forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rank_one_update.h
255 lines (225 loc) · 9.49 KB
/
rank_one_update.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_GLOP_RANK_ONE_UPDATE_H_
#define OR_TOOLS_GLOP_RANK_ONE_UPDATE_H_
#include <vector>
#include "ortools/base/logging.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/lp_utils.h"
#include "ortools/lp_data/scattered_vector.h"
#include "ortools/lp_data/sparse.h"
namespace operations_research {
namespace glop {
// This class holds a matrix of the form T = I + u.Tr(v) where I is the
// identity matrix and u and v are two column vectors of the same size as I. It
// allows for efficient left and right solves with T. When T is non-singular,
// it is easy to show that T^{-1} = I - 1 / mu * u.Tr(v) where
// mu = 1.0 + Tr(v).u
//
// Note that when v is a unit vector, T is a regular Eta matrix and when u
// is a unit vector, T is a row-wise Eta matrix.
//
// This is based on section 3.1 of:
// Qi Huangfu, J. A. Julian Hall, "Novel update techniques for the revised
// simplex method", 28 january 2013, Technical Report ERGO-13-0001
class RankOneUpdateElementaryMatrix {
public:
// Rather than copying the vectors u and v, RankOneUpdateElementaryMatrix
// takes two columns of a provided CompactSparseMatrix which is used for
// storage. This has a couple of advantages, especially in the context of the
// RankOneUpdateFactorization below:
// - It uses less overall memory (and avoid allocation overhead).
// - It has a better cache behavior for the RankOneUpdateFactorization solves.
RankOneUpdateElementaryMatrix(const CompactSparseMatrix* storage,
ColIndex u_index, ColIndex v_index,
Fractional u_dot_v)
: storage_(storage),
u_index_(u_index),
v_index_(v_index),
mu_(1.0 + u_dot_v) {}
// Returns whether or not this matrix is singular.
// Note that the RightSolve() and LeftSolve() function will fail if this is
// the case.
bool IsSingular() const { return mu_ == 0.0; }
// Solves T.x = rhs with rhs initialy in x (a column vector).
// The non-zeros version keeps track of the new non-zeros.
void RightSolve(DenseColumn* x) const {
DCHECK(!IsSingular());
const Fractional multiplier =
-storage_->ColumnScalarProduct(v_index_, Transpose(*x)) / mu_;
storage_->ColumnAddMultipleToDenseColumn(u_index_, multiplier, x);
}
void RightSolveWithNonZeros(ScatteredColumn* x) const {
DCHECK(!IsSingular());
const Fractional multiplier =
-storage_->ColumnScalarProduct(v_index_, Transpose(x->values)) / mu_;
if (multiplier != 0.0) {
storage_->ColumnAddMultipleToSparseScatteredColumn(u_index_, multiplier,
x);
}
}
// Solves y.T = rhs with rhs initialy in y (a row vector).
// The non-zeros version keeps track of the new non-zeros.
void LeftSolve(DenseRow* y) const {
DCHECK(!IsSingular());
const Fractional multiplier =
-storage_->ColumnScalarProduct(u_index_, *y) / mu_;
storage_->ColumnAddMultipleToDenseColumn(v_index_, multiplier,
reinterpret_cast<DenseColumn*>(y));
}
void LeftSolveWithNonZeros(ScatteredRow* y) const {
DCHECK(!IsSingular());
const Fractional multiplier =
-storage_->ColumnScalarProduct(u_index_, y->values) / mu_;
if (multiplier != 0.0) {
storage_->ColumnAddMultipleToSparseScatteredColumn(
v_index_, multiplier, reinterpret_cast<ScatteredColumn*>(y));
}
}
// Computes T.x for a given column vector.
void RightMultiply(DenseColumn* x) const {
const Fractional multiplier =
storage_->ColumnScalarProduct(v_index_, Transpose(*x));
storage_->ColumnAddMultipleToDenseColumn(u_index_, multiplier, x);
}
// Computes y.T for a given row vector.
void LeftMultiply(DenseRow* y) const {
const Fractional multiplier = storage_->ColumnScalarProduct(u_index_, *y);
storage_->ColumnAddMultipleToDenseColumn(v_index_, multiplier,
reinterpret_cast<DenseColumn*>(y));
}
EntryIndex num_entries() const {
return storage_->column(u_index_).num_entries() +
storage_->column(v_index_).num_entries();
}
private:
// This is only used in debug mode.
