Skip to content

Latest commit

 

History

History
101 lines (71 loc) · 3.69 KB

w4a16.md

File metadata and controls

101 lines (71 loc) · 3.69 KB

W4A16 LLM 模型部署

LMDeploy 支持 4bit 权重模型的推理,对 NVIDIA 显卡的最低要求是 sm80,比如A10,A100,Gerforce 30/40系列。

在推理之前,请确保安装了 lmdeploy

pip install lmdeploy[all]

4bit 权重模型推理

你可以直接从 LMDeploy 的 model zoo 下载已经量化好的 4bit 权重模型,直接使用下面的命令推理。也可以根据"4bit 权重量化"章节的内容,把 16bit 权重量化为 4bit 权重,然后再按下述说明推理

以 4bit 的 Llama-2-chat-7B 模型为例,可以从 model zoo 直接下载:

git-lfs install
git clone https://huggingface.co/lmdeploy/llama2-chat-7b-w4

执行以下命令,即可在终端与模型对话:

## 转换模型的layout,存放在默认路径 ./workspace 下
lmdeploy convert \
    --model-name llama2 \
    --model-path ./llama2-chat-7b-w4 \
    --model-format awq \
    --group-size 128

## 推理
lmdeploy chat turbomind ./workspace

启动 gradio 服务

如果想通过 webui 与模型对话,请执行以下命令启动 gradio 服务

lmdeploy serve gradio ./workspace --server_name {ip_addr} --server_port {port}

然后,在浏览器中打开 http://{ip_addr}:{port},即可在线对话

推理速度

我们在 NVIDIA GeForce RTX 4090 上使用 profile_generation.py,分别测试了 4-bit Llama-2-7B-chat 和 Llama-2-13B-chat 模型的 token 生成速度。测试配置为 batch size = 1,(prompt_tokens, completion_tokens) = (1, 512)

model llm-awq mlc-llm turbomind
Llama-2-7B-chat 112.9 159.4 206.4
Llama-2-13B-chat N/A 90.7 115.8

上述两个模型的16bit 和 4bit 权重,分别使用 turbomind 推理时,各自在context size 为 2048 和 4096 配置下,所占的显存对比如下:

model 16bit(2048) 4bit(2048) 16bit(4096) 4bit(4096)
Llama-2-7B-chat 15.1 6.3 16.2 7.5
Llama-2-13B-chat OOM 10.3 OOM 12.0
pip install nvidia-ml-py
python benchmark/profile_generation.py \
 --model-path ./workspace \
 --concurrency 1 8 --prompt-tokens 1 512 --completion-tokens 2048 512

4bit 权重量化

4bit 权重量化包括 2 步:

  • 生成量化参数
  • 根据量化参数,量化模型权重

第一步:生成量化参数

lmdeploy lite calibrate \
  --model $HF_MODEL \
  --calib_dataset 'c4' \             # 校准数据集,支持 c4, ptb, wikitext2, pileval
  --calib_samples 128 \              # 校准集的样本数,如果显存不够,可以适当调小
  --calib_seqlen 2048 \              # 单条的文本长度,如果显存不够,可以适当调小
  --work_dir $WORK_DIR \             # 保存 Pytorch 格式量化统计参数和量化后权重的文件夹

第二步:量化权重模型

LMDeploy 使用 AWQ 算法对模型权重进行量化。在执行下面的命令时,需要把步骤1的$WORK_DIR传入。量化结束后,权重文件也会存放在这个目录中。然后就可以根据 "4bit权重模型推理"章节的说明,进行模型推理。

lmdeploy lite auto_awq \
  --model $HF_MODEL \
  --w_bits 4 \                       # 权重量化的 bit 数
  --w_group_size 128 \               # 权重量化分组统计尺寸
  --work_dir $WORK_DIR \             # 步骤 1 保存量化参数的目录