-
Notifications
You must be signed in to change notification settings - Fork 7
/
sentinel2.py
799 lines (585 loc) · 33.2 KB
/
sentinel2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
# Sentinel-2 package
import ee
from Py6S import *
import math
import datetime
import os, sys
from utils import *
sys.path.append("/gee-atmcorr-S2/bin")
from atmospheric import Atmospheric
import sun_angles
import view_angles
import time
class env(object):
def __init__(self):
"""Initialize the environment."""
# Initialize the Earth Engine object, using the authentication credentials.
ee.Initialize()
self.dem = ee.Image("JAXA/ALOS/AW3D30_V1_1").select(["AVE"])
self.epsg = "EPSG:32717"
self.feature = 0
##########################################
# variable for the getSentinel algorithm #
##########################################
self.metadataCloudCoverMax = 80;
##########################################
# variable for the shadowMask algorithm #
##########################################
# zScoreThresh: Threshold for cloud shadow masking- lower number masks out
# less. Between -0.8 and -1.2 generally works well
self.zScoreThresh = -1
# shadowSumThresh: Sum of IR bands to include as shadows within TDOM and the
# shadow shift method (lower number masks out less)
self.shadowSumThresh = 0.500;
# contractPixels: The radius of the number of pixels to contract (negative buffer) clouds and cloud shadows by. Intended to eliminate smaller cloud
# patches that are likely errors (1.5 results in a -1 pixel buffer)(0.5 results in a -0 pixel buffer)
# (1.5 or 2.5 generally is sufficient)
self.contractPixels = 1.5;
# dilatePixels: The radius of the number of pixels to dilate (buffer) clouds
# and cloud shadows by. Intended to include edges of clouds/cloud shadows
# that are often missed (1.5 results in a 1 pixel buffer)(0.5 results in a 0 pixel buffer)
# (2.5 or 3.5 generally is sufficient)
self.dilatePixels = 3.5;
##########################################
# variable for cloudScore algorithm #
##########################################
# 9. Cloud and cloud shadow masking parameters.
# If cloudScoreTDOM is chosen
# cloudScoreThresh: If using the cloudScoreTDOMShift method-Threshold for cloud
# masking (lower number masks more clouds. Between 10 and 30 generally works best)
self.cloudScoreThresh = 20;
# Percentile of cloud score to pull from time series to represent a minimum for
# the cloud score over time for a given pixel. Reduces commission errors over
# cool bright surfaces. Generally between 5 and 10 works well. 0 generally is a bit noisy
self.cloudScorePctl = 5;
##########################################
# variable for terrain algorithm #
##########################################
self.terrainScale = 1000
##########################################
# Export variables #
##########################################
self.assetId ="projects/Sacha/PreprocessedData/S2_Biweekly_V3/"
self.name = "S2_BW_"
self.exportScale = 20
##########################################
# variable band selection #
##########################################
self.s2BandsIn = ee.List(['QA60','B1','B2','B3','B4','B5','B6','B7','B8','B8A','B9','B10','B11','B12','TDOMMask'])
self.s2BandsOut = ee.List(['QA60','cb','blue','green','red','re1','re2','re3','nir','re4','waterVapor','cirrus','swir1','swir2','TDOMMask'])
self.divideBands = ee.List(['blue','green','red','re1','re2','re3','nir','re4','cb','cirrus','swir1','swir2','waterVapor'])
self.medianIncludeBands = ee.List(['blue','green','red','re1','re2','re3','nir','re4','cb','cirrus','swir1','swir2','waterVapor'])
##########################################
# enable / disable modules #
##########################################
self.calcSR = True
self.brdf = False
self.QAcloudMask = True
self.cloudMask = True
self.shadowMask = True
self.terrainCorrection = False
class functions():
def __init__(self):
"""Initialize the Surfrace Reflectance app."""
