-
Notifications
You must be signed in to change notification settings - Fork 155
/
CITATION.cff
41 lines (40 loc) · 1.66 KB
/
CITATION.cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
cff-version: 1.2.0
message: "Please cite https://doi.org/10.21105/joss.02505 also"
title: "sbi: Simulation-based inference toolkit"
authors:
- family-names: Tejero-Cantero
given-names: Alvaro
orcid: "http://orcid.org/0000-0002-8768-4227"
- family-names: Boelts
given-names: Jan
orcid: "http://orcid.org/0000-0003-4979-7092"
- family-names: Deistler
given-names: Michael
orcid: "http://orcid.org/0000-0002-3573-0404"
- family-names: Lueckmann
given-names: Jan-Matthis
orcid: "http://orcid.org/0000-0003-4320-4663"
- family-names: Durkan
given-names: Conor
orcid: "http://orcid.org/0000-0001-9333-7777"
- family-names: Gonçalves
given-names: Pedro
orcid: "http://orcid.org/0000-0002-6987-4836"
- family-names: Greenberg
given-names: David
orcid: "http://orcid.org/0000-0002-8515-0459"
- family-names: Macke
given-names: Jakob
orcid: "https://orcid.org/0000-0001-5154-8912"
version: 0.21.0
date-released: "2022-12-22"
identifiers:
- type: "ascl-id"
value: "2306.002"
- type: "doi"
value: 10.21105/joss.02505
- type: "bibcode"
value: "2023ascl.soft06002T"
abstract: "Simulation-based inference is the process of finding parameters of a simulator from observations. The PyTorch package sbi performs simulation-based inference by taking a Bayesian approach to return a full posterior distribution over the parameters, conditional on the observations. This posterior can be amortized (<i>i.e.</i> useful for any observation) or focused (<i>i.e.</i>tailored to a particular observation), with different computational trade-offs. The code offers a simple interface for one-line posterior inference."
license: AGPL-3.0
repository-code: https://github.com/mackelab/sbi