-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_mc.py
221 lines (189 loc) · 6.83 KB
/
inference_mc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import os.path as osp
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
from datasets.mc_dataset import MC_Dataset, mc_collate_fn
from collections import OrderedDict
from model import build_model, get_tokenizer
from util.misc import get_mask
import json
from collections import defaultdict
def main(args):
data_name = args.dataset_path.split("/")[-2]
new_state_dict = OrderedDict()
ckpt = torch.load(args.model_path)
cfg = ckpt['args']
cfg.n_ans = 2
cfg.max_tokens = 256
if cfg.add_video_feat:
cfg.max_feats += 1
cfg.sample_nums = 10
for k, v in ckpt['model'].items():
new_state_dict[k.replace("module.","")] = v
model = build_model(cfg)
model.cuda()
model.eval()
model.load_state_dict(new_state_dict, strict=False)
tokenizer = get_tokenizer(cfg)
type_map={1: "all"}
dataset = MC_Dataset(
csv_path=args.dataset_path,
features_path=args.feat_path,
tokenizer=tokenizer,
type_map=type_map,
use_context=cfg.use_context,
subtitles_path = "",
suffix=cfg.suffix,
max_feats=cfg.sample_nums
)
loader = DataLoader(dataset, batch_size = args.batch_size, collate_fn=mc_collate_fn, shuffle=False)
tok_yes = torch.tensor(
tokenizer(
"Yes",
add_special_tokens=False,
max_length=1,
truncation=True,
padding="max_length",
)["input_ids"],
dtype=torch.long,
)
tok_no = torch.tensor(
tokenizer(
"No",
add_special_tokens=False,
max_length=1,
truncation=True,
padding="max_length",
)["input_ids"],
dtype=torch.long,
)
a2tok = torch.stack([tok_yes, tok_no])
model.set_answer_embeddings(
a2tok.to(model.device), freeze_last=cfg.freeze_last
)
res = {}
for i_batch, batch_dict in enumerate(tqdm(loader)):
video = batch_dict["video"].cuda()
video_len = batch_dict["video_len"]
video_mask = get_mask(video_len, video.size(1)).cuda()
text = batch_dict["text"]
logits_list = []
if cfg.add_video_feat:
video_mask = torch.cat([torch.ones((video.size(0),1)).cuda(),video_mask], dim=1)
for aid in range(len(text)):
encoded = tokenizer(
text[aid],
add_special_tokens=True,
max_length=cfg.max_tokens,
padding="longest",
truncation=True,
return_tensors="pt",
)
# forward
output = model(
video=video,
video_mask=video_mask,
input_ids=encoded["input_ids"].cuda(),
attention_mask=encoded["attention_mask"].cuda(),
)
logits = output["logits"]
# get logits for the mask token
delay = cfg.max_feats if cfg.use_video else 0
logits = logits[:, delay : encoded["input_ids"].size(1) + delay][
encoded["input_ids"] == tokenizer.mask_token_id
]
logits_list.append(logits.softmax(-1)[:, 0])
logits = torch.stack(logits_list, 1)
if logits.shape[1] == 1:
preds = logits.round().long().squeeze(1)
else:
preds = logits.max(1).indices
qids = batch_dict["qid"]
types = batch_dict["type"]
if batch_dict["answer_id"][0].item() != -1:
answer_id = batch_dict["answer_id"].cuda()
agreeings = preds == answer_id
for i, (qid, gt, pred, type) in enumerate(
zip(qids, answer_id, preds, types)
):
res[qid] = (
{
"pred": pred.cpu().detach().item(),
"gt": gt.cpu().detach().item(),
"type": int(type),
}
if type_map is not None and len(type_map) > 1
else {
"pred": pred.cpu().detach().item(),
"gt": gt.cpu().detach().item(),
}
)
res[qid][f"acc"] = agreeings[i].cpu().detach().item()
dico = {"acc": agreeings.sum() / len(qids)}
else:
for i, (qid, pred, type) in enumerate(zip(qids, preds, types)):
res[str(qid)] = int(pred.cpu().detach().item())
assert len(res) == len(loader.dataset)
if isinstance(next(iter(res.values())), dict):
acc = sum(int(res[qid][f"acc"]) for qid in res) / len(res)
if type_map is not None and len(type_map) > 1:
acc_type = {
type_map[i]: sum(
res[qid][f"acc"] for qid in res if res[qid]["type"] == i
)
/ len([x for x in res.values() if x["type"] == i])
for i in type_map
}
if type_map is not None and len(type_map) > 1:
for x in acc_type:
print(f"acc {x}: {acc_type[x]: .2%}")
print(data_name)
print(f"acc: {acc: .2%}")
if args.save_result:
if data_name == "starqa":
submission = defaultdict(list)
for k, v in res.items():
qtype = k.split("_")[0]
submission[qtype].append({"question_id":k, "answer":v['pred']})
json.dump(submission, open(osp.join(args.save_dir, "submission.json"), "w"))
for k,v in res.items():
res[str(k)] = v
json.dump(res, open(osp.join(args.save_dir, "{}.json".format(data_name)), "w"), indent=2)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset_path",
type=str,
help="the path to the test/val set"
)
parser.add_argument(
"--feat_path",
type=str,
help="the path of the pre-processed video feature"
)
parser.add_argument(
"--model_path",
type=str,
help="the path of the pre-trained model"
)
parser.add_argument(
"--save_result",
action="store_true",
help="whether to save the result file after inference"
)
parser.add_argument(
"--save_dir",
type=str,
help="the directory where the inference result files are saved"
)
parser.add_argument(
"--batch_size",
type=int,
default=12
)
args = parser.parse_args()
main(args)