forked from UCLAdeepvision/CS163-Projects-2024Fall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
log.html
36 lines (36 loc) · 1.92 KB
/
log.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
---
layout: default
---
<div class="home other-pages">
<h1 class="page-heading">Archive</h1>
<ul class="posts">
<li>Jun 7, 2020 - Exploration Strategies in Deep Reinforcement Learning</li>
<li>The Transformer Family (Apr 7, 2020)</li>
<li>Curriculum for Reinforcement Learning (Jan 29, 2020)</li>
<li>Self-Supervised Representation Learning (Nov 10, 2019)</li>
<li>Evolution Strategies (Sep 5, 2019)</li>
<li>Meta Reinforcement Learning (Jun 23, 2019)</li>
<li>Domain Randomization for Sim2Real Transfer (May 5, 2019)</li>
<li>Are Deep Neural Networks Dramatically Overfitted? (Mar 14, 2019)</li>
<li>Generalized Language Models (Jan 31, 2019)</li>
<li>Object Detection Part 4: Fast Detection Models (Dec 27, 2018)</li>
<li>Meta-Learning: Learning to Learn Fast (Nov 30, 2018)</li>
<li>Flow-based Deep Generative Models (Oct 13, 2018)</li>
<li>From Autoencoder to Beta-VAE (Aug 12, 2018)</li>
<li>Attention? Attention! (Jun 24, 2018)</li>
<li>Implementing Deep Reinforcement Learning Models with Tensorflow + OpenAI Gym (May 5, 2018)</li>
<li>Policy Gradient Algorithms (Apr 8, 2018)</li>
<li>A (Long) Peek into Reinforcement Learning (Feb 19, 2018)</li>
<li>The Multi-Armed Bandit Problem and Its Solutions (Jan 23, 2018)</li>
<li>Object Detection for Dummies Part 3: R-CNN Family (Dec 31, 2017)</li>
<li>Object Detection for Dummies Part 2: CNN, DPM and Overfeat (Dec 15, 2017)</li>
<li>Object Detection for Dummies Part 1: Gradient Vector, HOG, and SS (Oct 29, 2017)</li>
<li>Learning Word Embedding (Oct 15, 2017)</li>
<li>Anatomize Deep Learning with Information Theory (Sep 28, 2017)</li>
<li>From GAN to WGAN (Aug 20, 2017)</li>
<li>How to Explain the Prediction of a Machine Learning Model? (Aug 1, 2017)</li>
<li>Predict Stock Prices Using RNN: Part 2 (Jul 22, 2017)</li>
<li>Predict Stock Prices Using RNN: Part 1 (Jul 8, 2017)</li>
<li>An Overview of Deep Learning for Curious People (Jun 21, 2017)</li>
</ul>
</div>