# get the environment
self.env = env()
def main(self,studyArea,startDate,endDate,startDay,endDay,week,regionName):
self.env.regionName = regionName
self.env.startDate = startDate
self.env.endDate = endDate
self.env.startDoy = startDay
self.env.endDoy = endDay
s2 = self.getSentinel2(startDate,endDate,studyArea);
#print(s2.size().getInfo())
if s2.size().getInfo() > 0:
# print(self.env.startDate.getInfo())
# print(self.env.endDate.getInfo())
s2 = s2.map(self.scaleS2)
# masking the shadows
print("Masking shadows..")
if self.env.shadowMask == True:
s2 = self.maskShadows(s2,studyArea)
self.collectionMeta = s2.getInfo()['features']
#print(ee.Image(s2.first()).get('system:time_start').getInfo())
print("rename bands, add date..")
s2 = s2.select(self.env.s2BandsIn,self.env.s2BandsOut).map(self.addDateYear)
#print(ee.Image(s2.first()).get('system:time_start').getInfo())
if self.env.QAcloudMask == True:
print("use QA band for cloud Masking")
s2 = s2.map(self.QAMaskCloud)
#print(ee.Image(s2.first()).get('system:time_start').getInfo())
if self.env.cloudMask == True:
print("sentinel cloud score...")
s2 = s2.map(self.sentinelCloudScore)
s2 = self.cloudMasking(s2)
#print(ee.Image(s2.first()).get('system:time_start').getInfo())
# applying the atmospheric correction
if self.env.calcSR == True:
s2 = s2.select(self.env.s2BandsOut,self.env.s2BandsIn)
print("applying atmospheric correction")
s2 = s2.map(self.TOAtoSR).select(self.env.s2BandsIn,self.env.s2BandsOut)
#print(ee.Image(s2.first()).getInfo())
if self.env.brdf == True:
print("apply brdf correction..")
s2 = s2.map(self.brdf)
if self.env.terrainCorrection == True:
print("apply terrain correction..")
s2 = s2.map(self.getTopo)
corrected = s2.filter(ee.Filter.gt("slope",20))
notCorrected = s2.filter(ee.Filter.lt("slope",20))
s2 = corrected.map(self.terrain).merge(notCorrected)
print("calculating medoid")
img = self.medoidMosaic(s2)
print("rescale")
img = self.reScaleS2(img)
print("set MetaData")
img = self.setMetaData(img)
print("exporting composite")
self.exportMap(img,studyArea,week)
#print(img.getInfo()['properties'])
def getSentinel2(self,start,end,studyArea):
s2s = ee.ImageCollection('COPERNICUS/S2').filterDate(start,end) \
.filterBounds(studyArea) \
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',self.env.metadataCloudCoverMax)) \
.filter(ee.Filter.lt('CLOUD_COVERAGE_ASSESSMENT',self.env.metadataCloudCoverMax))\
return s2s
def addDateYear(self,img):
#add a date and year band
date = ee.Date(img.get("system:time_start"))
day = date.getRelative('day','year').add(1);
yr = date.get('year');
mk = img.mask().reduce(ee.Reducer.min());
img = img.addBands(ee.Image.constant(day).mask(mk).uint16().rename('date'));
img = img.addBands(ee.Image.constant(yr).mask(mk).uint16().rename('year'));
return img;
def maskShadows(self,collection,studyArea):
def TDOM(image):
zScore = image.select(shadowSumBands).subtract(irMean).divide(irStdDev)
irSum = image.select(shadowSumBands).reduce(ee.Reducer.sum())
TDOMMask = zScore.lt(self.env.zScoreThresh).reduce(ee.Reducer.sum()).eq(2)\
.And(irSum.lt(self.env.shadowSumThresh)).Not()
TDOMMask = TDOMMask.focal_min(self.env.dilatePixels)
