Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Project dependencies may have API risk issues #14

Open
PyDeps opened this issue Oct 26, 2022 · 0 comments
Open

Project dependencies may have API risk issues #14

PyDeps opened this issue Oct 26, 2022 · 0 comments

Comments

@PyDeps
Copy link

PyDeps commented Oct 26, 2022

Hi, In MLfromscratch, inappropriate dependency versioning constraints can cause risks.

Below are the dependencies and version constraints that the project is using

numpy==1.22.0
scikit-learn==0.24.2
matplotlib==3.4.2
pandas==1.2.4

The version constraint == will introduce the risk of dependency conflicts because the scope of dependencies is too strict.
The version constraint No Upper Bound and * will introduce the risk of the missing API Error because the latest version of the dependencies may remove some APIs.

After further analysis, in this project,
The version constraint of dependency numpy can be changed to >=1.8.0,<=1.23.0rc3.
The version constraint of dependency matplotlib can be changed to >=1.3.0,<=3.0.3.
The version constraint of dependency pandas can be changed to >=0.4.0,<=1.2.5.

The above modification suggestions can reduce the dependency conflicts as much as possible,
and introduce the latest version as much as possible without calling Error in the projects.

The invocation of the current project includes all the following methods.

The calling methods from the numpy
numpy.linalg.inv
numpy.linalg.eig
The calling methods from the matplotlib
matplotlib.colors.ListedColormap
The calling methods from the pandas
pandas.read_csv
The calling methods from the all methods
numpy.argwhere
self._grow_tree
self._best_criteria
self.plot
numpy.unique
numpy.amin
LDA.transform
RandomForest.predict
numpy.mean
range
numpy.exp
numpy.argsort
numpy.dot
sklearn.datasets.make_blobs
df.fillna.fillna
self._create_clusters
self._traverse_tree
numpy.log
self._approximation
numpy.sign
matplotlib.pyplot.figure
self._is_converged
numpy.linalg.eig
numpy.where
NaiveBayes
matplotlib.pyplot.show
numpy.sum
DecisionTree
mean_overall.mean_c.reshape.dot
SVM
matplotlib.colors.ListedColormap
SW.np.linalg.inv.dot
numpy.empty
csv.reader
centroid_idx.clusters.append
most_common_label
numpy.argmax
sklearn.datasets.make_classification
ax.scatter
matplotlib.pyplot.cm.get_cmap
matplotlib.pyplot.figure.add_subplot
KNN.predict
numpy.genfromtxt
bootstrap_sample
Node
LinearRegression
self._predict
fig.add_subplot.plot
Adaboost.fit
LinearRegression.predict
Perceptron.predict
enumerate
list
SVM.fit
Adaboost.predict
KMeans.predict
node.is_leaf_node
numpy.sqrt
self.trees.append
sum
matplotlib.pyplot.plot
numpy.swapaxes
self._pdf
DecisionTree.predict
numpy.random.seed
self._information_gain
matplotlib.pyplot.xlabel
KNN.fit
numpy.amax
DecisionStump
Perceptron
len
posteriors.append
numpy.log2
numpy.argmin
numpy.linalg.inv
self.clfs.append
self._get_cluster_labels
Perceptron.fit
numpy.cov
abs
accuracy
LogisticRegression.predict
numpy.array
mean_c.X_c.T.dot
visualize_svm
numpy.bincount
decision_tree.DecisionTree.fit
float
entropy
RandomForest.fit
sklearn.datasets.make_regression
mean_overall.mean_c.reshape
sklearn.datasets.load_iris
LinearRegression.fit
mean_squared_error
NaiveBayes.fit
KMeans.plot
PCA.transform
k_neighbor_labels.Counter.most_common
numpy.loadtxt
cmap
self._sigmoid
RandomForest
decision_tree.DecisionTree
numpy.zeros
sklearn.model_selection.train_test_split
self._split
pandas.read_csv
X_c.mean
X_c.var
self._get_centroids
df.fillna.to_numpy
LDA
fig.add_subplot.set_ylim
split_thresh.X_column.np.argwhere.flatten
collections.Counter.most_common
numpy.full
euclidean_distance
decision_tree.DecisionTree.predict
min
matplotlib.pyplot.scatter
self._most_common_label
print
get_hyperplane_value
matplotlib.pyplot.ylabel
PCA
Adaboost
numpy.corrcoef
self.activation_func
matplotlib.pyplot.subplots
numpy.ones
r2_score
matplotlib.pyplot.get_cmap
LogisticRegression.fit
KNN
open
sklearn.datasets.load_breast_cancer
NaiveBayes.predict
numpy.random.choice
DecisionTree.fit
self._closest_centroid
matplotlib.pyplot.colorbar
collections.Counter
KMeans
LDA.fit
PCA.fit
LogisticRegression

@developer
Could please help me check this issue?
May I pull a request to fix it?
Thank you very much.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant