-
Notifications
You must be signed in to change notification settings - Fork 77
/
main_BLER_vs_SNR.m
executable file
·214 lines (179 loc) · 8.72 KB
/
main_BLER_vs_SNR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
function main_BLER_vs_SNR(code, A, E, L, min_sum, target_block_errors, target_BLER, EsN0_start, EsN0_delta, seed)
% MAIN_BLER_VS_SNR Plots Block Error Rate (BLER) versus Signal to Noise
% Ratio (SNR) for polar codes.
% main_BLER_vs_SNR(code, A, E, L, min_sum, target_block_errors, target_BLER, EsN0_start, EsN0_delta, seed)
% generates the plots.
%
% code should be a string. This identifies which encoder and decoder
% functions to call. For example, if code is 'custom1', then the
% functions custom1_encoder and custom1_decoder will be called. The
% encoder function should have a format f = custom1_encoder(a, E). The
% decoder function should have a format
% a_hat = custom1_decoder(f_tilde, A, L, min_sum). Refer to these
% functions for explanations of their inputs and outputs. Suitable values
% for code include 'PBCH', 'PDCCH, 'PUCCH' and 'custom1'.
%
% A should be an integer row vector. Each element specifies the number of
% bits in each set of simulated information bit sequences, before CRC and
% other redundant bits are included.
%
% E should be an integer row vector. Each element of E specifies one
% encoded block length to simulate, where E is the number of bits in each
% encoded bit sequence.
%
% L should be a scalar integer. It specifies the list size to use during
% Successive Cancellation List (SCL) decoding.
%
% min_sum should be a scalar logical. If it is true, then the SCL
% decoding process will be completed using the min-sum approximation.
% Otherwise, the log-sum-product will be used. The log-sum-product gives
% better error correction capability than the min-sum, but it has higher
% complexity.
%
% target_block_errors should be an integer scalar. The simulation of each
% SNR for each coding rate will continue until this number of block
% errors have been observed. A value of 100 is sufficient to obtain
% smooth BLER plots for most values of A. Higher values will give
% smoother plots, at the cost of requiring longer simulations.
%
% target_BLER should be a real scalar, in the range (0, 1). The
% simulation of each coding rate will continue until the BLER plot
% reaches this value.
%
% EsN0_start should be a real row vector, having the same length as the
% vector of coding rates. Each value specifies the Es/N0 SNR to begin at
% for the simulation of the corresponding coding rate.
%
% EsN0_delta should be a real scalar, having a value greater than 0.
% The Es/N0 SNR is incremented by this amount whenever
% target_block_errors number of block errors has been observed for the
% previous SNR. This continues until the BLER reaches target_BLER.
%
% seed should be an integer scalar. This value is used to seed the random
% number generator, allowing identical results to be reproduced by using
% the same seed. When running parallel instances of this simulation,
% different seeds should be used for each instance, in order to collect
% different results that can be aggregated together.
%
% See also MAIN_SNR_VS_A and MAIN_FAR
%
% Copyright © 2017 Robert G. Maunder. This program is free software: you
% can redistribute it and/or modify it under the terms of the GNU General
% Public License as published by the Free Software Foundation, either
% version 3 of the License, or (at your option) any later version. This
% program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
% more details.
% Default values
if nargin == 0
code = 'PUCCH';
A = [16 32 64 128 256 512 1024];
E = [54 108 216 432 864 1728 3456 6912 13824];
L = 1;
min_sum = true;
target_block_errors = 10;
target_BLER = 1e-1;
EsN0_start = -25;
EsN0_delta = 0.5;
seed = 0;
end
% Seed the random number generator
rng(seed);
% Consider each information block length in turn
for A_index = 1:length(A)
% Create a figure to plot the results.
figure
axes1 = axes('YScale','log');
title([code, ' polar code, A = ',num2str(A(A_index)),', L = ',num2str(L),', minsum = ',num2str(min_sum),', errors = ',num2str(target_block_errors),', QPSK, AWGN']);
ylabel('BLER');
xlabel('E_s/N_0 [dB]');
ylim([target_BLER,1]);
hold on
drawnow
% Consider each encoded block length in turn
for E_index = 1:length(E)
% Create the plot
plot1 = plot(nan,'Parent',axes1);
legend(cellstr(num2str(E(1:E_index)', 'E=%d')),'Location','southwest');
% Counters to store the number of bits and errors simulated so far
block_counts=[];
block_error_counts=[];
EsN0s = [];
% Open a file to save the results into.
filename = ['results/BLER_vs_SNR_',code,'_',num2str(A(A_index)),'_',num2str(E(E_index)),'_',num2str(L),'_',num2str(min_sum),'_',num2str(target_block_errors),'_',num2str(seed)];
fid = fopen([filename,'.txt'],'w');
if fid == -1
error('Could not open %s.txt',filename);
end
% Initialise the BLER and SNR
BLER = 1;
EsN0 = EsN0_start;
found_start = false;
% Skip any encoded block lengths that generate errors
try
% Loop over the SNRs
while BLER > target_BLER
% Convert from SNR (in dB) to noise power spectral density
N0 = 1/(10^(EsN0/10));
% Start new counters
block_counts(end+1) = 0;
block_error_counts(end+1) = 0;
EsN0s(end+1) = EsN0;
keep_going = true;
% Continue the simulation until enough block errors have been simulated
while keep_going && block_error_counts(end) < target_block_errors
% Generate a random block of bits
a = round(rand(1,A(A_index)));
% Perform polar encoding
f = feval([code,'_encoder'], a, E(E_index));
% QPSK modulation
f2 = [f,zeros(1,mod(-length(f),2))];
tx = sqrt(1/2)*(2*f2(1:2:end)-1)+1i*sqrt(1/2)*(2*f2(2:2:end)-1);
% Simulate transmission
rx = tx + sqrt(N0/2)*(randn(size(tx))+1i*randn(size(tx)));
% QPSK demodulation
f2_tilde = zeros(size(f2));
f2_tilde(1:2:end) = -4*sqrt(1/2)*real(rx)/N0;
f2_tilde(2:2:end) = -4*sqrt(1/2)*imag(rx)/N0;
f_tilde = f2_tilde(1:length(f));
% Perform polar decoding
a_hat = feval([code, '_decoder'],f_tilde,A(A_index),L,min_sum);
if found_start == false && ~isequal(a,a_hat)
keep_going = false;
BLER = 1;
else
found_start = true;
% Determine if we have a block error
if ~isequal(a,a_hat)
block_error_counts(end) = block_error_counts(end) + 1;
end
% Accumulate the number of blocks that have been simulated
% so far
block_counts(end) = block_counts(end) + 1;
% Calculate the BLER and save it in the file
BLER = block_error_counts(end)/block_counts(end);
% Plot the BLER vs SNR results
set(plot1,'XData',EsN0s);
set(plot1,'YData',block_error_counts./block_counts);
drawnow
end
end
if BLER < 1
fprintf(fid,'%f\t%e\n',EsN0,BLER);
end
% Update the SNR, ready for the next loop
EsN0 = EsN0 + EsN0_delta;
end
catch ME
if strcmp(ME.identifier, 'polar_3gpp_matlab:UnsupportedBlockLength')
warning('polar_3gpp_matlab:UnsupportedBlockLength','%s does not support the combination of block lengths A=%d and E=%d. %s',code,A(A_index),E(E_index), getReport(ME, 'basic', 'hyperlinks', 'on' ));
continue
else
rethrow(ME);
end
end
% Close the file
fclose(fid);
end
end