return image.addBands(TDOMMask.rename(['TDOMMask']))
def mask(image):
outimg = image.updateMask(image.select(['TDOMMask']))
return outimg
shadowSumBands = ['B8','B11']
allCollection = ee.ImageCollection('COPERNICUS/S2').filterBounds(studyArea)
# Get some pixel-wise stats for the time series
irStdDev = allCollection.select(shadowSumBands).reduce(ee.Reducer.stdDev())
irMean = allCollection.select(shadowSumBands).reduce(ee.Reducer.mean())
# Mask out dark dark outliers
collection_tdom = collection.map(TDOM)
return collection_tdom.map(mask)
def getTopo(self,img):
''' funtion to filter for areas with terrain and areas without'''
dem = self.env.dem.unmask(0)
geom = ee.Geometry(img.get('system:footprint')).bounds()
slp_rad = ee.Terrain.slope(dem).clip(geom);
slope = slp_rad.reduceRegion(reducer= ee.Reducer.percentile([80]), \
geometry= geom,\
scale= 100 ,\
maxPixels=10000000)
return img.set('slope',slope.get('slope'))
def scaleS2(self,img):
divideBands = ['B1','B2','B3','B4','B5','B6','B7','B8','B8A','B9','B10','B11','B12']
bandNames = img.bandNames()
otherBands = bandNames.removeAll(divideBands)
others = img.select(otherBands)
out = img.select(divideBands).divide(10000)
return out.addBands(others).copyProperties(img,['system:time_start','system:footprint','MEAN_SOLAR_ZENITH_ANGLE','MEAN_SOLAR_AZIMUTH_ANGLE']).set("centroid",img.geometry().centroid());
def reScaleS2(self,img):
bandNames = img.bandNames()
otherBands = bandNames.removeAll(self.env.divideBands)
others = img.select(otherBands)
t = img.select(self.env.divideBands);
t = t.multiply(10000)
out = ee.Image(t.copyProperties(img).copyProperties(img,['system:time_start'])).addBands(others).int16()
return out;
def pixelArea(self,img):
geom = ee.Geometry(img.get('system:footprint')).bounds()
area = img.select(['red']).gt(0).reduceRegion(reducer= ee.Reducer.sum(),\
geometry= geom,\
scale= 100,\
maxPixels=10000000)
return img.set("pixelArea",area.get("red"))
def TOAtoSR(self,img):
TDOMMask = img.select(['TDOMMask'])
info = self.collectionMeta[self.env.feature]['properties']
scene_date = datetime.datetime.utcfromtimestamp(info['system:time_start']/1000)# i.e. Python uses seconds, EE uses milliseconds
solar_z = info['MEAN_SOLAR_ZENITH_ANGLE']
geom = ee.Geometry(info['system:footprint']).centroid()
#geom = ee.Geometry.Point([info['centroid']['coordinates'][0],info['centroid']['coordinates'][1]])
date = ee.Date.fromYMD(scene_date.year,scene_date.month,scene_date.day)
h2o = Atmospheric.water(geom,date).getInfo()
o3 = Atmospheric.ozone(geom,date).getInfo()
aot = Atmospheric.aerosol(geom,date).getInfo()
SRTM = ee.Image('CGIAR/SRTM90_V4')# Shuttle Radar Topography mission covers *most* of the Earth
alt = SRTM.reduceRegion(reducer = ee.Reducer.mean(),geometry = geom).get('elevation').getInfo()
if alt:
km = alt/1000 # i.e. Py6S uses units of kilometers
else:
km = 0
# Instantiate
s = SixS()
# Atmospheric constituents
s.atmos_profile = AtmosProfile.UserWaterAndOzone(h2o,o3)
s.aero_profile = AeroProfile.Continental
s.aot550 = aot
# Earth-Sun-satellite geometry
s.geometry = Geometry.User()
s.geometry.view_z = 0 # always NADIR (I think..)
