forked from pillowlab/BinaryPursuitSpikeSorting
-
Notifications
You must be signed in to change notification settings - Fork 1
/
script0_simulateDataForTesting.m
136 lines (112 loc) · 4.73 KB
/
script0_simulateDataForTesting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
% Generate some fake data to illustrate the use of binary pursuit spike sorting code.
fprintf('script0_simulateDataForTesting: generating dataset for spike sorting...\n');
% Set params for simulated dataset using those in the 'setSpikeSortParams.m' script
setSpikeSortParams; % (LOOK HERE FOR DETAILS).
% Set parameters governing the simulated spike trains
nwt = 30; % # time samples in spike waveforms
sprate = 100; % mean spike rate (unrealistically high to observe lots of simultaneous spks)
nsesig = .1; % marginal stdv of additive noise (arbitrary units)
%% 2. Generate spike trains % ----------------------
Xsp = double(sparse((rand(sdat.nsamps,sdat.ncell) < sprate/sdat.samprate))); % each column is spk train
% remove spikes too close together
minisi = nwt*1.5; % smallest allowed interspike interval
for j = 1:sdat.ncell
tsp = find(Xsp(:,j)); % spike times
isi = [nwt; diff(tsp)]; % interspike intervals
kk = find(isi<minisi);
Xsp(tsp(kk),j) = 0; % remove these spikes
end
%% 3. Generate some Spike waveforms % ----------------------
tbins = (1:nwt)'; % time bins
% Make some basis waveforms
someWaves = normpdf(repmat(tbins,1,5),repmat(nwt/5+(1:2:9),nwt,1),repmat(1.5:6,nwt,1));
% Make waveform for each neuron
W = zeros(nwt,sdat.ne,sdat.ncell); % tensor for spike waveforms (nwt x nelectrodes x ncell)
for j = 1:sdat.ncell
elecinds = max(1,round(j/sdat.ncell*sdat.ne)-2):min(sdat.ne,round(j/sdat.ncell*sdat.ne)+1); % which electrodes the cell talks to
spwaveform = someWaves*(randn(size(someWaves,2),length(elecinds))+.1); % the waveform
W(:,elecinds,j) = spwaveform./norm(spwaveform(:)); % put unit-vector waveform in tensor
end
% ----------- MAKE FIG -------------
% Plot all waveforms as [time x electrode] image
subplot(121);
imagesc(reshape(permute(W,[1 3 2]),nwt*sdat.ncell,[])); % image showing all waveforms
set(gca,'ytick',nwt/2:nwt:nwt*sdat.ncell,'yticklabel',1:sdat.ncell);
title('spike waveforms for each neuron');
xlabel('electrode #'); ylabel('cell');
% Plot waveforms for each neuron
for j = 1:sdat.ncell
subplot(sdat.ncell,2,j*2);
plot(W(:,:,j));
set(gca,'xtick', []);
ylabel(sprintf('cell %d',j));
if j ==sdat.ncell
xlabel('time');
end
end
%% 4. Simulate recorded electrode data % ----------------------
% Compute noiseless electrode signal by convolving spike trains with waveforms
y0 = compVpredictionSprse(Xsp,W);
% Make noise filter (for adding realistic noise)
nsefilter_t = exp(-(0:9))';
nsefilter_x = normpdf(-sdat.ne/2:sdat.ne/2,0,1)./normpdf(0);
nsefilter = nsefilter_t*nsefilter_x;
nsefilter = nsefilter./norm(nsefilter(:));
addednoise = conv2(randn(sdat.nsamps,sdat.ne),nsefilter,'same')*nsesig; % make colored noise
Y = y0+addednoise; % add noise
% ----------- MAKE FIG -------------
% Plot noiseless (red) and noisy (blue) traces for a few electrodes
T = 500; % time range to display
iipl = 1:T; % time indices to plot
npl = min(10,sdat.ne+1);
for j = 1:npl-1
subplot(npl,1,j+1);
plot(iipl, Y(iipl,j), iipl, y0(iipl,j), 'r');
ylabel(sprintf('electr #%d', j));
if j < npl-1
set(gca, 'xticklabel', []);
end
box off;
end
xlabel('time (samples)');
% --- Plot spikes ----
subplot(npl,1,1);
cla; hold on;
for j = 1:sdat.ncell
tsp = find(Xsp(1:500,j));
plot([0 T],j*[1 1],'k--');
if ~isempty(tsp)
plot(tsp,j,'b.');
end
end
hold off;
set(gca,'ydir','reverse','ytick',1:sdat.ncell,'ylim', [0 sdat.ncell+1]);
title('spike trains'); ylabel('neuron');
%% 5. Create "initialization" spike train with simultaneous spikes removed % ----------------------
shortisi = nwt/3; % define what counts as "near-simultaneous"
XspTot = sum(Xsp,2); % aggregate spike train
tspTot = find(XspTot); % spike times of aggregate spike triain
isiTot = [shortisi;diff(tspTot)]; % isis
shortIsis = find((isiTot<shortisi)); % indices of 2nd spike in short isis
shortIsis = setdiff(union(shortIsis-1,shortIsis),0); % all indices
% Create "initial" spike train with partial spikes present
Xsp_init = Xsp;
Xsp_init(tspTot(shortIsis),:) = 0; % remove these spikes
% Femove 10% of additional spikes
Xsp_init = Xsp_init.*(rand(sdat.nsamps,sdat.ncell)<0.9);
fprintf('----\nTotal number of true spikes: %d\n', full(sum(Xsp(:))));
fprintf('Number of near-synchronous spikes: %d\n', full(sum(XspTot(tspTot(shortIsis)))));
fprintf('Number total spikes removed: %d\n', full(sum(Xsp(:)-Xsp_init(:))));
fprintf('Number spikes in ''Xsp_init'': %d\n', full(sum(Xsp_init(:))));
%% 6. Save out data % ----------------------
if ~exist('dat','dir');
mkdir('dat');
end
dirname = sprintf('dat/simdata');
if ~exist(dirname,'dir')
mkdir(dirname);
end
save([dirname,'/Xsp_true.mat'],'Xsp');
save([dirname,'/W_true.mat'],'W');
save([dirname,'/Y.mat'],'Y');
save([dirname,'/Xsp_init.mat'],'Xsp_init');