-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_action_dist.py
165 lines (146 loc) · 6.46 KB
/
multi_action_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gym
import numpy as np
import tree
from ray.rllib.models.torch.torch_action_dist import (
TorchMultiActionDistribution,
TorchCategorical,
TorchBeta,
TorchDiagGaussian,
TorchMultiCategorical,
)
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.spaces.space_utils import get_base_struct_from_space
from ray.rllib.utils.typing import TensorType, List, Union
torch, nn = try_import_torch()
class InvalidActionSpace(Exception):
"""Raised when the action space is invalid"""
pass
# Override the TorchBeta class to allow for vectors on
class TorchBetaMulti(TorchBeta):
def __init__(
self,
inputs: List[TensorType],
model: TorchModelV2,
low: Union[float, TensorType] = 0.0,
high: Union[float, TensorType] = 1.0,
):
super().__init__(inputs, model)
device = self.inputs.device
self.low = torch.tensor(low).to(device)
self.high = torch.tensor(high).to(device)
assert len(self.low.shape) == 1, "Low vector of beta must have only 1 dimension"
assert (
len(self.high.shape) == 1
), "High vector of beta must have only 1 dimension"
assert (
self.low.shape[0] == 1 or self.low.shape[0] == self.inputs.shape[-1] // 2
), f"Size of low vector of beta must be either 1 ore match the size of the input, got {self.low.shape[0]} expected {self.inputs.shape[-1]}"
assert (
self.high.shape[0] == 1 or self.high.shape[0] == self.inputs.shape[-1] // 2
), f"Size of high vector of beta must be either 1 ore match the size of the input, got {self.high.shape[0]} expected {self.inputs.shape[-1]}"
class TorchHomogeneousMultiActionDistribution(TorchMultiActionDistribution):
@override(TorchMultiActionDistribution)
def __init__(self, inputs, model, *, child_distributions, input_lens, action_space):
# Skip calling parent constructor, instead call grandparent constructor because
# we do not want to compute the self.flat_child_distributions in the super constructor
super(TorchMultiActionDistribution, self).__init__(inputs, model)
if not isinstance(inputs, torch.Tensor):
inputs = torch.from_numpy(inputs)
if isinstance(model, TorchModelV2):
inputs = inputs.to(next(model.parameters()).device)
self.action_space_struct = get_base_struct_from_space(action_space)
self.input_lens = tree.flatten(input_lens)
split_inputs = torch.split(inputs, self.input_lens, dim=1)
self.flat_child_distributions = []
for agent_action_space, agent_inputs in zip(
self.action_space_struct, split_inputs
):
if isinstance(agent_action_space, gym.spaces.Box):
assert len(agent_action_space.shape) == 1
if model.use_beta:
self.flat_child_distributions.append(
TorchBetaMulti(
agent_inputs,
model,
low=agent_action_space.low,
high=agent_action_space.high,
)
)
else:
self.flat_child_distributions.append(
TorchDiagGaussian(agent_inputs, model)
)
elif isinstance(agent_action_space, gym.spaces.Discrete):
self.flat_child_distributions.append(
TorchCategorical(agent_inputs, model)
)
elif isinstance(agent_action_space, gym.spaces.MultiDiscrete):
self.flat_child_distributions.append(
TorchMultiCategorical(
agent_inputs, model, action_space=agent_action_space
)
)
else:
raise InvalidActionSpace(
"Expect gym.spaces.Box, gym.spaces.Discrete or gym.spaces.MultiDiscrete action space for each agent"
)
@override(TorchMultiActionDistribution)
def logp(self, x):
if isinstance(x, np.ndarray):
x = torch.Tensor(x)
assert isinstance(x, torch.Tensor)
# x.shape = (BATCH, num_agents * action_size)
logps = []
assert len(self.flat_child_distributions) == len(self.action_space_struct)
i = 0
for agent_distribution in self.flat_child_distributions:
if isinstance(agent_distribution, TorchCategorical):
a_size = 1
x_agent = x[:, i].int()
elif isinstance(agent_distribution, TorchMultiCategorical):
a_size = int(np.prod(agent_distribution.action_space.shape))
x_agent = x[:, i : (i + a_size)].int()
else:
sample = agent_distribution.sample()
# Cover Box(shape=()) case.
if len(sample.shape) == 1:
a_size = 1
else:
a_size = sample.size()[1]
x_agent = x[:, i : (i + a_size)]
i += a_size
agent_logps = agent_distribution.logp(x_agent)
if len(agent_logps.shape) > 1:
agent_logps = torch.sum(agent_logps, dim=1)
# agent_logps shape (BATCH_SIZE, 1)
logps.append(agent_logps)
# logps shape (BATCH_SIZE, NUM_AGENTS)
return torch.stack(logps, axis=-1)
@override(TorchMultiActionDistribution)
def entropy(self):
entropies = []
for d in self.flat_child_distributions:
agent_entropy = d.entropy()
if len(agent_entropy.shape) > 1:
agent_entropy = torch.sum(agent_entropy, dim=1)
entropies.append(agent_entropy)
return torch.stack(entropies, axis=-1)
@override(TorchMultiActionDistribution)
def sampled_action_logp(self):
return torch.stack(
[d.sampled_action_logp() for d in self.flat_child_distributions], axis=-1
)
@override(TorchMultiActionDistribution)
def kl(self, other):
kls = []
for d, o in zip(self.flat_child_distributions, other.flat_child_distributions):
agent_kl = d.kl(o)
if len(agent_kl.shape) > 1:
agent_kl = torch.sum(agent_kl, dim=1)
kls.append(agent_kl)
return torch.stack(
kls,
axis=-1,
)