-
Notifications
You must be signed in to change notification settings - Fork 12
/
paper_simulation.py
406 lines (319 loc) · 12.1 KB
/
paper_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Copyright (c) 2019 Robin Scheibler
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
This file contains the code to run the systematic simulation for evaluation
of overiva and other algorithms.
"""
import argparse, json, os, sys
import numpy as np
import pyroomacoustics as pra
import rrtools
# Get the data if needed
from get_data import get_data, samples_dir
from room_builder import random_room_builder, callback_noise_mixer
get_data()
# Routines for manipulating audio samples
sys.path.append(samples_dir)
from generate_samples import sampling, wav_read_center
# find the absolute path to this file
base_dir = os.path.abspath(os.path.split(__file__)[0])
def init(parameters):
parameters["base_dir"] = base_dir
def one_loop(args):
global parameters
import time
import numpy
np = numpy
import pyroomacoustics
pra = pyroomacoustics
import os
import sys
sys.path.append(parameters["base_dir"])
from auxiva_pca import auxiva_pca, pca_separation
from five import five
from ive import ogive
from overiva import overiva
from pyroomacoustics.bss.common import projection_back
from room_builder import callback_noise_mixer, random_room_builder
# import samples helper routine
from get_data import samples_dir
sys.path.append(os.path.join(parameters['base_dir'], samples_dir))
from generate_samples import wav_read_center
n_targets, n_interferers, n_mics, sinr, wav_files, room_seed, seed = args
# this is the underdetermined case. We don't do that.
if n_mics < n_targets:
return []
# set MKL to only use one thread if present
try:
import mkl
mkl.set_num_threads(1)
except ImportError:
pass
# set the RNG seed
rng_state = np.random.get_state()
np.random.seed(seed)
# STFT parameters
framesize = parameters["stft_params"]["framesize"]
hop = parameters["stft_params"]["hop"]
if parameters["stft_params"]["window"] == "hann":
win_a = pra.hamming(framesize)
else: # default is Hann
win_a = pra.hann(framesize)
win_s = pra.transform.compute_synthesis_window(win_a, hop)
# Generate the audio signals
# get the simulation parameters from the json file
# Simulation parameters
sources_var = np.ones(n_targets)
# total number of sources
n_sources = n_targets + n_interferers
# Read the signals
wav_files = [os.path.join(parameters["base_dir"], fn) for fn in wav_files]
signals = wav_read_center(wav_files[:n_sources], seed=123)
# Get a random room
room, rt60 = random_room_builder(
signals, n_mics, seed=room_seed, **parameters["room_params"]
)
premix = room.simulate(return_premix=True)
# mix the signal
n_samples = premix.shape[2]
mix = callback_noise_mixer(
premix,
sinr=sinr,
diffuse_ratio=parameters["sinr_diffuse_ratio"],
n_src=n_sources,
n_tgt=n_targets,
tgt_std=np.sqrt(sources_var),
ref_mic=parameters["ref_mic"],
)
# sum up the background
# shape (n_mics, n_samples)
background = np.sum(premix[n_targets:n_sources, :, :], axis=0)
# shape (n_targets+1, n_samples, n_mics)
ref = np.zeros(
(n_targets + 1, premix.shape[2], premix.shape[1]), dtype=premix.dtype
)
ref[:n_targets, :, :] = premix[:n_targets, :, :].swapaxes(1, 2)
ref[n_targets, :, :] = background.T
synth = np.zeros_like(ref)
# START BSS
###########
# shape: (n_frames, n_freq, n_mics)
X_all = pra.transform.analysis(mix.T, framesize, hop, win=win_a)
X_mics = X_all[:, :, :n_mics]
# convergence monitoring callback
def convergence_callback(
Y, X, n_targets, SDR, SIR, eval_time, ref, framesize, win_s, algo_name
):
t_in = time.perf_counter()
# projection back
z = projection_back(Y, X[:, :, 0])
Y = Y * np.conj(z[None, :, :])
from mir_eval.separation import bss_eval_sources
if Y.shape[2] == 1:
y = pra.transform.synthesis(Y[:, :, 0], framesize, hop, win=win_s)[:, None]
else:
y = pra.transform.synthesis(Y, framesize, hop, win=win_s)
if algo_name not in parameters["overdet_algos"]:
new_ord = np.argsort(np.std(y, axis=0))[::-1]
y = y[:, new_ord]
m = np.minimum(y.shape[0] - hop, ref.shape[1])
synth[:n_targets, :m, 0] = y[hop : m + hop, :n_targets].T
synth[n_targets, :m, 0] = y[hop : m + hop, 0]
sdr, sir, sar, perm = bss_eval_sources(
ref[: n_targets + 1, :m, 0], synth[:, :m, 0]
)
SDR.append(sdr[:n_targets].tolist())
SIR.append(sir[:n_targets].tolist())
t_out = time.perf_counter()