s.geometry.solar_z = solar_z # solar zenith angle
s.geometry.month = scene_date.month # month and day used for Earth-Sun distance
s.geometry.day = scene_date.day # month and day used for Earth-Sun distance
s.altitudes.set_sensor_satellite_level()
s.altitudes.set_target_custom_altitude(km)
sensor = info['SPACECRAFT_NAME']
def spectralResponseFunction(bandname):
"""
Extract spectral response function for given band name
"""
if sensor == 'Sentinel-2A':
bandSelect = {
'B1':PredefinedWavelengths.S2A_MSI_01,
'B2':PredefinedWavelengths.S2A_MSI_02,
'B3':PredefinedWavelengths.S2A_MSI_03,
'B4':PredefinedWavelengths.S2A_MSI_04,
'B5':PredefinedWavelengths.S2A_MSI_05,
'B6':PredefinedWavelengths.S2A_MSI_06,
'B7':PredefinedWavelengths.S2A_MSI_07,
'B8':PredefinedWavelengths.S2A_MSI_08,
'B8A':PredefinedWavelengths.S2A_MSI_08A,
'B9':PredefinedWavelengths.S2A_MSI_09,
'B10':PredefinedWavelengths.S2A_MSI_10,
'B11':PredefinedWavelengths.S2A_MSI_11,
'B12':PredefinedWavelengths.S2A_MSI_12}
elif sensor == 'Sentinel-2B':
bandSelect = {
'B1': PredefinedWavelengths.S2B_MSI_01,
'B2': PredefinedWavelengths.S2B_MSI_02,
'B3': PredefinedWavelengths.S2B_MSI_03,
'B4': PredefinedWavelengths.S2B_MSI_04,
'B5': PredefinedWavelengths.S2B_MSI_05,
'B6': PredefinedWavelengths.S2B_MSI_06,
'B7': PredefinedWavelengths.S2B_MSI_07,
'B8': PredefinedWavelengths.S2B_MSI_08,
'B8A': PredefinedWavelengths.S2B_MSI_08A,
'B9': PredefinedWavelengths.S2B_MSI_09,
'B10': PredefinedWavelengths.S2B_MSI_10,
'B11': PredefinedWavelengths.S2B_MSI_11,
'B12': PredefinedWavelengths.S2B_MSI_12}
else:
assert None, 'Invalid sensor. Detected %s . Supports "Sentinel-2A" or "Sentinel-2B"' % sensor
return Wavelength(bandSelect[bandname])
def toa_to_rad(bandname):
"""
Converts top of atmosphere reflectance to at-sensor radiance
"""
# solar exoatmospheric spectral irradiance
ESUN = info['SOLAR_IRRADIANCE_'+bandname]
solar_angle_correction = math.cos(math.radians(solar_z))
# Earth-Sun distance (from day of year)
doy = scene_date.timetuple().tm_yday
d = 1 - 0.01672 * math.cos(0.9856 * (doy-4))# http://physics.stackexchange.com/questions/177949/earth-sun-distance-on-a-given-day-of-the-year
# conversion factor
multiplier = ESUN*solar_angle_correction/(math.pi*d**2)
# at-sensor radiance
rad = img.select(bandname).multiply(multiplier)
return rad
def surface_reflectance(bandname):
"""
Calculate surface reflectance from at-sensor radiance given waveband name
"""
# run 6S for this waveband
s.wavelength = spectralResponseFunction(bandname)
s.run()
# extract 6S outputs
Edir = s.outputs.direct_solar_irradiance #direct solar irradiance
Edif = s.outputs.diffuse_solar_irradiance #diffuse solar irradiance
Lp = s.outputs.atmospheric_intrinsic_radiance #path radiance
absorb = s.outputs.trans['global_gas'].upward #absorption transmissivity
scatter = s.outputs.trans['total_scattering'].upward #scattering transmissivity
tau2 = absorb*scatter #total transmissivity
# radiance to surface reflectance
rad = toa_to_rad(bandname)
ref = rad.subtract(Lp).multiply(math.pi).divide(tau2*(Edir+Edif))
return ref
# all wavebands
output = img.select('QA60')
for band in ['B1','B2','B3','B4','B5','B6','B7','B8','B8A','B9','B10','B11','B12']:
output = output.addBands(surface_reflectance(band))
self.env.feature +=1
return output.addBands(TDOMMask).copyProperties(img,['system:time_start','system:footprint','MEAN_SOLAR_ZENITH_ANGLE','MEAN_SOLAR_AZIMUTH_ANGLE'])
