | mM/s | Dalziel coefficient | |
75 | mM/s | Dalziel coefficient |
Michaelis-Menten kinetics.
Parameter | Value | Unit | Desc. |
---|---|---|---|
10 | μM | GR content (cytosolic) | |
5 | Hz | Catalytic constant of GR | |
60 | μM | Michaelis constant for GSSG | |
15 | μM | Michaelis constant for NADPH | |
1 | mM | Cytosolic GSH pool |
$$ \begin{align} g_{IMAC} &= \left( a + b \frac{[O_2^-]i}{[O_2^-]i + K{CC}} \right) \left( G_L + \frac{G{max}}{1 + e^{κ(\Delta\Psi_m^b + \Delta\Psi_m)}} \right) \ V_{IMAC} &= g_{IMAC}\Delta\Psi_m \ V_{tr}^{ROS} &= j \cdot g_{IMAC} \left( \Delta\Psi_m + V_T ln \left( \frac{[O_2^-]_m}{[O_2^-]_i} \right) \right) \ \end{align} $$
Parameter | Value | Unit | Desc. |
---|---|---|---|
a | 0.001 | - | Basal IMAC conductance |
b | 10000 | - | Activation factor by superoxide |
10 | μM | Activation constant by superoxide | |
0.035 | μM * Hz / mV | Integral conductance for IMAC | |
3.9085 | μM * Hz / mV | Leak conductance of IMAC | |
0.07 | 1/mV | Steepness factor | |
4 | mV | Potential at half saturation | |
j | 0.1 | - | Fraction of IMAC conductance |
$$ \begin{align} \frac{d [ O_{2}^{-}]{m}}{dt} &= J{ROS,m} - J^{Tr}{ROS} \ \frac{d [ O{2}^{-}]{i}}{dt} &= \frac{V{mito}}{V_{cyto}} J^{Tr}{ROS} -J{SOD,i} \ \frac{d[H_2O_2]i}{dt} &= 0.5J{SOD,i} -J_{GPX,i} - J_{CAT} \ \frac{d[GSH]i}{dt} &= J{GR,i} - J_{GPX,i} \ \end{align} $$
Parameter | Value | Unit | Desc. |
---|---|---|---|
5 | mM/s | Maximal rate of ANT | |
0.5 | - | Fraction of MMP |
$$ \begin{align} J_{uni} &= V_{max}^{Uni} \frac{S (1+S)^3}{(1+S)^4 + L(1 + A)^n} \frac{\delta}{e^\delta-1} \ S &= [Ca^{2+}]i / K{trans} \ A &= [Ca^{2+}]i / K{act} \ \delta &= -2 (\Delta\Psi_m - \Delta\Psi_0) F/RT \ \end{align} $$
Parameter | Value | Unit | Desc. |
---|---|---|---|
4.46 | mM/s | Maximal rate | |
91 | mV | Offset potential | |
0.38 | μM | Activation constant for calcium | |
19 | μM | Dissociation constant for calcium | |
n | -2.8 | - | Activation cooperativity |
L | 110 | - | Keq for conformational transitions |
$$ \begin{align} J_{NCLX} = V_{max}^{NCLX} \exp(b\Delta\Psi_m F/RT) \frac{[Ca^{2+}]_m}{[Ca^{2+}]_i} \left( \frac{[Na^+]_i}{[Na^+]i + K{Na}^{NCLX}} \right)^n \frac{[Ca^{2+}]_m}{[Ca^{2+}]m + K{Ca}^{NCLX}} \end{align} $$
Parameter | Value | Unit | Desc. |
---|---|---|---|
0.04665 | mM/s | Maximal rate of NCLX | |
b | 0.5 | - | Fraction of MMP |
9.4 | mM | Dissociation constant for sodium | |
0.375 | μM | Dissociation constant for calcium | |
3 | - | Cooperativity |
Parameter | Value | Unit | Desc. |
---|---|---|---|
2 | mM / (Volt * s) | Ionic conductance of the inner mitochondrial membrane |
$$ \begin{align} \frac{d [Ca^{2+}]m}{dt} &=\delta{Ca}( J_{uni} - J_{NCLX}) \ \frac{d [Na^+]m}{dt} &= J{NCLX} - J_{NaH} \ C_{m}\frac{d \Delta \Psi_m}{dt} &= J_{Hres} - J_{Hu} - J_{ANT} - J_{Hleak} -J_{NCLX} - J_{uni} - J_{IMAC} \ \end{align} $$
Parameter | Value | Unit | Desc. |
---|---|---|---|
F | 96485 | C/mol | Faraday constant |
T | 310 | K | Absolute temperature |
R | 8.314 | J/molK | Universal gas constant |
26.71 | mV | Thermal voltage (=${RT}/{F}$) | |
1.0 | Plasma membrane capacitance | ||
1.812 | mM/V | Mitochondrial inner membrane capacitance | |
0.0003 | - | Mitochondrial free calcium fraction | |
1E-5 | - | Mitochondrial proton buffering factor | |
Cytosolic volume | |||
Mitochondrial volume | |||
Network SR volume | |||
Junctional SR volume | |||
Subspace volume | |||
Capacitance area | |||
Plasma membrane capacitance | |||
Extracellualr potassium | |||
Extracellualr sodium | |||
Extracellualr calcium | |||
Inner membrane capacitance | |||
Inner membrane conductance |
Parameter | Value | Unit | Desc. |
---|---|---|---|
7 | CytosoliWc pH | ||
7.3-7.8 | Mitochondrial pH | ||
0.006 | mM | Tissue oxygen concentration | |
1.0 | mM | Cytosolic magnesium concentration | |
0.4 | mM | Mitochondrial magnesium concentration | |
8.6512 | mM | Sum of mitochondrial inorganic phosphate | |
1 | mM | Sum of mitochondrial NAD and NADH | |
1.5 | mM | Sum of mitochondrial ATP and ADP | |
0.1 | mM | Sum of mitochondrial NADPH plus NADP | |
1E-4 | mM | Cytosolic calcium concentration |
Footnotes
-
Rice JJ, Jafri MS, Winslow RL. Modeling short-term interval-force relations in cardiac muscle. Am J Physiol Heart Circ Physiol. 2000 Mar;278(3):H913-31. APS ↩
-
Golding, E. M., Teague, W. E., & Dobson, G. P. (1995). Adjustment of K’ to varying pH and pMg for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria permitting quantitative bioenergetic assessment. The Journal of Experimental Biology, 198(Pt 8), 1775–1782. ↩