Fractional ComputeUScalarV() const {
DenseColumn dense_u;
storage_->ColumnCopyToDenseColumn(u_index_, &dense_u);
return storage_->ColumnScalarProduct(v_index_, Transpose(dense_u));
}
// Note that we allow copy and assignment so we can store a
// RankOneUpdateElementaryMatrix in an STL container.
const CompactSparseMatrix* storage_;
ColIndex u_index_;
ColIndex v_index_;
Fractional mu_;
};
// A rank one update factorization corresponds to the product of k rank one
// update elementary matrices, i.e. T = T_0.T_1. ... .T_{k-1}
class RankOneUpdateFactorization {
public:
// TODO(user): make the 5% a parameter and share it between all the places
// that switch between a sparse/dense version.
RankOneUpdateFactorization() : hypersparse_ratio_(0.05) {}
// This type is neither copyable nor movable.
RankOneUpdateFactorization(const RankOneUpdateFactorization&) = delete;
RankOneUpdateFactorization& operator=(const RankOneUpdateFactorization&) =
delete;
// This is currently only visible for testing.
void set_hypersparse_ratio(double value) { hypersparse_ratio_ = value; }
// Deletes all elementary matrices of this factorization.
void Clear() {
elementary_matrices_.clear();
num_entries_ = 0;
}
// Updates the factorization.
void Update(const RankOneUpdateElementaryMatrix& update_matrix) {
elementary_matrices_.push_back(update_matrix);
num_entries_ += update_matrix.num_entries();
}
// Left-solves all systems from right to left, i.e. y_i = y_{i+1}.(T_i)^{-1}
void LeftSolve(DenseRow* y) const {
RETURN_IF_NULL(y);
for (int i = elementary_matrices_.size() - 1; i >= 0; --i) {
elementary_matrices_[i].LeftSolve(y);
}
dtime_ += DeterministicTimeForFpOperations(num_entries_.value());
}
// Same as LeftSolve(), but if the given non_zeros are not empty, then all
// the new non-zeros in the result are appended to it.
void LeftSolveWithNonZeros(ScatteredRow* y) const {
RETURN_IF_NULL(y);
if (y->non_zeros.empty()) {
LeftSolve(&y->values);
return;
}
// y->is_non_zero is always all false before and after this code.
DCHECK(IsAllFalse(y->is_non_zero));
y->RepopulateSparseMask();
bool use_dense = y->ShouldUseDenseIteration(hypersparse_ratio_);
for (int i = elementary_matrices_.size() - 1; i >= 0; --i) {
if (use_dense) {
elementary_matrices_[i].LeftSolve(&y->values);
} else {
elementary_matrices_[i].LeftSolveWithNonZeros(y);
use_dense = y->ShouldUseDenseIteration(hypersparse_ratio_);
}
}
y->ClearSparseMask();
y->ClearNonZerosIfTooDense(hypersparse_ratio_);
dtime_ += DeterministicTimeForFpOperations(num_entries_.value());
}
// Right-solves all systems from left to right, i.e. T_i.d_{i+1} = d_i
void RightSolve(DenseColumn* d) const {
RETURN_IF_NULL(d);
const size_t end = elementary_matrices_.size();
for (int i = 0; i < end; ++i) {
elementary_matrices_[i].RightSolve(d);
}
dtime_ += DeterministicTimeForFpOperations(num_entries_.value());
}
// Same as RightSolve(), but if the given non_zeros are not empty, then all
// the new non-zeros in the result are appended to it.
void RightSolveWithNonZeros(ScatteredColumn* d) const {
RETURN_IF_NULL(d);
if (d->non_zeros.empty()) {
RightSolve(&d->values);
return;
}
// d->is_non_zero is always all false before and after this code.
DCHECK(IsAllFalse(d->is_non_zero));
d->RepopulateSparseMask();
bool use_dense = d->ShouldUseDenseIteration(hypersparse_ratio_);
const size_t end = elementary_matrices_.size();
for (int i = 0; i < end; ++i) {
if (use_dense) {
elementary_matrices_[i].RightSolve(&d->values);
} else {
elementary_matrices_[i].RightSolveWithNonZeros(d);
use_dense = d->ShouldUseDenseIteration(hypersparse_ratio_);
}
}
d->ClearSparseMask();
d->ClearNonZerosIfTooDense(hypersparse_ratio_);
dtime_ += DeterministicTimeForFpOperations(num_entries_.value());
}
EntryIndex num_entries() const { return num_entries_; }
// Deterministic time spent in all the solves function since last reset.
//
// TODO(user): This is quite precise. However we overcount a bit, because in
// each elementary solves, if the scalar product involved is zero, we skip
// some of the operations counted here. Is it worth spending a bit more time
// to be more precise here?
double DeterministicTimeSinceLastReset() const { return dtime_; }
void ResetDeterministicTime() { dtime_ = 0.0; }
private:
mutable double dtime_ = 0.0;
double hypersparse_ratio_;
EntryIndex num_entries_;
std::vector<RankOneUpdateElementaryMatrix> elementary_matrices_;
};
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_GLOP_RANK_ONE_UPDATE_H_