-
Notifications
You must be signed in to change notification settings - Fork 1
/
5_Analysis_Realm_Bat.R
304 lines (276 loc) · 9.88 KB
/
5_Analysis_Realm_Bat.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#===================================================#
# Analyze species richness, phylogenetic diversity, #
# functional richness, and mean functional beta #
# diversity turnover for bats #
# #
# Using realm as categorical variable #
#===================================================#
library(tidyverse)
library(sf)
library(colorspace)
library(rnaturalearth)
library(rnaturalearthdata)
library(spdep)
sf_use_s2(FALSE) # Avoid some issues of invalid geometries
# Load outlines of landmasses for mapping
world <- ne_coastline(scale = "medium", returnclass = "sf") %>%
st_crop(c(xmin=-180, xmax=180, ymin=-60, ymax=85))
# ----- LOAD CELLS WITH COVARIATES ----------
cells <- st_read("Data/global_cells.shp") %>%
# Landmass area
left_join(read.csv("Data/Raw/landmass_area_cells.csv"), "cell_id") %>%
# Elevation (mean and range)
left_join(read.csv("Data/elev_cells.csv"), "cell_id") %>%
dplyr::select(-X) %>%
# Present climate
left_join(read.csv("Data/clim_Present_cells.csv"), "cell_id") %>%
dplyr::select(-X)
# ----- SPECIES RICHNESS ----------
# ---------- Run models, save R2 ----------
# Load data
data <- read.csv("Data/bat_SR_cells.csv") %>%
left_join(cells, by="cell_id")
# Run model, all covariates
SR_all <- lm(SR ~ log(Landmass_area) +
elev_mean + I(elev_mean^2) +
elev_range +
clim_pca_1 + I(clim_pca_1^2) +
clim_pca_2 + I(clim_pca_2^2) +
clim_pca_3 + I(clim_pca_3^2) +
clim_pca_4 + I(clim_pca_4^2) +
Realm,
data=data,
na.action = na.fail)
# Run model, environment
SR_env <- lm(SR ~ log(Landmass_area) +
elev_mean + I(elev_mean^2) +
elev_range +
clim_pca_1 + I(clim_pca_1^2) +
clim_pca_2 + I(clim_pca_2^2) +
clim_pca_3 + I(clim_pca_3^2) +
clim_pca_4 + I(clim_pca_4^2),
data=data,
na.action = na.fail)
# Run model, realm
SR_realm <- lm(SR ~ Realm,
data=data,
na.action = na.fail)
# Save R2 of each model
R2_all <- summary(SR_all)$adj.r.squared
R2_env <- summary(SR_env)$adj.r.squared
R2_realm <- summary(SR_realm)$adj.r.squared
# Realm only
R2_realm_only <- R2_all - R2_env
# Environment only
R2_env_only <- R2_all - R2_realm
# Shared
R2_shared <- R2_all - R2_realm_only - R2_env_only
# ---------- Map differences in residuals (Supplementary Fig. 2i) ----------
# Difference with/without realm
res_df <- data.frame(
res = abs(resid(SR_env)) - abs(resid(SR_all)),
cell_id = as.numeric(data$cell_id))
res_map <- cells %>% right_join(res_df, by="cell_id")
# Save figure
svg("Results/diffres_bat_SR_realm.svg",
width = 2.5, height = 1.5)
ggplot() +
geom_sf(data = world, colour="grey85", lwd=.1, linewidth=.1) +
geom_sf(data = res_map, aes(color = res, fill = res),
lwd=.1, linewidth=.1) +
scale_colour_continuous_diverging(palette="Blue-Red") +
scale_fill_continuous_diverging(palette="Blue-Red") +
theme_void() +
theme(legend.title = element_blank(),
