Skip to content

Latest commit

 

History

History
87 lines (59 loc) · 2.83 KB

README.md

File metadata and controls

87 lines (59 loc) · 2.83 KB

SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition

SL-DML Overview

This repository contains the code for SL-DML, a metric learning approach for one-shot action recognition supporting multiple modalities. A pre-print can be found on arxiv.

Video Abstract

SL-DML Video

Video

Citation

@inproceedings{memmesheimer2021sl,
  title={SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition},
  author={Memmesheimer, Raphael and Theisen, Nick and Paulus, Dietrich},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  pages={4573--4580},
  year={2021},
  organization={IEEE}
}

Requirements

Precalculated Representations

We provide precalculated representations for all conducted experiment splits:

Quick Start

git clone https://github.com/raphaelmemmesheimer/sl-dml
cd sl-dml
pip install -r requirements.txt
export DATASET_FOLDER="$(pwd)/data"
mkdir -p data/ntu/
wget https://agas.uni-koblenz.de/datasets/sl-dml/ntu_120_one_shot.zip
unzip ntu_120_one_shot.zip -d $DATASET_FOLDER/ntu/ntu_swap_axes_testswapaxes
python train.py dataset=ntu_swap_axis

when returning you have to set the dataset folder again:

export DATASET_FOLDER="$(pwd)/data"
python train.py dataset=ntu_swap_axis

Training

Note, the following commands require an environment variable $DATASET_FOLDER to be existing.

NTU 120 One-Shot

Training for the NTU 120 one-shot action recognition experiments can be executed like:

python train.py dataset=ntu_swap_axis

During development, we suggest using the classes A002, A008, A014, A020, A026, A032, A038, A044, A050, A056, A062, A068, A074, A080, A086, A092, A098, A104, A110, A116 as validation classes.

Simitate One-Shot

wget https://agas.uni-koblenz.de/datasets/sl-dml/simitate_one_shot.zip
mkdir -p data/simitate/
unzip simitate_one_shot.zip -d $DATASET_FOLDER/simitate/

to train then:

python train.py dataset=simitate_aux_010_val_004

You can run all experiments on the Simitate dataset as:

python train.py dataset=simitate_aux_010_val_004,simitate_aux_010_val_016,simitate_aux_014_val_004,simitate_aux_014_val_012,simitate_aux_018_val_004,simitate_aux_018_val_008,simitate_aux_022_val_004 -m