forked from mcnablab/DSIQspace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dsiadapt.py
executable file
·663 lines (546 loc) · 22.1 KB
/
dsiadapt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
import numpy as np
from scipy.ndimage import map_coordinates
from scipy.fftpack import fftn, fftshift, ifftshift
from dipy.reconst.odf import OdfModel, OdfFit, gfa
from dipy.reconst.cache import Cache
from dipy.reconst.multi_voxel import multi_voxel_fit
from dipy.reconst.recspeed import local_maxima, remove_similar_vertices
class DiffusionSpectrumModel(OdfModel, Cache):
def __init__(self,
gtab,
qgrid_size=17,
r_start=2.1,
r_end=6.,
r_step=0.2,
filter_width=32,
filter_type='hanning',
normalize_peaks=False,
pdfwgt=2):
r""" Diffusion Spectrum Imaging
The theoretical idea underlying this method is that the diffusion
propagator $P(\mathbf{r})$ (probability density function of the average
spin displacements) can be estimated by applying 3D FFT to the signal
values $S(\mathbf{q})$
..math::
:nowrap:
\begin{eqnarray}
P(\mathbf{r}) & = & S_{0}^{-1}\int S(\mathbf{q})\exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{r}
\end{eqnarray}
where $\mathbf{r}$ is the displacement vector and $\mathbf{q}$ is the
wavector which corresponds to different gradient directions. Method
used to calculate the ODFs. Here we implement the method proposed by
Wedeen et. al [1]_.
The main assumption for this model is fast gradient switching and that
the acquisition gradients will sit on a keyhole Cartesian grid in
q_space [3]_.
Parameters
----------
gtab : GradientTable,
Gradient directions and bvalues container class
qgrid_size : int,
has to be an odd number. Sets the size of the q_space grid.
For example if qgrid_size is 17 then the shape of the grid will be
``(17, 17, 17)``.
r_start : float,
ODF is sampled radially in the PDF. This parameters shows where the
sampling should start.
r_end : float,
Radial endpoint of ODF sampling
r_step : float,
Step size of the ODf sampling from r_start to r_end
filter_width : float,
Strength of the hanning filter
References
----------
.. [1] Wedeen V.J et. al, "Mapping Complex Tissue Architecture With
Diffusion Spectrum Magnetic Resonance Imaging", MRM 2005.
.. [2] Canales-Rodriguez E.J et. al, "Deconvolution in Diffusion
Spectrum Imaging", Neuroimage, 2010.
.. [3] Garyfallidis E, "Towards an accurate brain tractography", PhD
thesis, University of Cambridge, 2012.
Examples
--------
In this example where we provide the data, a gradient table
and a reconstruction sphere, we calculate generalized FA for the first
voxel in the data with the reconstruction performed using DSI.
>>> from dipy.data import dsi_voxels, get_sphere
>>> data, gtab = dsi_voxels()
>>> sphere = get_sphere('symmetric724')
>>> from dipy.reconst.dsi import DiffusionSpectrumModel
>>> ds = DiffusionSpectrumModel(gtab)
>>> dsfit = ds.fit(data)
>>> from dipy.reconst.odf import gfa
>>> np.round(gfa(dsfit.odf(sphere))[0, 0, 0], 2)
0.11
Notes
------
A. Have in mind that DSI expects gradients on both hemispheres. If your
gradients span only one hemisphere you need to duplicate the data and
project them to the other hemisphere before calling this class. The
function dipy.reconst.dsi.half_to_full_qspace can be used for this
purpose.
B. If you increase the size of the grid (parameter qgrid_size) you will
most likely also need to update the r_* parameters. This is because
the added zero padding from the increase of gqrid_size also introduces
a scaling of the PDF.
C. We assume that data only one b0 volume is provided.
See Also
--------
dipy.reconst.gqi.GeneralizedQSampling
"""
self.bvals = gtab.bvals
self.bvecs = gtab.bvecs
self.normalize_peaks = normalize_peaks
# 3d volume for Sq
if qgrid_size % 2 == 0:
raise ValueError('qgrid_size needs to be an odd integer')
self.qgrid_size = qgrid_size
# necessary shifting for centering
self.origin = self.qgrid_size // 2
# hanning filter width
self.filter = hanning_filter(gtab, filter_width, filter_type)
# odf sampling radius
self.qradius = np.arange(r_start, r_end, r_step)
self.qradiusn = len(self.qradius)
# create qspace grid
self.qgrid = create_qspace(gtab, self.origin)
b0 = np.min(self.bvals)
self.dn = (self.bvals > b0).sum()
self.gtab = gtab
self.pdfwgt=pdfwgt
@multi_voxel_fit
def fit(self, data):
return DiffusionSpectrumFit(self, data)
class DiffusionSpectrumFit(OdfFit):
def __init__(self, model, data):
""" Calculates PDF and ODF and other properties for a single voxel
Parameters
----------
model : object,
DiffusionSpectrumModel
data : 1d ndarray,
signal values
"""
self.model = model
self.data = data
self.qgrid_sz = self.model.qgrid_size
self.dn = self.model.dn
self._gfa = None
self.npeaks = 5
self._peak_values = None
self._peak_indices = None
def pdf(self, normalized=False, clipped=True):
""" Applies the 3D FFT in the q-space grid to generate
the diffusion propagator
"""
values = self.data * self.model.filter
# create the signal volume
Sq = np.zeros((self.qgrid_sz, self.qgrid_sz, self.qgrid_sz))
# fill q-space
for i in range(len(values)):
qx, qy, qz = self.model.qgrid[i]
Sq[qx, qy, qz] += values[i]
# apply fourier transform
Pr = fftshift(np.real(fftn(ifftshift(Sq),
3 * (self.qgrid_sz, ))))
# clipping negative values to 0 (ringing artefact)
if clipped:
Pr = np.clip(Pr, 0, Pr.max())
# normalize the propagator to obtain a pdf
if normalized:
Pr /= Pr.sum()
return Pr
def rtop_signal(self, filtering=True):
""" Calculates the return to origin probability (rtop) from the signal
rtop equals to the sum of all signal values
Parameters
----------
filtering : boolean
default true, perform the hanning filtering
Returns
-------
rtop : float
the return to origin probability
"""
if filtering:
values = self.data * self.model.filter
else:
values = self.data
rtop = values.sum()
return rtop
def rtop_pdf(self, normalized=True):
r""" Calculates the return to origin probability from the propagator, which is
the propagator evaluated at zero (see Descoteaux et Al. [1]_, Tuch [2]_, Wu et al. [3]_)
rtop = P(0)
Parameters
----------
normalized : boolean
default true, normalize the propagator by its sum in order to obtain a pdf
Returns
-------
rtop : float
the return to origin probability
References
----------
.. [1] Descoteaux M. et. al, "Multiple q-shell diffusion propagator
imaging", Medical Image Analysis, vol 15, No. 4, p. 603-621, 2011.
.. [2] Tuch D.S., "Diffusion MRI of Complex Tissue Structure",
PhD Thesis, 2002.
.. [3] Wu Y. et. al, "Computation of Diffusion Function Measures
in q -Space Using Magnetic Resonance Hybrid Diffusion Imaging",
IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 27, No. 6, p. 858-865, 2008
"""
Pr = self.pdf(normalized=normalized)
center = self.qgrid_sz // 2
rtop = Pr[center, center, center]
return rtop
def msd_discrete(self, normalized=True):
r""" Calculates the mean squared displacement on the discrete propagator
..math::
:nowrap:
\begin{equation}
MSD:{DSI}=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} P(\hat{\mathbf{r}}) \cdot \hat{\mathbf{r}}^{2} \ dr_x \ dr_y \ dr_z
\end{equation}
where $\hat{\mathbf{r}}$ is a point in the 3D Propagator space (see Wu et. al [1]_).
Parameters
----------
normalized : boolean
default true, normalize the propagator by its sum in order to obtain a pdf
Returns
-------
msd : float
the mean square displacement
References
----------
.. [1] Wu Y. et. al, "Hybrid diffusion imaging", NeuroImage, vol 36,
p. 617-629, 2007.