legend.text = element_text(size=7),
legend.position = "bottom") +
theme(legend.key.height = unit(.17, "cm"),
legend.key.width = unit(1.1,"cm"))
dev.off()
# ----- PHYLOGENETIC DIVERSITY ----------
# ---------- Run models, save R2 ----------
# Load data
data <- read.csv("Data/bat_PD_cells.csv") %>%
left_join(cells, by="cell_id")
# Run model, all covariates
PD_all <- lm(PD ~ log(Landmass_area) +
elev_mean + I(elev_mean^2) +
elev_range +
clim_pca_1 + I(clim_pca_1^2) +
clim_pca_2 + I(clim_pca_2^2) +
clim_pca_3 + I(clim_pca_3^2) +
clim_pca_4 + I(clim_pca_4^2) +
Realm,
data=data,
na.action = na.fail)
# Run model, environment
PD_env <- lm(PD ~ log(Landmass_area) +
elev_mean + I(elev_mean^2) +
elev_range +
clim_pca_1 + I(clim_pca_1^2) +
clim_pca_2 + I(clim_pca_2^2) +
clim_pca_3 + I(clim_pca_3^2) +
clim_pca_4 + I(clim_pca_4^2),
data=data,
na.action = na.fail)
# Run model, realm
PD_realm <- lm(PD ~ Realm,
data=data,
na.action = na.fail)
# Save R2 of each model
R2_all <- summary(PD_all)$adj.r.squared
R2_env <- summary(PD_env)$adj.r.squared
R2_realm <- summary(PD_realm)$adj.r.squared
# Realm only
R2_realm_only <- R2_all - R2_env
# Environment only
R2_env_only <- R2_all - R2_realm
# Shared
R2_shared <- R2_all - R2_realm_only - R2_env_only
# ---------- Map differences in residuals (Supplementary Fig. 2j) ----------
# Difference with/without realm
res_df <- data.frame(
res = abs(resid(PD_env)) - abs(resid(PD_all)),
cell_id = as.numeric(data$cell_id))
res_map <- cells %>% right_join(res_df, by="cell_id")
# Save figure
svg("Results/diffres_bat_PD_realm.svg",
width = 2.5, height = 1.5)
ggplot() +
geom_sf(data = world, colour="grey85", lwd=.1, linewidth=.1) +
geom_sf(data = res_map, aes(color = res, fill = res),
lwd=.1, linewidth=.1) +
scale_colour_continuous_diverging(palette="Blue-Red") +
scale_fill_continuous_diverging(palette="Blue-Red") +
theme_void() +
theme(legend.title = element_blank(),
legend.text = element_text(size=7),
legend.position = "bottom") +
theme(legend.key.height = unit(.17, "cm"),
legend.key.width = unit(1.1,"cm"))
dev.off()
# ----- FUNCTIONAL RICHNESS ----------
# ---------- Run models, save R2 ----------
# Load data
data <- read.csv("Data/bat_FR_cells.csv") %>%
na.omit() %>%
left_join(cells, by="cell_id")
# Run model, all covariates
FR_all <- lm(FR ~ log(Landmass_area) +
elev_mean + I(elev_mean^2) +
elev_range +
clim_pca_1 + I(clim_pca_1^2) +
clim_pca_2 + I(clim_pca_2^2) +
clim_pca_3 + I(clim_pca_3^2) +
clim_pca_4 + I(clim_pca_4^2) +
Realm,
data=data,
na.action = na.fail)
# Run model, environment
FR_env <- lm(FR ~ log(Landmass_area) +
elev_mean + I(elev_mean^2) +
elev_range +
clim_pca_1 + I(clim_pca_1^2) +
clim_pca_2 + I(clim_pca_2^2) +
clim_pca_3 + I(clim_pca_3^2) +
clim_pca_4 + I(clim_pca_4^2),
data=data,
na.action = na.fail)
# Run model, realm
FR_realm <- lm(FR ~ Realm,
data=data,
na.action = na.fail)
# Save R2 of each model
R2_all <- summary(FR_all)$adj.r.squared
R2_env <- summary(FR_env)$adj.r.squared
