-
Notifications
You must be signed in to change notification settings - Fork 252
/
mnist.jl
52 lines (40 loc) · 2.21 KB
/
mnist.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
using Mocha
srand(12345678)
data_layer = AsyncHDF5DataLayer(name="train-data", source="data/train.txt", batch_size=64, shuffle=true)
conv_layer = ConvolutionLayer(name="conv1", n_filter=20, kernel=(5,5), bottoms=[:data], tops=[:conv])
pool_layer = PoolingLayer(name="pool1", kernel=(2,2), stride=(2,2), bottoms=[:conv], tops=[:pool])
conv2_layer = ConvolutionLayer(name="conv2", n_filter=50, kernel=(5,5), bottoms=[:pool], tops=[:conv2])
pool2_layer = PoolingLayer(name="pool2", kernel=(2,2), stride=(2,2), bottoms=[:conv2], tops=[:pool2])
fc1_layer = InnerProductLayer(name="ip1", output_dim=500, neuron=Neurons.ReLU(), bottoms=[:pool2], tops=[:ip1])
fc2_layer = InnerProductLayer(name="ip2", output_dim=10, bottoms=[:ip1], tops=[:ip2])
loss_layer = SoftmaxLossLayer(name="loss", bottoms=[:ip2,:label])
backend = DefaultBackend()
init(backend)
common_layers = [conv_layer, pool_layer, conv2_layer, pool2_layer, fc1_layer, fc2_layer]
net = Net("MNIST-train", backend, [data_layer, common_layers..., loss_layer])
exp_dir = "snapshots-$(Mocha.default_backend_type)"
method = SGD()
params = make_solver_parameters(method, max_iter=10000, regu_coef=0.0005,
mom_policy=MomPolicy.Fixed(0.9),
lr_policy=LRPolicy.Inv(0.01, 0.0001, 0.75),
load_from=exp_dir)
solver = Solver(method, params)
setup_coffee_lounge(solver, save_into="$exp_dir/statistics.jld", every_n_iter=1000)
# report training progress every 100 iterations
add_coffee_break(solver, TrainingSummary(), every_n_iter=100)
# save snapshots every 5000 iterations
add_coffee_break(solver, Snapshot(exp_dir), every_n_iter=5000)
# show performance on test data every 1000 iterations
data_layer_test = HDF5DataLayer(name="test-data", source="data/test.txt", batch_size=100)
acc_layer = AccuracyLayer(name="test-accuracy", bottoms=[:ip2, :label])
test_net = Net("MNIST-test", backend, [data_layer_test, common_layers..., acc_layer])
add_coffee_break(solver, ValidationPerformance(test_net), every_n_iter=1000)
solve(solver, net)
#Profile.init(int(1e8), 0.001)
#@profile solve(solver, net)
#open("profile.txt", "w") do out
# Profile.print(out)
#end
destroy(net)
destroy(test_net)
shutdown(backend)