eval_time.append(t_out - t_in)
# store results in a list, one entry per algorithm
results = []
# compute the initial values of SDR/SIR
init_sdr = []
init_sir = []
convergence_callback(
X_mics, X_mics, n_targets, init_sdr, init_sir, [], ref, framesize, win_s, "init"
)
for full_name, params in parameters["algorithm_kwargs"].items():
name = params["algo"]
kwargs = params["kwargs"]
if name == "auxiva_pca" and n_targets == 1:
# PCA doesn't work for single source scenario
continue
elif name in ["ogive", "five"] and n_targets != 1:
# OGIVE is only for single target
continue
results.append(
{
"algorithm": full_name,
"n_targets": n_targets,
"n_interferers": n_interferers,
"n_mics": n_mics,
"rt60": rt60,
"sinr": sinr,
"seed": seed,
"sdr": [],
"sir": [], # to store the result
"runtime": np.nan,
"eval_time": np.nan,
"n_samples": n_samples,
}
)
# this is used to keep track of time spent in the evaluation callback
eval_time = []
def cb(Y):
convergence_callback(
Y,
X_mics,
n_targets,
results[-1]["sdr"],
results[-1]["sir"],
eval_time,
ref,
framesize,
win_s,
name,
)
# avoid one computation by using the initial values of sdr/sir
results[-1]["sdr"].append(init_sdr[0])
results[-1]["sir"].append(init_sir[0])
try:
t_start = time.perf_counter()
if name == "auxiva":
# Run AuxIVA
# this calls full IVA when `n_src` is not provided
Y = overiva(X_mics, callback=cb, **kwargs)
elif name == "auxiva_pca":
# Run AuxIVA
Y = auxiva_pca(
X_mics, n_src=n_targets, callback=cb, proj_back=False, **kwargs
)
elif name == "overiva":
# Run BlinkIVA
Y = overiva(
X_mics, n_src=n_targets, callback=cb, proj_back=False, **kwargs
)
elif name == "overiva2":
# Run BlinkIVA
Y = overiva(
X_mics, n_src=n_targets, callback=cb, proj_back=False, **kwargs
)
elif name == "five":
# Run AuxIVE
Y = five(X_mics, callback=cb, proj_back=False, **kwargs)
elif name == "ilrma":
# Run AuxIVA
Y = pra.bss.ilrma(X_mics, callback=cb, proj_back=False, **kwargs)
elif name == "ogive":
# Run OGIVE
Y = ogive(X_mics, callback=cb, proj_back=False, **kwargs)
elif name == "pca":
# Run PCA
Y = pca_separation(X_mics, n_src=n_targets)
else:
continue
t_finish = time.perf_counter()
# The last evaluation
convergence_callback(
Y,
X_mics,
n_targets,
results[-1]["sdr"],
results[-1]["sir"],
[],
ref,
framesize,
win_s,
name,
)
results[-1]["eval_time"] = np.sum(eval_time)
results[-1]["runtime"] = t_finish - t_start - results[-1]["eval_time"]
except:
import os, json
pid = os.getpid()
# report last sdr/sir as np.nan
results[-1]["sdr"].append(np.nan)
results[-1]["sir"].append(np.nan)
# now write the problem to file
fn_err = os.path.join(
parameters["_results_dir"], "error_{}.json".format(pid)
)
with open(fn_err, "a") as f:
f.write(json.dumps(results[-1], indent=4))
# skip to next iteration
continue
# restore RNG former state
np.random.set_state(rng_state)
return results
def generate_arguments(parameters):
""" This will generate the list of arguments to run simulation for """
rng_state = np.random.get_state()
np.random.seed(parameters["seed"])
# Maximum total number of sources
n_sources = np.max(parameters["n_interferers_list"]) + np.max(
parameters["n_targets_list"]
)
# First we randomly select all the speech samples
gen_files_seed = int(np.random.randint(2 ** 32, dtype=np.uint32))
all_wav_files = sampling(
parameters["n_repeat"],
n_sources,
parameters["samples_list"],
gender_balanced=True,
seed=gen_files_seed,
)
# Pick the seeds to reproducibly build a bunch of random rooms
room_seeds = np.random.randint(
2 ** 32, size=parameters["n_repeat"], dtype=np.uint32
).tolist()
args = []
for n_targets in parameters["n_targets_list"]:
for n_interferers in parameters["n_interferers_list"]:
for n_mics in parameters["n_mics_list"]:
# we don't do underdetermined
if n_targets > n_mics:
continue
for sinr in parameters["sinr_list"]:
for wav_files, room_seed in zip(all_wav_files, room_seeds):
# generate the seed for this simulation
seed = int(np.random.randint(2 ** 32, dtype=np.uint32))
# add the new combination to the list
args.append(
[
n_targets,
n_interferers,
n_mics,
sinr,
wav_files,
room_seed,
seed,
]
)
np.random.set_state(rng_state)
return args
if __name__ == "__main__":
rrtools.run(
one_loop,
generate_arguments,
func_init=init,
base_dir=base_dir,
results_dir="data/",
description="Simulation for Independent Vector Extraction via Iterative SINR Maximization (submitted to ICASSP 2020)",
)