# Function to mask clouds using the Sentinel-2 QA band.
def QAMaskCloud(self,img):
bandNames = img.bandNames()
otherBands = bandNames.removeAll(self.env.divideBands)
others = img.select(otherBands)
qa = img.select('QA60').int16();
img = img.select(self.env.divideBands)
# Bits 10 and 11 are clouds and cirrus, respectively.
cloudBitMask = int(math.pow(2, 10));
cirrusBitMask = int(math.pow(2, 11));
# Both flags should be set to zero, indicating clear conditions.
mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0));
img = img.updateMask(mask).addBands(others)
# Return the masked and scaled data.
return img
def sentinelCloudScore(self,img):
"""
Computes spectral indices of cloudyness and take the minimum of them.
Each spectral index is fairly lenient because the group minimum
is a somewhat stringent comparison policy. side note -> this seems like a job for machine learning :)
originally written by Matt Hancher for Landsat imagery
adapted to Sentinel by Chris Hewig and Ian Housman
"""
def rescale(img, thresholds):
"""
Linear stretch of image between two threshold values.
"""
return img.subtract(thresholds[0]).divide(thresholds[1] - thresholds[0])
# cloud until proven otherwise
score = ee.Image(1)
blueCirrusScore = ee.Image(0)
# clouds are reasonably bright
blueCirrusScore = blueCirrusScore.max(rescale(img.select(['blue']), [0.1, 0.5]))
blueCirrusScore = blueCirrusScore.max(rescale(img.select(['cb']), [0.1, 0.5]))
blueCirrusScore = blueCirrusScore.max(rescale(img.select(['cirrus']), [0.1, 0.3]))
score = score.min(blueCirrusScore)
score = score.min(rescale(img.select(['red']).add(img.select(['green'])).add(img.select('blue')), [0.2, 0.8]))
score = score.min(rescale(img.select(['nir']).add(img.select(['swir1'])).add(img.select('swir2')), [0.3, 0.8]))
# clouds are moist
ndsi = img.normalizedDifference(['green','swir1'])
score=score.min(rescale(ndsi, [0.8, 0.6]))
score = score.multiply(100).byte();
score = score.clamp(0,100);
return img.addBands(score.rename(['cloudScore']))
def cloudMasking(self,collection):
def maskClouds(img):
cloudMask = img.select(['cloudScore']).lt(self.env.cloudScoreThresh)\
.focal_min(self.env.dilatePixels) \
.focal_max(self.env.contractPixels) \
.rename(['cloudMask'])
bandNames = img.bandNames()
otherBands = bandNames.removeAll(self.env.divideBands)
others = img.select(otherBands)
img = img.select(self.env.divideBands).updateMask(cloudMask)
return img.addBands(cloudMask).addBands(others);
# Find low cloud score pctl for each pixel to avoid comission errors
minCloudScore = collection.select(['cloudScore']).reduce(ee.Reducer.percentile([self.env.cloudScorePctl]));
collection = collection.map(maskClouds)
return collection
def brdf(self,img):
def _apply(image, kvol, kvol0):
blue = _correct_band(image, 'blue', kvol, kvol0, f_iso=0.0774, f_geo=0.0079, f_vol=0.0372)
green = _correct_band(image, 'green', kvol, kvol0, f_iso=0.1306, f_geo=0.0178, f_vol=0.0580)
red = _correct_band(image, 'red', kvol, kvol0, f_iso=0.1690, f_geo=0.0227, f_vol=0.0574)
re1 = _correct_band(image, 're1', kvol, kvol0, f_iso=0.2085, f_geo=0.0256, f_vol=0.0845)
