-
Notifications
You must be signed in to change notification settings - Fork 9
/
config.yaml
73 lines (69 loc) · 3.62 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
# @package _global_
_target_: l2hmc.configs.ExperimentConfig
#
# ----------------------------------------------------------------------------
framework: pytorch # ML framework to use: one of 'pytorch', 'tensorflow'
backend: 'DDP' # Backend to use for distributed training
profile: false # Flag for profiling in pytorch
precision: 'float32' # Default floating point precision
width: 200 # Setting controlling terminal width for printing
seed: 9992 # Seed for random number
compile: true # Compile network in tensorflow? (True by default)
restore: true # try restoring weights from previous checkpoint
save: true # Save model w/ checkpoints for restoring later?
init_aim: false # Use aim for experiment / metric tracking
init_wandb: true # Use WandB for experiment / metric tracking
use_wandb: true
use_tb: false
compression: false # Compression for Horovod
nchains: null # Number of chains to use when evaluating model
ds_config_path: null
# optional num_threads: 8
# optional outdir: outputs/${now:%Y-%m-%d_%H-%M-%S}
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
# pretty print config at the start of the run using Rich library
print_config: true
# ----------------------------------------------------------------------------
# disable python warnings if they annoy you
ignore_warnings: true
# name of the run, should be used along with experiment mode
name: null
# ----------------------------------------------------------------------------
defaults:
- _self_
# ------------------------------------------------------------------------------------------
# DEFAULTS
# ------------------------------------------------------------------------------------------
- steps: default.yaml # Defines num_era, num_epoch, num_test, etc.
- dynamics: default.yaml # Defines gauge group, nleapfrog, lattice volume, etc.
- wandb: default.yaml # Weights & Biases config
- logdir: default.yaml # Defines where to run experiment using info from cfg
- loss: default.yaml # Defines weights of various terms in loss function
- network: default.yaml # Defines network architecture, activation fns, etc.
- conv: default.yaml # Defines arch of Conv block to prepend to xnetwork
- net_weights: default.yaml # Weights for controlling rel contribution of net fns
- learning_rate: default.yaml # Defines initial lr, optimizer type, lr schedule, etc.
- annealing_schedule: default.yaml # Defines annealing schedule to use for training
# - accelerator: default.yaml # Defines options for HuggingFace Accelerator
# ------------------------------------------------------------------------------------------
# modes are special collections of config options for different purposes, e.g. debugging
- mode: default.yaml
# experiment configs allow for version control of specific configurations
# for example, use them to store best hyperparameters for each model configuration
# - experiment: null
# - hydra/run: default.yaml
# - optional local: default.yaml
#
- override hydra/hydra_logging: colorlog
- override hydra/job_logging: rich
# - override hydra/launcher: joblib
# https://hydra.cc/docs/tutorials/basic/running_your_app/logging/
# use this to set level of only chosen command line loggers to 'DEBUG'
# verbose: [src.train, src.utils]
hydra:
verbose: l2hmc
job:
chdir: true
...