Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Using custom sd model #43

Open
anilsathyan7 opened this issue Jun 29, 2024 · 3 comments
Open

Using custom sd model #43

anilsathyan7 opened this issue Jun 29, 2024 · 3 comments

Comments

@anilsathyan7
Copy link

anilsathyan7 commented Jun 29, 2024

Getting error in replicate demo (https://replicate.com/philz1337x/clarity-upscaler) and running same docker image locally, if we add sd_model url in options:-

File "/root/.pyenv/versions/3.10.4/lib/python3.10/site-packages/cog/server/worker.py", line 217, in _predict
result = predict(**payload)
File "/src/predict.py", line 463, in predict
os.remove(path_to_custom_checkpoint)
UnboundLocalError: local variable 'path_to_custom_checkpoint' referenced before assignment
{"error": "local variable 'path_to_custom_checkpoint' referenced before assignment", "prediction_id": null, "logger": "cog.server.runner", "timestamp": "2024-06-29T10:56:39.592964Z", "severity": "INFO", "message": "prediction failed"}

custom_sd_model: "https://civitai.com/api/download/models/245598"
Replicate logs:-

Running prediction
Upscaling with scale_factor:  2.0
Reusing loaded model juggernaut_reborn.safetensors to load epicrealism_naturalSinRC1VAE.safetensors
Loading weights [None] from /src/models/Stable-diffusion/epicrealism_naturalSinRC1VAE.safetensors
Loading VAE weights from commandline argument: models/VAE/vae-ft-mse-840000-ema-pruned.safetensors
Applying attention optimization: xformers... done.
Weights loaded in 1.1s (send model to cpu: 0.4s, apply weights to model: 0.2s, move model to device: 0.4s).
[Tiled Diffusion] upscaling image with 4x-UltraSharp...
[Tiled Diffusion] ControlNet found, support is enabled.
2024-06-29 11:08:19,333 - ControlNet - �[0;32mINFO�[0m - unit_separate = False, style_align = False
2024-06-29 11:08:19,333 - ControlNet - �[0;32mINFO�[0m - Loading model from cache: control_v11f1e_sd15_tile
2024-06-29 11:08:19,356 - ControlNet - �[0;32mINFO�[0m - Using preprocessor: tile_resample
2024-06-29 11:08:19,356 - ControlNet - �[0;32mINFO�[0m - preprocessor resolution = 1536
2024-06-29 11:08:19,434 - ControlNet - �[0;32mINFO�[0m - ControlNet Hooked - Time = 0.1061091423034668
MultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 144x112, Tile count: 4, Batch size: 4, Tile batches: 1 (ext: ContrlNet)
[Tiled VAE]: the input size is tiny and unnecessary to tile.
MultiDiffusion Sampling:   0%|          | 0/5 [00:00<?, ?it/s]
  0%|          | 0/7 [00:00<?, ?it/s]�[A�[A
Total progress:   0%|          | 0/7 [00:00<?, ?it/s]�[A
 14%|█▍        | 1/7 [00:00<00:05,  1.01it/s]�[A�[A
Total progress:  29%|██▊       | 2/7 [00:00<00:01,  4.01it/s]�[A
 29%|██▊       | 2/7 [00:01<00:03,  1.43it/s]�[A�[A
Total progress:  43%|████▎     | 3/7 [00:00<00:01,  2.84it/s]�[A
 43%|████▎     | 3/7 [00:01<00:02,  1.65it/s]�[A�[A
Total progress:  57%|█████▋    | 4/7 [00:01<00:01,  2.46it/s]�[A
 57%|█████▋    | 4/7 [00:02<00:01,  1.77it/s]�[A�[A
Total progress:  71%|███████▏  | 5/7 [00:01<00:00,  2.28it/s]�[A
 71%|███████▏  | 5/7 [00:02<00:01,  1.85it/s]�[A�[A
Total progress:  86%|████████▌ | 6/7 [00:02<00:00,  2.18it/s]�[A
 86%|████████▌ | 6/7 [00:03<00:00,  1.91it/s]�[A�[A
100%|██████████| 7/7 [00:03<00:00,  1.95it/s]�[A�[A
100%|██████████| 7/7 [00:03<00:00,  1.76it/s]
MultiDiffusion Sampling:   0%|          | 0/6 [00:26<?, ?it/s]
Total progress: 100%|██████████| 7/7 [00:02<00:00,  2.13it/s]�[A[Tiled VAE]: input_size: torch.Size([1, 4, 192, 192]), tile_size: 128, padding: 11
[Tiled VAE]: split to 2x2 = 4 tiles. Optimal tile size 96x96, original tile size 128x128
[Tiled VAE]: Fast mode enabled, estimating group norm parameters on 128 x 128 image
[Tiled VAE]: Executing Decoder Task Queue:   0%|          | 0/492 [00:00<?, ?it/s]�[A�[A
[Tiled VAE]: Executing Decoder Task Queue:  25%|██▌       | 124/492 [00:00<00:00, 918.30it/s]�[A�[A
[Tiled VAE]: Executing Decoder Task Queue:  50%|█████     | 247/492 [00:00<00:00, 1028.06it/s]�[A�[A
[Tiled VAE]: Executing Decoder Task Queue:  75%|███████▌  | 370/492 [00:00<00:00, 1069.62it/s]�[A�[A
[Tiled VAE]: Executing Decoder Task Queue: 100%|██████████| 492/492 [00:00<00:00, 1114.69it/s]
[Tiled VAE]: Done in 1.201s, max VRAM alloc 5125.813 MB
Total progress: 100%|██████████| 7/7 [00:04<00:00,  2.13it/s]�[A
Total progress: 100%|██████████| 7/7 [00:04<00:00,  1.55it/s]
Traceback (most recent call last):
File "/root/.pyenv/versions/3.10.4/lib/python3.10/site-packages/cog/server/worker.py", line 221, in _predict
result = predict(**payload)
File "/src/predict.py", line 574, in predict
os.remove(path_to_custom_checkpoint)
UnboundLocalError: local variable 'path_to_custom_checkpoint' referenced before assignment