re2 = _correct_band(image, 're2', kvol, kvol0, f_iso=0.2316, f_geo=0.0273, f_vol=0.1003)
re3 = _correct_band(image, 're3', kvol, kvol0, f_iso=0.2599, f_geo=0.0294, f_vol=0.1197)
nir = _correct_band(image, 'nir', kvol, kvol0, f_iso=0.3093, f_geo=0.0330, f_vol=0.1535)
re4 = _correct_band(image, 're4', kvol, kvol0, f_iso=0.2907, f_geo=0.0410, f_vol=0.1611)
swir1 = _correct_band(image, 'swir1', kvol, kvol0, f_iso=0.3430, f_geo=0.0453, f_vol=0.1154)
swir2 = _correct_band(image, 'swir2', kvol, kvol0, f_iso=0.2658, f_geo=0.0387, f_vol=0.0639)
return replace_bands(image, [blue, green, red,re1,re2,re3, nir,re4, swir1, swir2])
def _correct_band(image, band_name, kvol, kvol0, f_iso, f_geo, f_vol):
"""fiso + fvol * kvol + fgeo * kgeo"""
iso = ee.Image(f_iso)
geo = ee.Image(f_geo)
vol = ee.Image(f_vol)
pred = vol.multiply(kvol).add(geo.multiply(kvol)).add(iso).rename(['pred'])
pred0 = vol.multiply(kvol0).add(geo.multiply(kvol0)).add(iso).rename(['pred0'])
cfac = pred0.divide(pred).rename(['cfac'])
corr = image.select(band_name).multiply(cfac).rename([band_name])
return corr
def _kvol(sunAz, sunZen, viewAz, viewZen):
"""Calculate kvol kernel.
From Lucht et al. 2000
Phase angle = cos(solar zenith) cos(view zenith) + sin(solar zenith) sin(view zenith) cos(relative azimuth)"""
relative_azimuth = sunAz.subtract(viewAz).rename(['relAz'])
pa1 = viewZen.cos() \
.multiply(sunZen.cos())
pa2 = viewZen.sin() \
.multiply(sunZen.sin()) \
.multiply(relative_azimuth.cos())
phase_angle1 = pa1.add(pa2)
phase_angle = phase_angle1.acos()
p1 = ee.Image(PI().divide(2)).subtract(phase_angle)
p2 = p1.multiply(phase_angle1)
p3 = p2.add(phase_angle.sin())
p4 = sunZen.cos().add(viewZen.cos())
p5 = ee.Image(PI().divide(4))
kvol = p3.divide(p4).subtract(p5).rename(['kvol'])
viewZen0 = ee.Image(0)
pa10 = viewZen0.cos() \
.multiply(sunZen.cos())
pa20 = viewZen0.sin() \
.multiply(sunZen.sin()) \
.multiply(relative_azimuth.cos())
phase_angle10 = pa10.add(pa20)
phase_angle0 = phase_angle10.acos()
p10 = ee.Image(PI().divide(2)).subtract(phase_angle0)
p20 = p10.multiply(phase_angle10)
p30 = p20.add(phase_angle0.sin())
p40 = sunZen.cos().add(viewZen0.cos())
p50 = ee.Image(PI().divide(4))
kvol0 = p30.divide(p40).subtract(p50).rename(['kvol0'])
return (kvol, kvol0)
date = img.date()
footprint = ee.List(img.geometry().bounds().bounds().coordinates().get(0));
(sunAz, sunZen) = sun_angles.create(date, footprint)
(viewAz, viewZen) = view_angles.create(footprint)
(kvol, kvol0) = _kvol(sunAz, sunZen, viewAz, viewZen)
bandNames = img.bandNames()
otherBands = bandNames.removeAll(self.env.divideBands)
others = img.select(otherBands)
img = ee.Image(_apply(img, kvol.multiply(PI()), kvol0.multiply(PI())))
return img
def terrain(self,img):
degree2radian = 0.01745;
geom = ee.Geometry(img.get('system:footprint')).bounds().buffer(10000)
dem = self.env.dem
bandNames = img.bandNames()
otherBands = bandNames.removeAll(self.env.divideBands)
others = img.select(otherBands)
bandList = ['blue','green','red','re1','re2','re3','nir','re4','cb','cirrus','swir1','swir2','waterVapor']
def topoCorr_IC(img):
