From 55fba82b0525391d96e08f4a56823f698c99f807 Mon Sep 17 00:00:00 2001 From: Elliott Wobler Date: Mon, 11 May 2020 16:03:13 +0200 Subject: [PATCH 01/10] Examples for filtering grib data within a provided shapefile area --- .gitignore | 1 + .../cropped_region/README.md | 9 ++ .../cropped_region/get_data_in_region.py | 116 +++++++++++++++++ .../get_data_in_region_at_vertical_level.py | 118 ++++++++++++++++++ .../cropped_region/shpfile/france.dbf | Bin 0 -> 485 bytes .../cropped_region/shpfile/france.prj | 1 + .../cropped_region/shpfile/france.shp | Bin 0 -> 32304 bytes .../cropped_region/shpfile/france.shx | Bin 0 -> 108 bytes 8 files changed, 245 insertions(+) create mode 100644 .gitignore create mode 100644 examples/working_with_grib_data/cropped_region/README.md create mode 100644 examples/working_with_grib_data/cropped_region/get_data_in_region.py create mode 100644 examples/working_with_grib_data/cropped_region/get_data_in_region_at_vertical_level.py create mode 100644 examples/working_with_grib_data/cropped_region/shpfile/france.dbf create mode 100644 examples/working_with_grib_data/cropped_region/shpfile/france.prj create mode 100644 examples/working_with_grib_data/cropped_region/shpfile/france.shp create mode 100644 examples/working_with_grib_data/cropped_region/shpfile/france.shx diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..e43b0f9 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +.DS_Store diff --git a/examples/working_with_grib_data/cropped_region/README.md b/examples/working_with_grib_data/cropped_region/README.md new file mode 100644 index 0000000..d01520a --- /dev/null +++ b/examples/working_with_grib_data/cropped_region/README.md @@ -0,0 +1,9 @@ +# Dependencies + +The example programs require the following libraries in a Python 3.x environment: + + - pyNIO + - gdal + - xarray + - pandas + - matplotlib diff --git a/examples/working_with_grib_data/cropped_region/get_data_in_region.py b/examples/working_with_grib_data/cropped_region/get_data_in_region.py new file mode 100644 index 0000000..9d25332 --- /dev/null +++ b/examples/working_with_grib_data/cropped_region/get_data_in_region.py @@ -0,0 +1,116 @@ +""" +Extract regional values from GRIB messages + +This program extracts precipitation data from 2 GRIB files, +and takes the difference to get fixed-interval accumulations. +It then crops the data to the area of a provided shapefile. +""" +import argparse +import xarray as xr +import pandas as pd +import matplotlib.pyplot as plt +from osgeo import ogr + +# Load the shapefile area +driver = ogr.GetDriverByName('ESRI Shapefile') +shpfile = driver.Open('shpfile/france.shp') +AREA = shpfile.GetLayer() + +# Check if point is inside of shapefile area +def area_filter(latlon): + # Initialize flag + point_in_area = False + # Parse coordinates and convert to floats + lat = float(latlon[0]) + lon = float(latlon[1]) + # Create a point geometry + point = ogr.Geometry(ogr.wkbPoint) + point.AddPoint(lon, lat) + # Check if the point is in any of the shpfile's features + for i in range(AREA.GetFeatureCount()): + feature = AREA.GetFeature(i) + if feature.geometry().Contains(point): + # This point is within a feature + point_in_area = True + # Break out of the loop + break + # Return flag indicating whether point is in the area + return point_in_area + +# Load and filter grib data to get regional precipitation +def parse_data(filepath1, filepath2): + # Load the grib files into xarray datasets + ds1 = xr.open_dataset(filepath1, engine='pynio') + ds2 = xr.open_dataset(filepath2, engine='pynio') + # print(ds1.keys()) + # Convert the xarray datasets to dataframes + df1 = ds1.to_dataframe() + df2 = ds2.to_dataframe() + # Create a new dataframe with the same lat/lon index + df = pd.DataFrame(index=df1.index) + # Since the grib data is forecast-total accumulated precipitation, + # subtract the older value from the newer one to get fixed-interval values + df['precip'] = df2['APCP_P8_L1_GLL0_acc'] - df1['APCP_P8_L1_GLL0_acc'] + # Get longitude values from index + lons = df.index.get_level_values('lon_0') + # Map longitude range from (0 to 360) into (-180 to 180) + maplon = lambda lon: (lon - 360) if (lon > 180) else lon + # Create new longitude and latitude columns in the dataframe + df['longitude'] = lons.map(maplon) + df['latitude'] = df.index.get_level_values('lat_0') + # Get the area's bounding box + extent = AREA.GetExtent() + minlon = extent[0] + maxlon = extent[1] + minlat = extent[2] + maxlat = extent[3] + # Perform an initial coarse filter on the global dataframe + # by limiting the data to the area's bounding box, + # thereby reducing the total processing time of the `area_filter` + latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) + lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) + # Apply filters to the dataframe + df = df.loc[latfilter & lonfilter] + # Create tuple column of latitude and longitude points + df['point'] = list(zip(df['latitude'], df['longitude'])) + # Create boolean column for whether the shpfile area contains the point + df['inArea'] = df['point'].map(area_filter) + # Drop point locations that are not within the shpfile area + df = df.loc[(df['inArea'] == True)] + # Trim the data to just the lat, lon, and precipitation columns + df_viz = df.loc[:, ['latitude','longitude','precip']] + # Convert from millimeters to inches + # df_viz['precip'] = df_viz['precip'] * 0.0393701 + return df_viz + +# Visualize the data +def plot_data(data): + x = data['longitude'].values + y = data['latitude'].values + color = data['precip'].values + plt.scatter( + x, + y, + c=color, + s=10, + cmap='Blues', + edgecolors='gray', + linewidths=0.1 + ) + plt.title('Precipitation (mm)') + plt.colorbar() + plt.show() + +if __name__ == '__main__': + parser = argparse.ArgumentParser( + description='Get fixed-interval precip values within a region by differencing 2 GRIB files' + ) + parser.add_argument( + 'filepath1', type=str, help='The path to the earlier Basic bundle GRIB file to open' + ) + parser.add_argument( + 'filepath2', type=str, help='The path to the later Basic bundle GRIB file to open' + ) + args = parser.parse_args() + data = parse_data(args.filepath1, args.filepath2) + plot_data(data) diff --git a/examples/working_with_grib_data/cropped_region/get_data_in_region_at_vertical_level.py b/examples/working_with_grib_data/cropped_region/get_data_in_region_at_vertical_level.py new file mode 100644 index 0000000..23e9331 --- /dev/null +++ b/examples/working_with_grib_data/cropped_region/get_data_in_region_at_vertical_level.py @@ -0,0 +1,118 @@ +""" +Extract regional values from GRIB messages at one vertical level + +This program extracts temperature data from a GRIB file +at a single vertical (isobaric) level. It then crops the data +to the horizontal area of a provided shapefile. +""" +import argparse +import xarray as xr +import pandas as pd +import matplotlib.pyplot as plt +from osgeo import ogr + +# Load the shapefile area +driver = ogr.GetDriverByName('ESRI Shapefile') +shpfile = driver.Open('shpfile/france.shp') +AREA = shpfile.GetLayer() + +# Check if point is inside of shapefile area +def area_filter(latlon): + # Initialize flag + point_in_area = False + # Parse coordinates and convert to floats + lat = float(latlon[0]) + lon = float(latlon[1]) + # Create a point geometry + point = ogr.Geometry(ogr.wkbPoint) + point.AddPoint(lon, lat) + # Check if the point is in any of the shpfile's features + for i in range(AREA.GetFeatureCount()): + feature = AREA.GetFeature(i) + if feature.geometry().Contains(point): + # This point is within a feature + point_in_area = True + # Break out of the loop + break + # Return flag indicating whether point is in the area + return point_in_area + +# Load and filter grib data to get regional temperature +# at the specified isobaric level +def parse_data(filepath): + # Load the grib files into an xarray dataset + ds = xr.open_dataset(filepath, engine='pynio') + # print(ds.keys()) + # Rename the temperature variable for clarity + ds = ds.rename({'TMP_P0_L100_GLL0': 'temperature'}) + # Get only the temperature values at isobaric levels + # to significantly reduce the volume of data right away, + # otherwise converting to a dataframe will take a long time + ds = ds.get('temperature') + # Convert the xarray dataset to a dataframe + df = ds.to_dataframe() + # Retrieve isobaric level values + isblevels = df.index.get_level_values('lv_ISBL0') + # Filter to a specific isobaric level: + # 2000 pascal (20 hPa) + df = df.loc[(isblevels == 2000)] + # Get longitude values from index + lons = df.index.get_level_values('lon_0') + # Map longitude range from (0 to 360) into (-180 to 180) + maplon = lambda lon: (lon - 360) if (lon > 180) else lon + # Create new longitude and latitude columns in the dataframe + df['longitude'] = lons.map(maplon) + df['latitude'] = df.index.get_level_values('lat_0') + # Get the area's bounding box + extent = AREA.GetExtent() + minlon = extent[0] + maxlon = extent[1] + minlat = extent[2] + maxlat = extent[3] + # Perform an initial coarse filter on the global dataframe + # by limiting the data to the area's bounding box, + # thereby reducing the total processing time of the `area_filter` + latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) + lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) + # Apply filters to the dataframe + df = df.loc[latfilter & lonfilter] + # Create tuple column of latitude and longitude points + df['point'] = list(zip(df['latitude'], df['longitude'])) + # Create boolean column for whether the shpfile area contains the point + df['inArea'] = df['point'].map(area_filter) + # Crop point locations that are not within the shpfile area + df = df.loc[(df['inArea'] == True)] + # Trim the data to just the lat, lon, and temperature columns + df_viz = df.loc[:, ['latitude','longitude','temperature']] + # Convert from Kelvin to Celsius + df_viz['temperature'] = df_viz['temperature'] - 273.15 + return df_viz + +# Visualize the data +def plot_data(data): + x = data['longitude'].values + y = data['latitude'].values + color = data['temperature'].values + plt.scatter( + x, + y, + c=color, + s=10, + cmap='coolwarm', + edgecolors='gray', + linewidths=0.1 + ) + plt.title('Temperature (C) at 20 hPa') + plt.colorbar() + plt.show() + +if __name__ == '__main__': + parser = argparse.ArgumentParser( + description='Extract regional data from a GRIB file at a single vertical level' + ) + parser.add_argument( + 'filepath', type=str, help='The path to the Upper-Air bundle GRIB file to open' + ) + args = parser.parse_args() + data = parse_data(args.filepath) + plot_data(data) diff --git a/examples/working_with_grib_data/cropped_region/shpfile/france.dbf b/examples/working_with_grib_data/cropped_region/shpfile/france.dbf new file mode 100644 index 0000000000000000000000000000000000000000..2cec8549f82ffee81c84eee86e7bc8d386a0cb12 GIT binary patch literal 485 zcmZRsU}a}yU|?uuOa_u@Ae@20%`+evD(VcPnb4GY2KyTkkT*t_XGYT>>IWA9v(V-J z9DQAp^}{TK>2eHmb%e6P`q^O;P&&Xrz{tSB6vP9|bD_xxxw?D$L)?JX{@_q2m=dh= zK2Xgt^EuEw;Nutqvk|PH9ZjBB!7T^`9gR#4+=>$Ol2a8(0;Z-0h6V}>W(Jm)2Bsz^ XhCr^VDbNHXJ)n$&iJ6|MnW+>2UdSa- literal 0 HcmV?d00001 diff --git a/examples/working_with_grib_data/cropped_region/shpfile/france.prj b/examples/working_with_grib_data/cropped_region/shpfile/france.prj new file mode 100644 index 0000000..f45cbad --- /dev/null +++ b/examples/working_with_grib_data/cropped_region/shpfile/france.prj @@ -0,0 +1 @@ +GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]] \ No newline at end of file diff --git a/examples/working_with_grib_data/cropped_region/shpfile/france.shp b/examples/working_with_grib_data/cropped_region/shpfile/france.shp new file mode 100644 index 0000000000000000000000000000000000000000..166a4d0ecb3a800fa589cca22007ea3c1babdcd6 GIT binary patch literal 32304 zcma)lcX*H28~2k$NC>i!ghYg@su2`1zb9tQre^F|tzAWl{k1A6V$~+p2#VOT@;nhE zC}MA7Z$g4Z*8BO~Ptf;wy??y9E?2Kl?{m&`=6&vU?yshOn_v5X{#iVp+G(0SXjZpz z7gJ}r8=>VcWUbiNNNJVt%)ME%vHzwxe4~DONH5hOK$$r>v8F)gR4K{UQh2BChz z8o&G4msaJT|68vNaHz}R6PJL)er{%62JD+>cxoDO%;rQ@0rf*WTlZehgYxx9P0j+2 ztY5c9giUFcR^i-~gDueBu{y?rY>cONNY0a%82`Nmt;=YoRrvI^YBjL$evCJNX?3k| z>8VXo-+F4@A2pm&-{lXR7ERFph{Z=cx!`+yF9mjQjP`QZ-nz70gXeyz|5rEv7@yq! zd7yrSu-(6vD6ImDmCxzyjQ%W{HnMf`(kkigl1Zlup}l|u%|{h0trG1@PAO9G>-I8$%}l`Wp2&?l@fZ-`w%PMEm`Z)pS3L{n6V& zoAaWPvij}}a$|dI3L1Hzqy13ZeXmLPC{_2y(?-e&Z|qbD^{w6h$Qf}R-|OA5W=1^r z%ZJ4J9WLQ}Z6A$oas=&X?>RK=BHFKrc|VB$a(&OEeCd>glIyS^!k3QsIfM4tzgd1N z>hZ8CYmT6Nc5=$yv1spFle*XUqraTb3HV;1o9d+{6Sj%%h= z+78V19tt}5GtPGC-om3#561rFdI2Xr?{KbJ51g0Wv#-iH+5OekPdSvIW49f2-*y;y zXW(0X_1D1G=-FXA8=^h$e{zQJM0;HSI>0G&W1H>6_+|f>QsJvNH?TX5@yhuqrOLf3 z80!ygoGaMs`aR(9qO}dNpnunO?vcx-RK$w@M?UDFFP=Gj^di(>U!h@%6X;)ycE1)} zSV|>woWRDCRnbQmfX?#3z5_2c{9!&Y=kqM)vv{vVk5NCS@4)f%5`izYKJ(}=d=H;_ z4;;EC=;QEZrIZ#|qTU3opZ31u@B=GKDTi-cO<7Cq7;pV%HNF@3$ub?-DE07A4sdXj zu9_F=iRk|t^q2bw?WrqK)BCOa+I}SGQ!l0Z{ct7w>;=?kIRo@3vkn)-{xQZ>&3SsU zlu9~^b9)8z>AJd3+!d4`Tr;lbRkVLk&G-&XN8pm=EvY67m9HOTBJ$mALW#A12HzrJNUQnQcFyez7+vUd=^$?pI)Ik)(rX zW?_BLIy4vsoU{=KXFSI1`)Z;U*vjvZMS1R5;860T(P*Fho9*#F z2*dh(>SCMx9`$*@i~>DqL&J^0k#8@?)ch6mP5zaN@8zAWc@DsMd2WD>IVYUjb-?-! z4GU}ptZjZ*uXG^Rt6_0#L162;8KbO~(H_?c{4TO;K=bYu(ckDcfsHdj=lKK<;oS=? z{1D}1IFH26qu!UVjrQ0+_@^)Llg8-JorJpYNUyN6@VVxgAAXPgRo}0VX$M?o(S##e zD9`iO9_tmPkN3_-e{Z_9E`a{Z`2qIjIrs_d)p$advkmxt?tIDm+2cMa-fZ$v%%^{k z#0Iu`zhc?Xz$!L!TAp#(Pn`dJxNlQ&zPe(3{r<^XiTl9V+P7+nrZ|5Gm(}fC7?}4( zO{~W~$HUpYPn^8#L{-4~JCm*U7Xh98wG8Ta`ej^?5@?_ETo?1_;b7ax7v;&nTjD&j zzomdFA9O3Fg6b`um`W`C4egUp@IKqMCpIV)^P6vUy(Pd_p6?!|R5I`P(rBOOA2_C0 z`K+nHky%&w_iu>xeG2;bz{2m)fA*sSFwbKR?5{dCY~KR=j_=%fqCfh(>R-zzVC^pM zgYR?q3$V)AKKx=?e4qTJ3g(CM3f3oz=PwZb8L8(_9t@n6JUJZlfa3oD4d;RUi1+tV zKirU|R9Z2NpYq3V9U8SNf%{~3nZOvxE5<6{9k;!4zqJmWP$MLFJSB1eksktEeg3YS zQXcn9){4oQoq=V(LFfMKg8Ms{pIa$kbwm687Q}yB5BF1K{J7D;Ntfrgde;Kq`|C;E zZD1?;MeDCvD_gwqUfgH0|GT0;d6(Coi~B61LA~*LfVJwO5veo$ly<$0<$fphkM-x^ ze&Kqef4-DQ=J~09Jl`D8nx0jj&qsNle_&O$r1R5-e(EXjM_?=EzQ1ta^1m$4dtx>2 zBg!XeFSPpTQv=pQ-r)Y?__>~cgHHa3?}u(}nYMl#=40ZO%ruNA^x`l1x^72%lrOsD zdmSw`P69_v?P<*Kf%yf=g<8(0OegFhpqBcL748jz)9TqE79KMV&m-x=FTtrC->__w8#Aw zjq&ttgA)!+KC%XMB9Q(owW{&2ouV|?7tJyD+b$5X8T-3^uu z?mz4DW3wP{i#*T~^Z!5cxc0hU*I^}6^d!o&&zj&qjv4CPCq?%sKYs%3h5P?9=;Yt8 zfR}zhWq@6(e(j<)@WLD5UXbsmr0T*?Q-JU9Sbc1Ms_x*F$EIp3@SIr#TwLDk(OX^O z0zLryv<|I3_`R-OTwDL-N8sJFEk9jmu)c0^WG)0oL%DB1=o;leV)paf54zlU#5@n@-|N@7FIfNT zphw^6@Ac4$hmTAq{`Pg)f*z^5@Y@`GukzYgOAe&yQMb3-j^p?3n{>Z&^qro>{lxLs z5A1dD;5$8$^7cF6N-Y0Q4=DSqb?IB+gZaO+JbS0d=!=g`c?taHepXD@JG~s&?>TVg z>tWIMm~ZMMod5q_kM{=}hgL|{tvv7U=-;|pJKxPh|9F470oN#b^^a4jdI;|)(%ZRS z&*zExBtIp7#q~|olh{8m;FEQxS8bQ3Cnj3rjuAJSZp^c$>EV>`ivxcjRITXjH2vx5 zcA0mHW&P9iD9Rx|zV%M)1d z^B}Hhsvepr;P9*>z;n63QuQS23;)4i#{YBWo2`qd>KgYW=i`6pljpO%tr5WQg@Ar~ z^{)kL*c#WUj}m8JSX=*@tr5cW+^MOuir@?S@CzBoiT6E8znIs~NaB2U27Y&TjZ+a| z&R-YctxfNZakn$9wZ>%L=?eV8r&6s#c82h~ZounTE<63o)`+0|&>gtx<~N!5ZH*|N z7vhDkliOdmHA0)Mw3a2_KB9izEw)B5_bcn)IKDb+kgee?=N?y-Gzbz388){U(4 z=#R{AWn05R?gy0TeODIrO^~C|f9-$A|6u6jjtgvz0P@qxpp$=m1I+z78n`|8myHoY z{u>5dqeHJ%MQjY=&!fCQ@yWi6qY=aN46H2~RQK9sM?>sEr0+g@s^2=$d0&$rl0B|Vw4)*VHSr6tiun#W z8sU_Wi2Ki2bUwlHYkz;n-(z6P3sGpVLFe9y&m0X0f9E_2#Bx6J8zHnmZA1MrxBdK! z<~QWN*$#SN+T{wznspdDc+%D3cr9gS<`Z@?PY zdy<3UPx%Djlk(#ojBwh6`2FxglS+dg!1hW1pZPYR?*A0vZU{fG9i-IG6;m(#;%JRnM zKG;r^2JYti0e}9!1LZ?tZH9VZxT?DmAaWz>lbuv@H_v+=(BqR`s#JG394NQod!Orn z?!Wc-*?-xsbTY(V@iWR(E{ysQmi_2tM0Y5g+2$9tUtw>v#(z5*q4^ISUI(oCMR^@w z=46CXt|unHo#$jEXm@NK`vLR*n&xEq2E3p2kaU@UC&QomA+R-L$br7ooeXE{0mT2) zAL}CUxAu9y*hZ}w-nJ8YR1EcKG?ggh#O_K1hOcT3LQ7D!N`7~ z5AnJ=Ffgx@`y~{3#E$;!lk=*`wkNgVE-26YrE)$c`==A=YsU->ot4kD-*g8)$NL9# z@+HiocKmOKHMNvL!2m0^jX^JP_3xqe@~a^BrxEC)59T-Z zn}(pDOaE?8@BAv9dQb!4Pi#NGx<w+~KAJCi4Ve|_L7oUei^fcBs| zsQ=@cM|m3-REcwDt3$Pc|M{u#`JjR-hV2p8xjp)Rr-G(ECjeN+Q&2gqoSZobSR1(a z-TWRX&+pX){p6;VJqHw2q111yf}YIvDx^Z%gxa*M2prgFURj^QO74g6fxm?yaksE? z=6zS8nNlxKlua+?tURLroVXh075VzN&PwD>*603;a#o2>_wDMG!S{IooN!kCGDg(> z*#~$*v8C4S&MNxIwFVI`C~sS_TijnLPkG%2?FFsBc7BPo8d~w+26eJ<{+3<%)MY2| zxFv@N0UKjHj}1HMZ0gUMzym7u9DK`JMgC=1@6spmpUll&qh30zpq6*EY8jya+Mtwe zwzCSReHPf-tkAW~ja*a|??=>^{%>?q4!p0^@x32{;@ZZzsHd?_v)-qH{_MM9;R&FV z&k*m$KDz8;+UJ3-)7_S|zUiXEXuk(G>K1-|HovQBPe*&!Czz+}`k1SVA^*+~yr4w%mXoe3@dWI01<*e2Nd?_hDCIxQzm@k+12+{; z`&$w8hxUgiZmOKuz=^*A8_kw)9^1}MMbW-Y`uepyK1@e>+SS~Exi1!?J=#;yo*H2I zK3jnDv{wKd|KjgYH{TJ<< z{KriN)1QRzi`^&FO+`?i09{coYFk8!K6455IuC!2nO8(5z>K^79O$ikkFB_*h`B$2 zt#W>fsvqi46v+!5v6Ef{1;gCVU(vm<{0q5=O280Ttqogo;r&5 zs?_T_<4F+}P5T(IcBkW`29JuUDC%4B7;lxlSAM%yM2Y@%1oa#KdG*i@(8aF-On=h7 zBI+9D>o{QAvmc_rlz$9h_V;NK6~pxewoVw*?^L0pU(3IMy}M*l(|(Nl#-Gc!&+k!G zIZ%GZ_Z9d5^rGgxp?^yJF-1*&!tq2yKlr|wX-@*Sc6WNzs7^7JF!XorD6sMU!O)@g zim7O>C&%Yiy~j6}Vk#)y+Axaa=Xg37Q!yi=v(K^r+_wXZDUrw6f8TvQ>OTXW`*lC+ z>lf0KUlvp4X#W9LwEuVYF#T)9HD|xt6Y8Nv9yx&TPfhOkAk0I>ke?g^roDO$Fy|Xs ztAPHE_b~6L!@#mXfk%D{>=ujud7{4)JyhCv*q6YH_UYB2(?0XLf15m%mGU02#`$>R zVcIh}9`29#9!lgx&j0niuT>WM8$2s69@uy}r9y!kp1J-Ol&8NZ*wfsP=${qlr(453 zmH+&D4bEUZvOm^)D$(!Qf7-7%qdf0R;@McgyC~0neGu(G#d&t{GX0$~!1P!7dMS~Q z_M!X{*m1t|GWYXd&}kp9>}BrfJ?PJMln?b%V(-|7@`rHG>R!sq`*k(S-%N8`blXdX zaz2)z{HqB?l5TpL{!(Bqocz~IIne&H80Dik>@0T+{o#F0?ByTy>7kctzgq+>`_)Tn zv{M6Xov}_Y@jad&U~9enSN~4-QspS063++!Y*t+PS9ojPxd7$M)(Y*|wzx_=4*iT+ z_)~Gy9|0`xV%ETaxeVXqdG3n-(2otQIDg&n{luQJhe#KD zH^#&DTMi6i=xXoc%1V0)u!