forked from bubbliiiing/yolov4-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_dr_txt.py
144 lines (122 loc) · 6.53 KB
/
get_dr_txt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#----------------------------------------------------#
# 获取测试集的detection-result和images-optional
# 具体视频教程可查看
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
import colorsys
import os
import numpy as np
from keras import backend as K
from keras.layers import Input
from keras.models import load_model
from PIL import Image
from tqdm import tqdm
from nets.yolo4 import yolo_body, yolo_eval
from utils.utils import letterbox_image
from yolo import YOLO
'''
这里设置的门限值较低是因为计算map需要用到不同门限条件下的Recall和Precision值。
所以只有保留的框足够多,计算的map才会更精确,详情可以了解map的原理。
计算map时输出的Recall和Precision值指的是门限为0.5时的Recall和Precision值。
此处获得的./input/detection-results/里面的txt的框的数量会比直接predict多一些,这是因为这里的门限低,
目的是为了计算不同门限条件下的Recall和Precision值,从而实现map的计算。
这里的self.iou指的是非极大抑制所用到的iou,具体的可以了解非极大抑制的原理,
如果低分框与高分框的iou大于这里设定的self.iou,那么该低分框将会被剔除。
可能有些同学知道有0.5和0.5:0.95的mAP,这里的self.iou=0.5不代表mAP0.5。
如果想要设定mAP0.x,比如设定mAP0.75,可以去get_map.py设定MINOVERLAP。
'''
class mAP_YOLO(YOLO):
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def generate(self):
self.score = 0.01
self.iou = 0.5
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
#---------------------------------------------------#
# 计算先验框的数量和种类的数量
#---------------------------------------------------#
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
#---------------------------------------------------------#
# 载入模型,如果原来的模型里已经包括了模型结构则直接载入。
# 否则先构建模型再载入
#---------------------------------------------------------#
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path)
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
# 打乱颜色
np.random.seed(10101)
np.random.shuffle(self.colors)
np.random.seed(None)
self.input_image_shape = K.placeholder(shape=(2, ))
#---------------------------------------------------------#
# 在yolo_eval函数中,我们会对预测结果进行后处理
# 后处理的内容包括,解码、非极大抑制、门限筛选等
#---------------------------------------------------------#
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
num_classes, self.input_image_shape, max_boxes = self.max_boxes,
score_threshold = self.score, iou_threshold = self.iou, letterbox_image = self.letterbox_image)
return boxes, scores, classes
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image_id, image):
f = open("./input/detection-results/"+image_id+".txt","w")
if self.letterbox_image:
boxed_image = letterbox_image(image, (self.model_image_size[1],self.model_image_size[0]))
else:
boxed_image = image.convert('RGB')
boxed_image = boxed_image.resize((self.model_image_size[1],self.model_image_size[0]), Image.BICUBIC)
image_data = np.array(boxed_image, dtype='float32')
image_data /= 255.
#---------------------------------------------------------#
# 添加上batch_size维度
#---------------------------------------------------------#
image_data = np.expand_dims(image_data, 0)
#---------------------------------------------------------#
# 将图像输入网络当中进行预测!
#---------------------------------------------------------#
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0})
for i, c in enumerate(out_classes):
predicted_class = self.class_names[int(c)]
score = str(out_scores[i])
top, left, bottom, right = out_boxes[i]
f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))
f.close()
return
yolo = mAP_YOLO()
image_ids = open('VOCdevkit/VOC2007/ImageSets/Main/test.txt').read().strip().split()
if not os.path.exists("./input"):
os.makedirs("./input")
if not os.path.exists("./input/detection-results"):
os.makedirs("./input/detection-results")
if not os.path.exists("./input/images-optional"):
os.makedirs("./input/images-optional")
for image_id in tqdm(image_ids):
image_path = "./VOCdevkit/VOC2007/JPEGImages/"+image_id+".jpg"
image = Image.open(image_path)
# 开启后在之后计算mAP可以可视化
# image.save("./input/images-optional/"+image_id+".jpg")
yolo.detect_image(image_id,image)
print("Conversion completed!")