R2_realm <- summary(FR_realm)$adj.r.squared
# Realm only
R2_realm_only <- R2_all - R2_env
# Environment only
R2_env_only <- R2_all - R2_realm
# Shared
R2_shared <- R2_all - R2_realm_only - R2_env_only
# ---------- Map differences in residuals (Supplementary Fig. 2k) ----------
# Difference with/without realm
res_df <- data.frame(
res = abs(resid(FR_env)) - abs(resid(FR_all)),
cell_id = as.numeric(data$cell_id))
res_map <- cells %>% right_join(res_df, by="cell_id")
# Save figure
svg("Results/diffres_bat_FR_realm.svg",
width = 2.5, height = 1.5)
ggplot() +
geom_sf(data = world, colour="grey85", lwd=.1, linewidth=.1) +
geom_sf(data = res_map, aes(color = res, fill = res),
lwd=.1, linewidth=.1) +
scale_colour_continuous_diverging(palette="Blue-Red") +
scale_fill_continuous_diverging(palette="Blue-Red") +
theme_void() +
theme(legend.title = element_blank(),
legend.text = element_text(size=7),
legend.position = "bottom") +
theme(legend.key.height = unit(.17, "cm"),
legend.key.width = unit(1.1,"cm"))
dev.off()
# ----- MEAN FUNC BETA TURNOVER ----------
# ---------- Run models, save R2 ----------
# Load data
data <- read.csv("Data/bat_mean_fb.csv") %>%
left_join(cells, by="cell_id")
# Run model, all covariates
FB_all <- lm(mean_fb ~ log(Landmass_area) +
elev_mean + I(elev_mean^2) +
elev_range +
clim_pca_1 + I(clim_pca_1^2) +
clim_pca_2 + I(clim_pca_2^2) +
clim_pca_3 + I(clim_pca_3^2) +
clim_pca_4 + I(clim_pca_4^2) +
Realm,
data=data,
na.action = na.fail)
# Run model, environment
FB_env <- lm(mean_fb ~ log(Landmass_area) +
elev_mean + I(elev_mean^2) +
elev_range +
clim_pca_1 + I(clim_pca_1^2) +
clim_pca_2 + I(clim_pca_2^2) +
clim_pca_3 + I(clim_pca_3^2) +
clim_pca_4 + I(clim_pca_4^2),
data=data,
na.action = na.fail)
# Run model, realm
FB_realm <- lm(mean_fb ~ Realm,
data=data,
na.action = na.fail)
# Save R2 of each model
R2_all <- summary(FB_all)$adj.r.squared
R2_env <- summary(FB_env)$adj.r.squared
R2_realm <- summary(FB_realm)$adj.r.squared
# Realm only
R2_realm_only <- R2_all - R2_env
# Environment only
R2_env_only <- R2_all - R2_realm
# Shared
R2_shared <- R2_all - R2_realm_only - R2_env_only
# ---------- Map differences in residuals (Supplementary Fig. 2l) ----------
# Difference with/without realm
res_df <- data.frame(
res = abs(resid(FB_env)) - abs(resid(FB_all)),
cell_id = as.numeric(data$cell_id))
res_map <- cells %>% right_join(res_df, by="cell_id")
# Save figure
svg("Results/diffres_bat_FB_realm.svg",
width = 2.5, height = 1.5)
ggplot() +
geom_sf(data = world, colour="grey85", lwd=.1, linewidth=.1) +
geom_sf(data = res_map, aes(color = res, fill = res),
lwd=.1, linewidth=.1) +
scale_colour_continuous_diverging(palette="Blue-Red") +
scale_fill_continuous_diverging(palette="Blue-Red") +
theme_void() +
theme(legend.title = element_blank(),
legend.text = element_text(size=7),
legend.position = "bottom") +
theme(legend.key.height = unit(.17, "cm"),
legend.key.width = unit(1.1,"cm"))
dev.off()