=gC)N=sZBYyxEd)zj($NPK*F!y^*anrv5Ed1_Jaq~U} z7XI&6!nB*Czv4gZT0%w9{uqJp@xEMM!t}SyMS1e$vffJU19Q;6={V?cHuzea!nR9Q9`}TJp;@A0_%Daa$OAmiu6zCQUG=p*;D`KR(Kr_bsr|u2^!_ z6dxt}60q2do0U}8Xs={>vCow>?X7pa1A<-hbnQR3!T`+*gHl{w~k3vG_jiuKj&g+Bxi(G3YP(e@|bf=${^q?@``s ziu$xC3GKx4A&r(ptWzzkCqBr+L;M8Q`muD31&Trk%5f zuhI%Po>aeokV>MxqdMB>eFA+<{Arbeso(#M_B+5{bG@VrEtpYnM_2UM3I45VB~=*b zzdiaxeptPv3IY4u-3;Zs&3@TD!$(EeOgqx22C&!@d{iRsoz=c#8DABQm-{=-$K0Ql zLBHO$`Z*iS|BLX3H7ekH`LMoPNmD-m9+>{DOdn-!7eC?0@~EGp6-__p1GyFVTWQeS zoSPgx1nud|?D7;r|L(z_+y?y_QYm|HVYJVCG#LAV@(b~lL7ie-`zVjY$KuBpLVd~~ zO?^}l{htLu4}d(_1pABr*8KS1gSDL-HS$qWjEBgF_J2Bb>IUf6*1Oa}dz62B?Od;B zJ}QR#dLFbV{xHztCg=xjr9Zqq=+yV@K)?0PZyiSXnDUy2_EI_~bR7*$`)5v5_z!uX z`KVC(qlw9{C!#*>d)ZBuA@`Y&a;7|$1^Wc~D9Vd}GZW=0KXvd?*SP*ED35TICACps z;x&NDABy{^2-+7P0yAEs0OpJQ?FQ@{m&cahSP&xZR$)p?%s1+eyrtywhaE9r z^kJATm*fmNOR5e0wnQAxDNo&-G%4$jK>9{GI&#>4r;_=0KAH~}p3JoXpQC9u}A zhR+}ye2?eqINH06@nw4}v9}U)J+i>h&On|#hW07v*<$>RA25KAfnR2VpYi_H(Z0mn zc&o6e!SUq|q5T!me-DCA{rCXNlV5D|R=%`P#Q|Da3!hF-#quVQ=t1zxS#TSA4?U%VgnU*0bH zW>E>{8y2eF!+dDVmM&fDSwcD7f1>A$1D*?i{s-LWTo2NzZ_Oxfo^ROyw0-4v1^xkf zf$|;ggY?HwE3U$6A1BVG%X)0Z_y!(yjNM;cC6eC*8Q~|Xc$xYH?86d2H5Zut+6v75J=IGEaXu!ZJlAWimlAs@uwwjF zL&$3qCxG&ce`{;!4f&7b90z(6*xRpqDzQHf0~Y<&)70MwqJJH0mt1ujblP|NfKGAy zlBWuw{k=EZll|&x`s;y(Umf-|*Q+P!j3*f7Y05KQ(La%|JXI*|16|NQ=d)L?d`nC| z<>slJ8IRBr^=17$%Wa??fDfKQQCP)_SNA`kO1G{U$G>1^|cgJOZoLhzD4S{*hl)0={ z`(X`^Z!2s9=B-ROJJ+$``8b( zpM3{9W@j4oLkG(HsvWx+4$U&MaU!WiF%?=xPe0LqKK68xF=s(iqd5A92+ z7>Rdn0)B(@?f`zy@xebY`dP^m=6-^I-uh}!yC%R~-xu)zi~S$tr@b2S0aljB{7Zb# zGtlR~Y4f})zR&oYM`-V@OOZmXBP#o+p)EDOCdz3GCd#Na{2e36FwSSS>IDeG4BGBH& zcXl0Tc&X&eCmPruY{0=(xRU4c~>bt-O<10OL?G3}xKgt8JSCpgw?N^kS`vUe0#$OHr4$yn9 zornEP`3YG36{}#M;Qkqm_GsVRg7S<91KptB7@KQ9L3=V^r!k+r|JZ(uI@K57M1A^` z*}m9EvA?O00Ds;e!avwP=Qn=|6)_$0^MmmHMX)dX;yiOc2juqO8~cI!To2S|e_mk! zQ$7j-{T|NOJ?uZqM;*}~<>fQE=dV5J)KB_je6+_mMtzAN#r%k!9(V`#%OublzvmCk z{V@gdBIAN8qyLxi-zWGU`9K-a8J~jwNxX1Lw7)E|%#J>=cYO4k{JvA4sXBKCP; zu}6T;`xbQd_wVhh?|^*G?*W_kIM6A7xS%}sN_Xg2cMzZDhVndbzeE2Zzbghzd({T$ zb8`RT`xe*})4f+Vr$D6P8Ali3d1Lx{r z(ZWxG&%htz1pSTiozD>eM*DIJ=&OtmeF(b5^J0<1CK@Qt_W zcR_h=I1GMq-r$!Lr+i34ecGQ4=zEOcy9au%y~>~QS@+Rj-q-t}|4}|5jsXANnXAtc z^L@lNZxu~_mDry4UtrpMfUOb_5B-kvCfYaohqsdWxx2unZ_L>=%iFZS{s)JVzuiH9 znwCtlnFsoYMGbs!15^KLg88ey+veI0^q=}e9?-d-#Psi^LO+xD7r?pvH;ndyOQ>HJ z_RbY0On(t^%fXwbv@BuTlTM<1F26`a*we{<=wCAAMe1kthZ6HX@0F`x?L~Q2)w^~@ z@CWi2Vi^zk8PC^7%!l~1pub4G3cg4Fb_o2G=U^S$*x!G_Ke--jK_3nM;1ul9l&68M+|TpSKJ7b;(I3CN>o4_1dEO^WP@neh z5-88}2`uu;YS{ZZKMO(UeW$~p!1#g);J-!=sI)Ivo(9(B{)aqB`|@10KL~!q&7kxB z#~fgUAO8~t`JMY2*vjv(hdx00Xg1oTy&w99_$R_qp8N~`3ehM20A21Ew9j~n>8Q{6 z_mLhdi1G@`Yuyi(+-LDH{WpIC%lm|4<~s}ahyEPBnCZWqh59THY~}q3Eaxw#m~x;! zWhUxV-WUgYpZpcyll?ucnCY+Q_dolCIG@Cv-=EMv`5pT&@*ea93~w&lGg#gW{w1y# zzNZ+^3LFv9H|{9EFY^z~`9}Xmzw$%>so!FLO!