{
  "completed_at": "2024-06-29T11:08:27.074199Z",
  "created_at": "2024-06-29T11:08:15.997000Z",
  "data_removed": false,
  "error": "local variable 'path_to_custom_checkpoint' referenced before assignment",
  "id": "s1f680kmznrj20cgceq8z4thcw",
  "input": {
    "seed": 1337,
    "image": "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png",
    "prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
    "dynamic": 6,
    "handfix": "disabled",
    "pattern": false,
    "sharpen": 0,
    "sd_model": "epicrealism_naturalSinRC1VAE.safetensors [84d76a0328]",
    "scheduler": "DPM++ 3M SDE Karras",
    "creativity": 0.35,
    "lora_links": "",
    "downscaling": false,
    "resemblance": 0.6,
    "scale_factor": 2,
    "tiling_width": 112,
    "output_format": "png",
    "tiling_height": 144,
    "custom_sd_model": "https://civitai.com/api/download/models/245598",
    "negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
    "num_inference_steps": 18,
    "downscaling_resolution": 768
  },
  "logs": "Running prediction\nUpscaling with scale_factor:  2.0\nReusing loaded model juggernaut_reborn.safetensors to load epicrealism_naturalSinRC1VAE.safetensors\nLoading weights [None] from /src/models/Stable-diffusion/epicrealism_naturalSinRC1VAE.safetensors\nLoading VAE weights from commandline argument: models/VAE/vae-ft-mse-840000-ema-pruned.safetensors\nApplying attention optimization: xformers... done.\nWeights loaded in 1.1s (send model to cpu: 0.4s, apply weights to model: 0.2s, move model to device: 0.4s).\n[Tiled Diffusion] upscaling image with 4x-UltraSharp...\n[Tiled Diffusion] ControlNet found, support is enabled.\n2024-06-29 11:08:19,333 - ControlNet - \u001b[0;32mINFO\u001b[0m - unit_separate = False, style_align = False\n2024-06-29 11:08:19,333 - ControlNet - \u001b[0;32mINFO\u001b[0m - Loading model from cache: control_v11f1e_sd15_tile\n2024-06-29 11:08:19,356 - ControlNet - \u001b[0;32mINFO\u001b[0m - Using preprocessor: tile_resample\n2024-06-29 11:08:19,356 - ControlNet - \u001b[0;32mINFO\u001b[0m - preprocessor resolution = 1536\n2024-06-29 11:08:19,434 - ControlNet - \u001b[0;32mINFO\u001b[0m - ControlNet Hooked - Time = 0.1061091423034668\nMultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 144x112, Tile count: 4, Batch size: 4, Tile batches: 1 (ext: ContrlNet)\n[Tiled VAE]: the input size is tiny and unnecessary to tile.\nMultiDiffusion Sampling:   0%|          | 0/5 [00:00<?, ?it/s]\n  0%|          | 0/7 [00:00<?, ?it/s]\u001b[A\u001b[A\nTotal progress:   0%|          | 0/7 [00:00<?, ?it/s]\u001b[A\n 14%|█▍        | 1/7 [00:00<00:05,  1.01it/s]\u001b[A\u001b[A\nTotal progress:  29%|██▊       | 2/7 [00:00<00:01,  4.01it/s]\u001b[A\n 29%|██▊       | 2/7 [00:01<00:03,  1.43it/s]\u001b[A\u001b[A\nTotal progress:  43%|████▎     | 3/7 [00:00<00:01,  2.84it/s]\u001b[A\n 43%|████▎     | 3/7 [00:01<00:02,  1.65it/s]\u001b[A\u001b[A\nTotal progress:  57%|█████▋    | 4/7 [00:01<00:01,  2.46it/s]\u001b[A\n 57%|█████▋    | 4/7 [00:02<00:01,  1.77it/s]\u001b[A\u001b[A\nTotal progress:  71%|███████▏  | 5/7 [00:01<00:00,  2.28it/s]\u001b[A\n 71%|███████▏  | 5/7 [00:02<00:01,  1.85it/s]\u001b[A\u001b[A\nTotal progress:  86%|████████▌ | 6/7 [00:02<00:00,  2.18it/s]\u001b[A\n 86%|████████▌ | 6/7 [00:03<00:00,  1.91it/s]\u001b[A\u001b[A\n100%|██████████| 7/7 [00:03<00:00,  1.95it/s]\u001b[A\u001b[A\n100%|██████████| 7/7 [00:03<00:00,  1.76it/s]\nMultiDiffusion Sampling:   0%|          | 0/6 [00:26<?, ?it/s]\nTotal progress: 100%|██████████| 7/7 [00:02<00:00,  2.13it/s]\u001b[A[Tiled VAE]: input_size: torch.Size([1, 4, 192, 192]), tile_size: 128, padding: 11\n[Tiled VAE]: split to 2x2 = 4 tiles. Optimal tile size 96x96, original tile size 128x128\n[Tiled VAE]: Fast mode enabled, estimating group norm parameters on 128 x 128 image\n[Tiled VAE]: Executing Decoder Task Queue:   0%|          | 0/492 [00:00<?, ?it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue:  25%|██▌       | 124/492 [00:00<00:00, 918.30it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue:  50%|█████     | 247/492 [00:00<00:00, 1028.06it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue:  75%|███████▌  | 370/492 [00:00<00:00, 1069.62it/s]\u001b[A\u001b[A\n[Tiled VAE]: Executing Decoder Task Queue: 100%|██████████| 492/492 [00:00<00:00, 1114.69it/s]\n[Tiled VAE]: Done in 1.201s, max VRAM alloc 5125.813 MB\nTotal progress: 100%|██████████| 7/7 [00:04<00:00,  2.13it/s]\u001b[A\nTotal progress: 100%|██████████| 7/7 [00:04<00:00,  1.55it/s]\nTraceback (most recent call last):\nFile \"/root/.pyenv/versions/3.10.4/lib/python3.10/site-packages/cog/server/worker.py\", line 221, in _predict\nresult = predict(**payload)\nFile \"/src/predict.py\", line 574, in predict\nos.remove(path_to_custom_checkpoint)\nUnboundLocalError: local variable 'path_to_custom_checkpoint' referenced before assignment",
  "metrics": {
    "predict_time": 11.065791937,
    "total_time": 11.077199
  },
  "output": null,
  "started_at": "2024-06-29T11:08:16.008408Z",
  "status": "failed",
  "urls": {
    "get": "https://api.replicate.com/v1/predictions/s1f680kmznrj20cgceq8z4thcw",
    "cancel": "https://api.replicate.com/v1/predictions/s1f680kmznrj20cgceq8z4thcw/cancel"
  },
  "version": "dfad41707589d68ecdccd1dfa600d55a208f9310748e44bfe35b4a6291453d5e"
}
@michael-dm
Copy link

I'm facing the exact same error.

@StonedApeMedia
Copy link

Still getting that error as well - Can anyone do the LORAS either? Don't get an error message using them but it doesn't seem to work at all.

@alexrdzs
Copy link

I'm also getting this error when trying to use lora_links or custom_sd_model. I just can't figure it out or if I'm doing something wrong. Have you managed to make it work? I tried by pasting the downloadable link eg. https://civitai.com/api/download/models/40665 with no luck.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants