From 0700a9b6d23e489a6e62bc948ae08edaca55d155 Mon Sep 17 00:00:00 2001 From: hust17yixuan <303660421@qq.com> Date: Tue, 3 Dec 2024 10:43:51 +0800 Subject: [PATCH] test --- .../ops/csrc/pytorch/npu/border_align_npu.cpp | 65 +++++++++++++++++++ 1 file changed, 65 insertions(+) create mode 100644 mmcv/ops/csrc/pytorch/npu/border_align_npu.cpp diff --git a/mmcv/ops/csrc/pytorch/npu/border_align_npu.cpp b/mmcv/ops/csrc/pytorch/npu/border_align_npu.cpp new file mode 100644 index 0000000000..6dac2d7004 --- /dev/null +++ b/mmcv/ops/csrc/pytorch/npu/border_align_npu.cpp @@ -0,0 +1,65 @@ +#include "pytorch_npu_helper.hpp" + +using namespace NPU_NAME_SPACE; +using namespace std; + +void border_align_forward_impl(const Tensor &input, const Tensor &boxes, + Tensor output, Tensor argmax_idx, + const int pool_size); + +void border_align_forward_npu(const Tensor &input, const Tensor &boxes, + Tensor output, Tensor argmax_idx, + const int pool_size) { + TORCH_CHECK(input.size(0) == boxes.size(0), + "The batch sizes of feature map and rois must be the same."); + TORCH_CHECK(input.size(1) % 4 == 0, + "The number of channels must be divisible by 4."); + TORCH_CHECK(pool_size >= 2, "The pool size should be larger than 2."); + int32_t batch_size = input.size(0); + int32_t channels = input.size(1); + int32_t height = input.size(2); + int32_t width = input.size(3); + at::Tensor feature_map = input.permute({0, 2, 3, 1}).contiguous(); + at::Tensor rois_map = boxes.contiguous(); + at::Tensor temp_tensor = at::zeros( + {batch_size, height * width, pool_size + 1, channels}, input.options()); + EXEC_NPU_CMD(aclnnBorderAlign, feature_map, rois_map, pool_size, temp_tensor); + auto max_result = temp_tensor.max(-2); + at::Tensor output_ = std::get<0>(max_result).to(at::kFloat); + output_ = output_.reshape({batch_size, height * width, 4, channels / 4}) + .permute({0, 3, 1, 2}) + .contiguous(); + output.copy_(output_); + at::Tensor argmax_idx_ = std::get<1>(max_result).to(at::kInt); + argmax_idx_ = + argmax_idx_.reshape({batch_size, height * width, 4, channels / 4}) + .permute({0, 3, 1, 2}) + .contiguous(); + argmax_idx.copy_(argmax_idx_); +} +REGISTER_NPU_IMPL(border_align_forward_impl, border_align_forward_npu); + +void border_align_backward_impl(const Tensor &grad_output, const Tensor &boxes, + const Tensor &argmax_idx, Tensor grad_input, + const int pool_size); + +void border_align_backward_npu(const Tensor &grad_output, const Tensor &boxes, + const Tensor &argmax_idx, Tensor grad_input, + const int pool_size) { + TORCH_CHECK(grad_output.dim() == 4, + "grad_out.dim() must be 4, but got: ", grad_output.dim()); + TORCH_CHECK(boxes.dim() == 3, "idx.dim() must be 3, but got: ", boxes.dim()); + TORCH_CHECK(argmax_idx.dim() == 4, + "argmax_idx.dim() must be 4, but got: ", argmax_idx.dim()); + + int32_t batch_size = grad_output.size(0); + int32_t feat_channels = grad_output.size(1) * 4; + int32_t channels = grad_output.size(1); + int32_t box_size = boxes.size(1); + int32_t height = grad_input.size(2); + int32_t width = grad_input.size(3); + + EXEC_NPU_CMD(aclnnBorderAlignGrad, grad_output, boxes, argmax_idx, channels, + box_size, height, width, pool_size, batch_size, grad_input); +} +REGISTER_NPU_IMPL(border_align_backward_impl, border_align_backward_npu);