"""
Pr = self.pdf(normalized=normalized)
# create the r squared 3D matrix
gridsize = self.qgrid_sz
center = gridsize // 2
a = np.arange(gridsize) - center
x = np.tile(a, (gridsize, gridsize, 1))
y = np.tile(a.reshape(gridsize, 1), (gridsize, 1, gridsize))
z = np.tile(a.reshape(gridsize, 1, 1), (1, gridsize, gridsize))
r2 = x ** 2 + y ** 2 + z ** 2
msd = np.sum(Pr * r2) / float((gridsize ** 3))
return msd
def pdf_weighted(self):
Pr = self.pdf(normalized=False, clipped=False)
# create the r squared 3D matrix
gridsize = self.qgrid_sz
center = gridsize // 2
a = np.arange(gridsize) - center
x = np.tile(a, (gridsize, gridsize, 1))
y = np.tile(a.reshape(gridsize, 1), (gridsize, 1, gridsize))
z = np.tile(a.reshape(gridsize, 1, 1), (1, gridsize, gridsize))
r2 = x ** 2 + y ** 2 + z ** 2
Pr_weighted = Pr * r2
return Pr_weighted
def odf(self, sphere):
r""" Calculates the real discrete odf for a given discrete sphere
..math::
:nowrap:
\begin{equation}
\psi_{DSI}(\hat{\mathbf{u}})=\int_{0}^{\infty}P(r\hat{\mathbf{u}})r^{2}dr
\end{equation}
where $\hat{\mathbf{u}}$ is the unit vector which corresponds to a
sphere point.
"""
interp_coords = self.model.cache_get('interp_coords',
key=sphere)
if interp_coords is None:
interp_coords = pdf_interp_coords(sphere,
self.model.qradius,
self.model.origin)
self.model.cache_set('interp_coords', sphere, interp_coords)
Pr = self.pdf()
# calculate the orientation distribution function
return pdf_odf(Pr, self.model.qradius, interp_coords, self.model.pdfwgt)
def create_qspace(gtab, origin):
""" create the 3D grid which holds the signal values (q-space)
Parameters
----------
gtab : GradientTable
origin : (3,) ndarray
center of the qspace
Returns
-------
qgrid : ndarray
qspace coordinates
"""
# create the q-table from bvecs and bvals
qtable = create_qtable(gtab)
# center and index in qspace volume
qgrid = qtable + origin
return qgrid.astype('i8')
def create_qtable(gtab):
""" create a normalized version of gradients
"""
bv = gtab.bvals
bmin = np.sort(bv)[1]
bv = np.sqrt(bv / bmin)
qtable = np.vstack((bv, bv, bv)).T * gtab.bvecs
return np.floor(qtable + .5)
def hanning_filter(gtab, filter_width, filter_type):
""" create a hanning window
The signal is premultiplied by a Hanning window before
Fourier transform in order to ensure a smooth attenuation
of the signal at high q values.
Parameters
----------
gtab : GradientTable
filter_width : int
Returns
-------
filter : (N,) ndarray
where N is the number of non-b0 gradient directions
"""
qtable = create_qtable(gtab)
# calculate r - hanning filter free parameter
r = np.sqrt(qtable[:, 0] ** 2 + qtable[:, 1] ** 2 + qtable[:, 2] ** 2)
# setting filter and filter width
if filter_type == 'none':
fvals = np.ones(r.shape); # no filtering
elif filter_type == 'hanning':
fvals = 0.5 * (1 + np.cos(2 * np.pi * r / filter_width)) # hanning
elif filter_type == 'hamming':
fvals = 0.54 + 0.46 * np.cos(2 * np.pi * r / filter_width) # hamming
elif filter_type == 'blackman':
fvals = 0.42 + 0.5 * np.cos(2 * np.pi * r / filter_width) + 0.08 * np.cos(4 * np.pi * r / filter_width) # blackman
else:
print('Error: no such option!!');
return fvals
def pdf_interp_coords(sphere, rradius, origin):
""" Precompute coordinates for ODF calculation from the PDF
Parameters
----------
sphere : object,
Sphere
rradius : array, shape (N,)
line interpolation points
origin : array, shape (3,)
center of the grid
"""
interp_coords = rradius * sphere.vertices[np.newaxis].T
origin = np.reshape(origin, [-1, 1, 1])
interp_coords = origin + interp_coords
return interp_coords
def pdf_odf(Pr, rradius, interp_coords, pdfwgt):
r""" Calculates the real ODF from the diffusion propagator(PDF) Pr
Parameters
----------
Pr : array, shape (X, X, X)
probability density function
rradius : array, shape (N,)
interpolation range on the radius
interp_coords : array, shape (3, M, N)
coordinates in the pdf for interpolating the odf
"""
PrIs = map_coordinates(Pr, interp_coords, order=1)
odf = (PrIs * (rradius ** pdfwgt)).sum(-1)
# odf = (PrIs * rradius ** 2).sum(-1)
# odf = (PrIs * rradius).sum(-1)
return odf
def half_to_full_qspace(data, gtab):
""" Half to full Cartesian grid mapping
Useful when dMRI data are provided in one qspace hemisphere as
DiffusionSpectrum expects data to be in full qspace.
