-
Notifications
You must be signed in to change notification settings - Fork 1
/
dataset.py
147 lines (117 loc) · 4.94 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import random
import string
import chainer
import numpy as np
class SQuADDataset(chainer.dataset.DatasetMixin):
def __init__(self, data, shared_data, vocab, config):
self.data = data
self.shared_data = shared_data
self.vocab = vocab
self.config = config
def __len__(self):
return len(self.data['*x'])
def get_example(self, i):
config = self.config
data_item = {k: self.data[k][i] for k in self.data.keys()}
for k in self.data.keys():
if k.startswith('*'):
shared_key = k[1:]
data_item[shared_key] = self.shared_idx(self.shared_data[shared_key], data_item[k])
M = config.max_num_sents
JX = config.max_sent_size
JQ = config.max_ques_size
W = config.max_word_size
x = np.zeros([M, JX], dtype='int32')
cx = np.zeros([M, JX, W], dtype='int32')
x_mask = np.zeros([M, JX], dtype='bool')
q = np.zeros([JQ], dtype='int32')
cq = np.zeros([JQ, W], dtype='int32')
q_mask = np.zeros([JQ], dtype='bool')
y = np.zeros([M, JX], dtype='bool')
y2 = np.zeros([M, JX], dtype='bool')
ids = data_item['ids'] # for logging of results
start_idx, stop_idx = data_item['y'][0] # random.choice(data_item['y'])
j, k = start_idx
j2, k2 = stop_idx
y[j, k] = True
y2[j2, k2-1] = True
X = data_item['x']
CX = data_item['cx']
def _get_word(word):
d = self.vocab['word2idx']
for each in (word, word.lower(), word.capitalize(), word.upper()):
if each in d:
return d[each]
return 1
def _get_char(char):
d = self.vocab['char2idx']
if char in d:
return d[char]
return 1
for j, xij in enumerate(X):
if j == config.max_num_sents:
break
for k, xijk in enumerate(xij):
if k == config.max_sent_size:
break
each = _get_word(xijk)
assert isinstance(each, int), each
x[j, k] = each
x_mask[j, k] = True
for j, cxij in enumerate(CX):
if j == config.max_num_sents:
break
for k, cxijk in enumerate(cxij):
if k == config.max_sent_size:
break
for l, cxijkl in enumerate(cxijk):
if l == config.max_word_size:
break
cx[j, k, l] = _get_char(cxijkl)
for j, qij in enumerate(data_item['q']):
q[j] = _get_word(qij)
q_mask[j] = True
for j, cqij in enumerate(data_item['cq']):
for k, cqijk in enumerate(cqij):
cq[j, k] = _get_char(cqijk)
if k + 1 == config.max_word_size:
break
ys = [[y[0][1], y[1][1]] for y in data_item['y']]
return (x, cx, x_mask, q, cq, q_mask, y, y2, ids, ys)
def shared_idx(self, l, i):
return self.shared_idx(l[i[0]], i[1:]) if len(i) > 1 else l[i[0]]
def update_config(config, datasets, vocab):
config.max_num_sents = 0
config.max_sent_size = 0
config.max_ques_size = 0
config.max_word_size = 0
config.max_para_size = 0
for data_set in datasets:
data = data_set.data
shared = data_set.shared_data
for idx in range(len(data_set.data['*x'])):
rx = data['*x'][idx]
q = data['q'][idx]
sents = shared['x'][rx[0]][rx[1]]
config.max_para_size = max(config.max_para_size, sum(map(len, sents)))
config.max_num_sents = max(config.max_num_sents, len(sents))
config.max_sent_size = max(config.max_sent_size, max(map(len, sents)))
config.max_word_size = max(config.max_word_size, max(len(word) for sent in sents for word in sent))
if len(q) > 0:
config.max_ques_size = max(config.max_ques_size, len(q))
config.max_word_size = max(config.max_word_size, max(len(word) for word in q))
config.max_num_sents = min(config.max_num_sents, config.num_sents_th)
config.max_sent_size = min(config.max_sent_size, config.sent_size_th)
config.max_para_size = min(config.max_para_size, config.para_size_th)
config.max_word_size = min(config.max_word_size, config.word_size_th)
config.char_vocab_size = len(vocab['char2idx'])
config.word_emb_size = len(next(iter(vocab['word2vec'].values())))
config.word_vocab_size = len(vocab['word2idx'])
config.idx2word = vocab['idx2word']
config.word2idx = vocab['word2idx']
config.word_emb = vocab['emb_mat']
skip_word = list(string.punctuation) + ['a', 'an', 'the', '']
skip_word_in_result = [vocab['word2idx'][w]
for w in skip_word if w in vocab['word2idx']]
config.skip_word_in_result = skip_word_in_result
return config