Skip to content

Latest commit

 

History

History
44 lines (38 loc) · 1.86 KB

README.md

File metadata and controls

44 lines (38 loc) · 1.86 KB

Deep-Learning-algorithms

Implementation of all basic algorithms needed in Deep Learning

  1. Logistic_regression_using_NN.ipynb

    • It is a simple logistic regression algorithm developed using NN (Neural Networks) with zero hidden layers
    • In this notebook, binary classification is done on the dataset of cats(cat or not cat)
  2. NN_with_1_hidden_layer.py

    • It's a python script file which contains all functions required to develop NN (Neural Networks) with one hidden layer
    • function designed are:
      • sigmoid(z)
      • initialize(n_x,n_h1,n_y)
      • forword_propagation(X,parameters)
      • evaluate_cost(A2,Y, parameters, lambd)
      • backword_propagation(X,Y,cache,parameters,lambd)
      • update_parameters(parameters,grads,learning_rate)
      • predict(parameters, X)
      • model(X_train, Y_train, X_test, Y_test,n_h1, num_iterations, learning_rate,lambd)
      • plot_cost(costs)
  3. deep_NN_with_L_layers.py

    • It's a python script file which contains all functions required to develop NN (Neural networks) with 'n' hidden layer
    • It's the generalized algorithm for CNN
    • Functions designed are:
      • sigmoid(Z)
      • relu(Z)
      • sigmoid_backward(dA, cache)
      • relu_backward(dA, cache)
      • initialize_parameters(layer_dims)
      • linear_forward(A, W, b)
      • linear_activation_forward(A_prev, W, b, activation)
      • L_model_forward(X, parameters)
      • compute_cost(AL, Y)
      • linear_backward(dZ, cache)
      • linear_activation
      • linear_activation_backward(dA, cache, activation)
      • L_model_backward(AL, Y, caches)
      • update_parameters(parameters, grads, learning_rate)
      • predict(X, parameters)
      • L_layer_model(X, Y, layers_dims, learning_rate, num_iterations, print_cost)
      • plot_cost(costs)