# Extract image metadata about solar position
SZ_rad = ee.Image.constant(ee.Number(img.get('MEAN_SOLAR_ZENITH_ANGLE'))).multiply(degree2radian).clip(geom);
SA_rad = ee.Image.constant(ee.Number(img.get('MEAN_SOLAR_AZIMUTH_ANGLE'))).multiply(degree2radian).clip(geom);
# Creat terrain layers
slp = ee.Terrain.slope(dem).clip(geom);
slp_rad = ee.Terrain.slope(dem).multiply(degree2radian).clip(geom);
asp_rad = ee.Terrain.aspect(dem).multiply(degree2radian).clip(geom);
# Calculate the Illumination Condition (IC)
# slope part of the illumination condition
cosZ = SZ_rad.cos();
cosS = slp_rad.cos();
slope_illumination = cosS.expression("cosZ * cosS", \
{'cosZ': cosZ, 'cosS': cosS.select('slope')});
# aspect part of the illumination condition
sinZ = SZ_rad.sin();
sinS = slp_rad.sin();
cosAziDiff = (SA_rad.subtract(asp_rad)).cos();
aspect_illumination = sinZ.expression("sinZ * sinS * cosAziDiff", \
{'sinZ': sinZ, \
'sinS': sinS, \
'cosAziDiff': cosAziDiff});
# full illumination condition (IC)
ic = slope_illumination.add(aspect_illumination);
# Add IC to original image
img_plus_ic = ee.Image(img.addBands(ic.rename(['IC'])).addBands(cosZ.rename(['cosZ'])).addBands(cosS.rename(['cosS'])).addBands(slp.rename(['slope'])));
return ee.Image(img_plus_ic);
def topoCorr_SCSc(img):
img_plus_ic = img;
mask1 = img_plus_ic.select('nir').gt(-0.1);
mask2 = img_plus_ic.select('slope').gte(5) \
.And(img_plus_ic.select('IC').gte(0)) \
.And(img_plus_ic.select('nir').gt(-0.1));
img_plus_ic_mask2 = ee.Image(img_plus_ic.updateMask(mask2));
def apply_SCSccorr(band):
method = 'SCSc';
out = ee.Image(1).addBands(img_plus_ic_mask2.select('IC', band)).reduceRegion(reducer= ee.Reducer.linearRegression(2,1), \
geometry= ee.Geometry(img.geometry().buffer(-5000)), \
scale= 300, \
bestEffort =True,
maxPixels=1e10)
fit = out.combine({"coefficients": ee.Array([[1],[1]])}, False);
#Get the coefficients as a nested list,
#cast it to an array, and get just the selected column
out_a = (ee.Array(fit.get('coefficients')).get([0,0]));
out_b = (ee.Array(fit.get('coefficients')).get([1,0]));
out_c = out_a.divide(out_b)
# apply the SCSc correction
SCSc_output = img_plus_ic_mask2.expression("((image * (cosB * cosZ + cvalue)) / (ic + cvalue))", {
'image': img_plus_ic_mask2.select([band]),
'ic': img_plus_ic_mask2.select('IC'),
'cosB': img_plus_ic_mask2.select('cosS'),
'cosZ': img_plus_ic_mask2.select('cosZ'),
'cvalue': out_c });
return ee.Image(SCSc_output);
img_SCSccorr = ee.Image([apply_SCSccorr(band) for band in bandList]).addBands(img_plus_ic.select('IC'));
bandList_IC = ee.List([bandList, 'IC']).flatten();
img_SCSccorr = img_SCSccorr.unmask(img_plus_ic.select(bandList_IC)).select(bandList);
return img_SCSccorr.unmask(img_plus_ic.select(bandList))
img = topoCorr_IC(img)
img = topoCorr_SCSc(img).addBands(others )
return img
def medoidMosaic(self,collection):
""" medoid composite with equal weight among indices """
bandNames = ee.Image(collection.first()).bandNames()
otherBands = bandNames.removeAll(self.env.divideBands)
others = collection.select(otherBands).reduce(ee.Reducer.mean()).rename(otherBands);
collection = collection.select(self.env.divideBands)
bandNumbers = ee.List.sequence(1,self.env.divideBands.length());