Parameters
----------
data : array, shape (X, Y, Z, W)
where (X, Y, Z) volume size and W number of gradient directions
gtab : GradientTable
container for b-values and b-vectors (gradient directions)
Returns
-------
new_data : array, shape (X, Y, Z, 2 * W -1)
new_gtab : GradientTable
Notes
-----
We assume here that only on b0 is provided with the initial data. If that
is not the case then you will need to write your own preparation function
before providing the gradients and the data to the DiffusionSpectrumModel
class.
"""
bvals = gtab.bvals
bvecs = gtab.bvecs
bvals = np.append(bvals, bvals[1:])
bvecs = np.append(bvecs, - bvecs[1:], axis=0)
data = np.append(data, data[..., 1:], axis=-1)
gtab.bvals = bvals.copy()
gtab.bvecs = bvecs.copy()
return data, gtab
def project_hemisph_bvecs(gtab):
""" Project any near identical bvecs to the other hemisphere
Parameters
----------
gtab : object,
GradientTable
Notes
-------
Useful only when working with some types of dsi data.
"""
bvals = gtab.bvals
bvecs = gtab.bvecs
bvs = bvals[1:]
bvcs = bvecs[1:]
b = bvs[:, None] * bvcs
bb = np.zeros((len(bvs), len(bvs)))
pairs = []
for (i, vec) in enumerate(b):
for (j, vec2) in enumerate(b):
bb[i, j] = np.sqrt(np.sum((vec - vec2) ** 2))
I = np.argsort(bb[i])
for j in I:
if j != i:
break
if (j, i) in pairs:
pass
else:
pairs.append((i, j))
bvecs2 = bvecs.copy()
for (i, j) in pairs:
bvecs2[1 + j] = - bvecs2[1 + j]
return bvecs2, pairs
class DiffusionSpectrumDeconvModel(DiffusionSpectrumModel):
def __init__(self, gtab, qgrid_size=35, r_start=4.1, r_end=13.,
r_step=0.4, filter_width=np.inf, normalize_peaks=False):
r""" Diffusion Spectrum Deconvolution
The idea is to remove the convolution on the DSI propagator that is
caused by the truncation of the q-space in the DSI sampling.
..math::
:nowrap:
\begin{eqnarray*}
P_{dsi}(\mathbf{r}) & = & S_{0}^{-1}\iiint\limits_{\| \mathbf{q} \| \le \mathbf{q_{max}}} S(\mathbf{q})\exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q} \\
& = & S_{0}^{-1}\iiint\limits_{\mathbf{q}} \left( S(\mathbf{q}) \cdot M(\mathbf{q}) \right) \exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q} \\
& = & P(\mathbf{r}) \otimes \left( S_{0}^{-1}\iiint\limits_{\mathbf{q}} M(\mathbf{q}) \exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q} \right) \\
\end{eqnarray*}
where $\mathbf{r}$ is the displacement vector and $\mathbf{q}$ is the
wavector which corresponds to different gradient directions,
$M(\mathbf{q})$ is a mask corresponding to your q-space sampling and
$\otimes$ is the convolution operator [1]_.
Parameters
----------
gtab : GradientTable,
Gradient directions and bvalues container class
qgrid_size : int,
has to be an odd number. Sets the size of the q_space grid.
For example if qgrid_size is 35 then the shape of the grid will be
``(35, 35, 35)``.
r_start : float,
ODF is sampled radially in the PDF. This parameters shows where the
sampling should start.
r_end : float,
Radial endpoint of ODF sampling
r_step : float,
Step size of the ODf sampling from r_start to r_end
filter_width : float,
Strength of the hanning filter
References
----------
.. [1] Canales-Rodriguez E.J et. al, "Deconvolution in Diffusion
Spectrum Imaging", Neuroimage, 2010.
.. [2] Biggs David S.C. et. al, "Acceleration of Iterative Image
Restoration Algorithms", Applied Optics, vol. 36, No. 8, p. 1766-1775,
1997.
