-
Notifications
You must be signed in to change notification settings - Fork 1
/
ensemble_learning_ft.py
144 lines (121 loc) · 4.91 KB
/
ensemble_learning_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
'''
AA ensemble learning classifier
FT feature dataset
Feature selection via Kruskal Wallis
Gridsearch with cross-validation to find the best hyperparameters
'''
import pandas as pd
from scipy.stats import kruskal
from sklearn.ensemble import VotingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_predict, GridSearchCV
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import seaborn as sns
data_path = 'fulltext_rbi.csv'
df = pd.read_csv(data_path)
df = df.fillna(0)
index_columns = df.columns[2:]
results = []
for index_column in index_columns:
groups = [df[index_column][df['author'] == author] for author in df['author'].unique()]
if any(len(set(group)) > 1 for group in groups):
stat, p_value = kruskal(*groups)
results.append((index_column, stat, p_value))
results.sort(key=lambda x: x[1], reverse=True)
top_results = results[:100]
feature_columns = [col[0] for col in top_results]
X = df[feature_columns]
y = df['author']
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
X_train, X_test, y_train_encoded, y_test_encoded = train_test_split(X, y_encoded, test_size=0.4, stratify=y_encoded, random_state=42)
mlp = MLPClassifier()
xgboost = XGBClassifier()
decision_tree = DecisionTreeClassifier()
random_forest = RandomForestClassifier()
extra_trees = ExtraTreesClassifier()
svm = SVC(probability=True)
lr = LogisticRegression()
param_grid_xgboost = {
'learning_rate': [0.01, 0.1, 0.2],
'max_depth': [3, 4, 5],
'n_estimators': [50, 100, 200],
'subsample': [0.8, 0.9, 1.0],
'colsample_bytree': [0.8, 0.9, 1.0]
}
param_grid_svm = {
'C': [0.1, 1, 10],
'kernel': ['linear', 'rbf', 'poly'],
'gamma': ['scale', 'auto']
}
param_grid_lr = {
'C': [0.1, 1, 10],
'penalty': ['l1', 'l2'],
'solver': ['liblinear', 'lbfgs']
}
param_grid_dt = {
'max_depth': [None, 10, 20],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4],
'max_features': ['auto', 'sqrt', 'log2']
}
param_grid_extra_trees = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4],
'max_features': ['auto', 'sqrt', 'log2']
}
classifiers_params = {
'mlp': (mlp, {}),
'xgboost': (xgboost, param_grid_xgboost),
'decision_tree': (decision_tree, param_grid_dt),
'random_forest': (random_forest, param_grid_dt),
'extra_trees': (extra_trees, param_grid_extra_trees),
'svm': (svm, param_grid_svm),
'lr': (lr, param_grid_lr)
}
best_classifiers = {}
for clf_name, (clf, param_grid) in classifiers_params.items():
grid_search = GridSearchCV(clf, param_grid, cv=5, scoring='f1_weighted', n_jobs=-1)
grid_search.fit(X_train, y_train_encoded)
best_classifiers[clf_name] = grid_search.best_estimator_
voting_clf = VotingClassifier(estimators=[
('mlp', best_classifiers['mlp']),
('xgboost', best_classifiers['xgboost']),
('decision_tree', best_classifiers['decision_tree']),
('random_forest', best_classifiers['random_forest']),
('extra_trees', best_classifiers['extra_trees']),
('svm', best_classifiers['svm']),
('lr', best_classifiers['lr'])
], voting='soft') # 'soft' for probability voting
voting_clf.fit(X_train, y_train_encoded)
y_pred_encoded = cross_val_predict(voting_clf, X_test, y_test_encoded, cv=5, method='predict_proba')
y_pred_decoded = label_encoder.inverse_transform(y_pred_encoded.argmax(axis=1))
y_pred_decoded_int = label_encoder.transform(y_pred_decoded)
precision = precision_score(y_test_encoded, y_pred_decoded_int, average='weighted')
recall = recall_score(y_test_encoded, y_pred_decoded_int, average='weighted')
f1 = f1_score(y_test_encoded, y_pred_decoded_int, average='weighted')
accuracy = accuracy_score(y_test_encoded, y_pred_decoded_int)
error_rate = 1 - accuracy
print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1-score: {f1:.4f}")
print(f"Error Rate: {error_rate:.4f}")
print("\nClassification Report:")
print(classification_report(y_test_encoded, y_pred_decoded_int))
cm = confusion_matrix(y_test_encoded, y_pred_decoded_int)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title('Confusion Matrix')
plt.show()