median = ee.ImageCollection(collection).median()
def subtractmedian(img):
diff = ee.Image(img).subtract(median).pow(ee.Image.constant(2));
return diff.reduce('sum').addBands(img);
medoid = collection.map(subtractmedian)
medoid = ee.ImageCollection(medoid).reduce(ee.Reducer.min(self.env.divideBands.length().add(1))).select(bandNumbers,self.env.divideBands);
return medoid.addBands(others);
def medianMosaic(self,collection):
""" median composite """
median = collection.select(medianIncludeBands).median();
othersBands = bandNames.removeAll(medianIncludeBands);
others = collection.select(otherBands).mean();
return median.addBands(others)
def setMetaData(self,img):
""" add metadata to image """
img = ee.Image(img).set({'system:time_start':ee.Date(self.env.startDate).millis(), \
'regionName': str(self.env.regionName), \
'assetId':str(self.env.assetId), \
'compositingMethod':'medoid', \
'exportScale':str(self.env.exportScale), \
'startDOY':str(self.env.startDoy), \
'endDOY':str(self.env.endDoy), \
'useCloudScore':str(self.env.cloudMask), \
'useTDOM':str(self.env.shadowMask), \
'useQAmask':str(self.env.QAcloudMask), \
'brdf':str(self.env.brdf), \
'useCloudProject':str(self.env.cloudMask), \
'terrain':str(self.env.terrainCorrection), \
'surfaceReflectance':str(self.env.calcSR), \
'cloudScoreThresh':str(self.env.cloudScoreThresh), \
'cloudScorePctl':str(self.env.cloudScorePctl), \
'zScoreThresh':str(self.env.zScoreThresh), \
'shadowSumThresh':str(self.env.shadowSumThresh), \
'contractPixels':str(self.env.contractPixels), \
'epsg':self.env.epsg, \
'cloudFilter':str(self.env.metadataCloudCoverMax),\
'terrainScale':str(self.env.terrainScale), \
'dilatePixels':str(self.env.dilatePixels)})
return img
def exportMap(self,img,studyArea,week):
geom = studyArea.bounds().getInfo();
sd = str(self.env.startDate.getRelative('day','year').getInfo()).zfill(3);
ed = str(self.env.endDate.getRelative('day','year').getInfo()).zfill(3);
year = str(self.env.startDate.get('year').getInfo());
regionName = self.env.regionName.replace(" ",'_') + "_"
task_ordered= ee.batch.Export.image.toAsset(image=img.clip(studyArea.buffer(10000)),
description = self.env.name + regionName + str(week).zfill(3) +'_'+ year + sd + ed,
assetId= self.env.assetId + self.env.name + regionName + str(week).zfill(3)+'_'+ year + sd + ed,
region=geom['coordinates'],
maxPixels=1e13,
crs=self.env.epsg,
scale=self.env.exportScale)
task_ordered.start()
if __name__ == "__main__":
ee.Initialize()
start = 1
for i in range(38,105,1):
#Jun 2015 starts at biweek 38
startWeek = start+ i
print(startWeek)
year = ee.Date("2014-01-01")
startDay = (startWeek -1) *14
endDay = (startWeek) *14 -1
startDate = year.advance(startDay,"day")
endDate = year.advance(endDay,"day")
regionName = 'AMAZONIA NOROCCIDENTAL'
studyArea = ee.FeatureCollection("projects/Sacha/AncillaryData/StudyRegions/Ecuador_EcoRegions_Complete")
studyArea = studyArea.filterMetadata('PROVINCIA','equals',regionName).geometry().bounds()
studyArea = studyArea.geometry().bounds()
print(functions().main(studyArea,startDate,endDate,startDay,endDay,startWeek,regionName))