-
Notifications
You must be signed in to change notification settings - Fork 124
/
record.py
executable file
·234 lines (211 loc) · 6.1 KB
/
record.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python
import cv
import numpy
import json
import cv2
import os
import sys
import json
import re
import numpy as np
import threading
import traceback
import urllib2
import pyaudio
import skimage.io
from os import system
from platform import system as platform
# from json import dumps, loads, JSONEncoder, JSONDecoder
recognition_server_url='http://192.168.1.11:5000/classify_image'
i = 0
xFactor=1
abort = False
lock = False
image = numpy.ndarray(shape=(512, 512), dtype=np.uint8)
last = image
winName="Record speech"
cv2.namedWindow(winName, cv.CV_WINDOW_FULLSCREEN)
if platform() == 'Darwin': # How Mac OS X is identified by Python
system('''/usr/bin/osascript -e 'tell app "Finder" to set frontmost of process "Python" to true' ''')
class RecordThread(threading.Thread):
def run(self):
record()
def say(what):
os.system("say %s"%what)
def teach(lock):
# blocking
print "TEACHING %s",lock
if(i>30):
upload(image.T,lock)
else:
upload(last.T,lock)
def record():
global i
global image
global winName
global abort
# INDEX = 1
INDEX = 0
FORMAT = pyaudio.paInt16
# FORMAT = pyaudio.paInt8
CHANNELS = 1
# RATE = 48000
# RATE = 44100
RATE = 22050#Hz 1ch s16le LIKE say cmd!
# Its the audio interface telling SoX it doesn't support that rate. Its a very quirky interface.
# OSX gives a loud warning during compile that the audio interface we are using has been deprecated for long time now and not to use it.
# CD sample rates are at 44100
# RATE = 22500
# INPUT_BLOCK_TIME = 0.05
INPUT_BLOCK_TIME = 0.01
INPUT_FRAMES_PER_BLOCK = int(RATE*INPUT_BLOCK_TIME)
# CHUNK = 512
# CHUNK = 1024
# CHUNK = 1024
# CHUNK = 2048
CHUNK = 4096
# CHUNK = 9192
# length=512
length=1024
# length=2048
# length = 4096
# step=32
step=64
# step=128
# step=256
# print pyaudio.get_device_info_by_index(INDEX)
zeroz=numpy.zeros(512)
stream = pyaudio.PyAudio().open(
format = FORMAT,
channels = CHANNELS,
rate = RATE,
input = True,
frames_per_buffer = CHUNK,
input_device_index = INDEX )
# r = numpy.array()
offset = 0
summ=0
r = numpy.empty(length)
while True:
if abort:
return
try:
dataraw = stream.read(CHUNK)
data0 = numpy.fromstring(dataraw, dtype='int16')
# data0 = numpy.fromstring(dataraw, dtype='int8')
last=summ
summ=numpy.sum(numpy.absolute(data0))
if(lock):
teach(lock)
# print summ
if(summ<123456): # coarse filtering, good for anything?
continue
# if(i<20 and (summ<180 or last<180)):
# continue
# print summ
# print 'go!'
r=numpy.append(r,data0)
while offset < r.size - length :
if abort:
return
if(lock):
teach(lock)
data = r[offset:offset+length]
offset=offset + step
data = numpy.fft.fft(data)
data = numpy.absolute(data)
# data = data[0:512]/256.0 #/4 #WHY 4 ?? 2^16=2^8*...
data = data[-512-1:-1]/256.0 #/4 #WHY 4 ?? 2^16=2^8*...
summ=numpy.sum(data)
if(summ<3000):
if i<30 :
i=0#reset()
# break
continue
else:
while i<512:
image[i] = zeroz
i = i+1
else:
numpy.putmask(data, data > 255, 255)
# data = numpy.log2(data/(2^4)+1.0)*50.0;
i = i+1
if(i>=512*xFactor):
threading.Thread(target=upload, args=[image.T]).start();
cv2.imshow(winName,image.T)
i=3
else:
image[i] = data
if(i%4==0):
cv2.imshow(winName,image.T)
# result=upload(image)
# print "YAY %s"%result
# result=re.compile("(\\d)").search(result).group(1)
# threading.Thread(target=say, args=[result]).start();
# cv2.imwrite('snapshot/RandomGray%d.png'%i,image)
# if cv2.waitKey(10) == 27: BREAKS portAudio !!
# cv2.destroyWindow(winName)
# return 0
except IOError:
print 'lost frame' # reduce imshow frequency
# print 'todo: in threading'
except Exception as err:
print('Record sound error: %s' % err)
traceback.print_exc(file=sys.stdout)
def analyze(result):
start_consonants="_ br bl chr fl fr gl gr kn kl kr pf pr pl qu schm schn schr schl schw sk skr st str tr wr b c d f g h j k l m n p r s t w x z".split(' ');
result=np.fromstring(result[1:-1], dtype=float, sep=' ')
# result=list(result)
best=result.argmax()
print best
category=start_consonants[best]
return category
def upload(image=None,clazz=None):
global lock
lock=None # clear now!
if image==None:
image_file="0_Karen_160.wav.spec.png"
# image_file="/me/ai/phonemes/spoken_numbers/7_Karen_260.wav.spec.png"
image = skimage.io.imread(image_file).astype(numpy.uint8) #float32 BOTH OK!
post_data=json.dumps({'json':image.tolist(),'class':clazz,'net':'speech'})
req = urllib2.Request(recognition_server_url, post_data)
print "sent"
response = urllib2.urlopen(req)
result = response.read()
# result=analyze(result)
print "YAY %s"%result
return result
import time
import sys
if __name__ == '__main__':
global abort,lock #= False
cv2.imshow(winName,image )
# threading.Thread(target=say, args=["hi"]).start();
threading.Thread(target=os.system, args=["say 5"]).start();
r=RecordThread()
r.start()
# print int('8') # 8
# print 56==('8') # false :(
# record()
# upload()
# transform_all()
while True:
key=cv2.waitKey(1)
if key<0:
continue
if chr(key)=='8' or key==ord('8'):
lock='8'
if key==27:
print 'DONE'
abort=True
# r._Thread__stop()
time.sleep(.32)
cv2.destroyWindow(winName)
break
else:
lock=chr(key)
print "got locky %s"%lock
key=-1
# sys.exit(0)
# app.run(debug=True, host='0.0.0.0', port=5000)
# app.run(debug=False, host='0.0.0.0', port=5000)