"""
DiffusionSpectrumModel.__init__(self, gtab, qgrid_size,
r_start, r_end, r_step,
filter_width,
normalize_peaks)
@multi_voxel_fit
def fit(self, data):
return DiffusionSpectrumDeconvFit(self, data)
class DiffusionSpectrumDeconvFit(DiffusionSpectrumFit):
def pdf(self):
""" Applies the 3D FFT in the q-space grid to generate
the DSI diffusion propagator, remove the background noise with a
hard threshold and then deconvolve the propagator with the
Lucy-Richardson deconvolution algorithm
"""
values = self.data
# create the signal volume
Sq = np.zeros((self.qgrid_sz, self.qgrid_sz, self.qgrid_sz))
# fill q-space
for i in range(len(values)):
qx, qy, qz = self.model.qgrid[i]
Sq[qx, qy, qz] += values[i]
# get deconvolution PSF
DSID_PSF = self.model.cache_get('deconv_psf', key=self.model.gtab)
if DSID_PSF is None:
DSID_PSF = gen_PSF(self.model.qgrid, self.qgrid_sz,
self.qgrid_sz, self.qgrid_sz)
self.model.cache_set('deconv_psf', self.model.gtab, DSID_PSF)
# apply fourier transform
Pr = fftshift(np.abs(np.real(fftn(ifftshift(Sq),
3 * (self.qgrid_sz, )))))
# threshold propagator
Pr = threshold_propagator(Pr)
# apply LR deconvolution
Pr = LR_deconv(Pr, DSID_PSF, 5, 2)
return Pr
def threshold_propagator(P, estimated_snr=15.):
"""
Applies hard threshold on the propagator to remove background noise for the
deconvolution.
"""
P_thresholded = P.copy()
threshold = P_thresholded.max() / float(estimated_snr)
P_thresholded[P_thresholded < threshold] = 0
return P_thresholded / P_thresholded.sum()
def gen_PSF(qgrid_sampling, siz_x, siz_y, siz_z):
"""
Generate a PSF for DSI Deconvolution by taking the ifft of the binary
q-space sampling mask and truncating it to keep only the center.
"""
Sq = np.zeros((siz_x, siz_y, siz_z))
# fill q-space
for i in range(qgrid_sampling.shape[0]):
qx, qy, qz = qgrid_sampling[i]
Sq[qx, qy, qz] = 1
return Sq * np.real(np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(Sq))))
def LR_deconv(prop, psf, numit=5, acc_factor=1):
r"""
Perform Lucy-Richardson deconvolution algorithm on a 3D array.
Parameters
----------
prop : 3-D ndarray of dtype float
The 3D volume to be deconvolve
psf : 3-D ndarray of dtype float
The filter that will be used for the deconvolution.
numit : int
Number of Lucy-Richardson iteration to perform.
acc_factor : float
Exponential acceleration factor as in [1]_.
References
----------
.. [1] Biggs David S.C. et. al, "Acceleration of Iterative Image
Restoration Algorithms", Applied Optics, vol. 36, No. 8, p. 1766-1775,
1997.
"""
eps = 1e-16
# Create the otf of the same size as prop
otf = np.zeros_like(prop)
# prop.ndim==3
otf[otf.shape[0] // 2 - psf.shape[0] // 2:otf.shape[0] // 2 +
psf.shape[0] // 2 + 1, otf.shape[1] // 2 - psf.shape[1] // 2:
otf.shape[1] // 2 + psf.shape[1] // 2 + 1, otf.shape[2] // 2 -
psf.shape[2] // 2:otf.shape[2] // 2 + psf.shape[2] // 2 + 1] = psf
otf = np.real(np.fft.fftn(np.fft.ifftshift(otf)))
# Enforce Positivity
prop = np.clip(prop, 0, np.inf)
prop_deconv = prop.copy()
for it in range(numit):
# Blur the estimate
reBlurred = np.real(np.fft.ifftn(otf * np.fft.fftn(prop_deconv)))
reBlurred[reBlurred < eps] = eps
# Update the estimate
prop_deconv = prop_deconv * (np.real(np.fft.ifftn(otf *
np.fft.fftn((prop / reBlurred) + eps)))) ** acc_factor
# Enforce positivity
prop_deconv = np.clip(prop_deconv, 0, np.inf)
return prop_deconv / prop_deconv.sum()
if __name__ == '__main__':
pass