*c4CI16f5|0l|{T=hEbzOMfw;{?? zzr=X09Zyv~8dp?BI<(92<@#RiTV==oqAFo{xrXh5&3NOYrhSxH&b zzmV_0mIFK9Iry9-ZrtTmgDE;!j2tQ4y4vfUVsBgW=DkKMh!`3VZl3 z@E=m1UilTv`B;Ve5)TAA`SWVjmw0rv&;1sO{)>Gc?UVnmL3zq;Z($?{mBzihax8?btD%4;*Pjc=!d|@Rm!vOsvP}Ez;a)I>#mYw@eYIS zi~iwm+UJ3_3BPS>{=K^jO}*8iV>HS)eN=Y9cWD1a-&>b}4TOiq0mrO?z`6stV3qDE z<=vHU>Bu84JAubG>%F^@yBd0{*MuR!%B$LpF@f&N`M}hMzwTmx)-0Rf(jD(ivd13> z7W>JM_}=iQIj4ztth+V7ySsXtTItSQV3VJ^o9`?4fKGeTa(DB70yg~-?kdd}`~>_} z;>BK~J?aAoLFfJQ+THY*0h{`YyQ#m$qWmrJo2O`x_CX!(i~NH568k3T`LVvm+?7A| z|Kq^aPl~vk@g=~fJdE~f&pm?gas3_LP5C?y<$2y+K&SkQ?^$VYLVF@V9tM{C80|5h z4cK@Fdj;lC^c!Nv%T~wyalZk}{aPFSB`3YL8qL-^;@(!^T!yp$MK`Shp}*y9k9y2(t2STcV#S3TD}4E zsd~IBcNYC0`sn4#^SGakVTf<~cVJ`5nzxOD(f-1;TaKhpP1)4DJ>oC6PMLBT`$;RZ^;Utd zjPK~Yas~HS+oy+)cXv}ke>R&~nfp)6Sy;ZOn=*=~-toZxwXX7;9*%gBG=y!u<9`45 z?AlSy-IPa`Ti1U;*N%R3VkP2PeC@+0d!oMaZJ#HDD{%bp8xF$vwG-6e-PBY6^S<`n zuX3K*AJ|JdAGE)wBYuW@1II^u=LgrX^O1`segNxZ+CN;?Q`+mXo}b$j{e%0N@|cGC zf6UeNhp;{B+bs~!Mfr>U zO{cvQ_4zIiGO3ywULakbp3K3&HMI0`!D(S zRsf3#PkJ$b){_50jEvDb4ycA-3h_2c@JztH|u2JO+WPX0rAJ1^Fo_5tu; zGad->ZM>g|Y2Qn9Q4!+bL3?7abTQ>q)@M9JG|Kbb16!%TwsKM7)aQuBe(m!0dyGeG z>|(xGV*8Q2e-VF2eT!J+As16$1^@h9U*aEdUX;Y6p?!J(3p)MjXiwrnaDGJou8aEA zAHm-h<2}l_nDMhbU*Zo!dD_3wo<{j2%UM~ekKlY7ySmn>{n1&K+qU9xHQonuf4Z3Q zP#BLvzfD<;pK>X&oG;X;{K4^ZzT=(0%%7?6BHobktr(BY_aDxt{et{}^6NyDXS@o> zC;n4sl|+3M{WUn>lblWe6UQU^hqFq%M}HH(C;l~OQy(I({bXan9K=&neggk6=ntHY z?@|5$|4>aI&$EO(s}TCj!9SGPr+{fcI)?s;eID_bybpPwihs`8l#foJJ&|8Pryc>U zL|(^y@qHQjjo4!`AM)NB{Sp1Luo+Lt_S4$$5AIZ0$@>8G#|mqjZ^Oc7d)+?H{%o60MB5&e14U{`Hlph{cq`s&cJ+cvl3Y1mmHP6hnWZ5a+tAg1LB=&F9`=O zSm)1Xs~uD*<7KA-^L<2D&?#?>0j9q`pM&Yw9}3L(H+%D$?|%oOe|KB$dl{Wig_9ou zoBhjY+Uo`aOMG}fb3T7TdB&4p&S%O$z~V3RbWrjh;%DH+f1h~M%E6rPZYX~e{;IYP zDuVmFHE;>~_kpQ@wBq*>|JN7s;FO=50E>MM{ipq`G1{YlcdUbH4<;VsytT+|jF7N5O?<;(d`Wdmr6FZvzga#-t@z9PY{~+diH+57I zw0G1)dD`Flf=>TxEzpmR>UCux>UV10;8{)3AHqM=9dybgz}CFei#2NGXzKH%bH823 z{8Qeq0WA7C#!GphC|Pu|Danf#Gh-cQ(?{DA#$SA0cyeOu_mr}V!#pNwb!)>eh_d=rcR z+gAD0KFj%(_hmL_d=lzwrJh|Z?`31^18gq=?|&RXXZ+X?p#Lx+wt2Ru6 zZ#n*j@W(sidyMNP?s&6R@|hfq_+u&q-*A~eC^E+){EN6T-w) z`XBq>g!F8S#QS4^YNv*|Hea1(k@JlGA^O0WOpCnls1Gdh&>0rVe-H@#fbU5&ED|qG zJY(GAHj6VX;-BPsDb4pO85YTJKs>SL?Va%%7P+r@UfqxUJ^Mk1<#T=*E#LTOuL@^c zZI388(l8SrhMr~hEr&6i$I%CrP!oSKr#^27OlG{YkL6#2#27PWd* z$gqe%AQ;%y+qS7~x<%rJ+X8QSRW|K$nnm7kwgVpYaf^2MqeXH7k^YwP)E_MYJWp+a zH*8EO<@eE|QD15WEcWFOmU8aTCbVYxMUToXtpC9h!22Ww_`1Abwa9z8F2Lm$c->I% zEmrc&uE0kj_kHu;BJUGOFJpVzlJL$V_QTG=)BSFr>;KLo_IZ|<_^NjnvEP$Fe$V#a zS!DkZ#|G~1@WVTc$m`v|(#2jt?8NsXD9>{e3Y>E*aiKT9$N1o$!16xitwrK3djXG| ze01cfw-)h7^#P8+^T4ieEzuIM0Ibna_0l5oHvNE|7~lTfBJp$sfUog+$`gzD!v+J# zZa+2c)MJapZx9dt=V;yUA6vvfNxbUr$6vcYvWR|-`$Ow`W7Gay4=rL(;P*T48`JvJ zLyPzy*#DiG>3c&TS>%0d57K!a9$6$`2j?SC>BBTFRhzntGs z+-Z+2<>Y-Suxrqf*p-hgPoMU#@5}W|7k|l`ozAWFb_{6n4Z(773)DgH5<3Z0`!s{L!_k#5kl(TQc z^A_MwX*Kx1dpWMHp+eb}2BsdlidPnLpv@a4z@`27K z{mXo)T6?Os+-klT=JUV4k`w#)2A2JFLjSTK!}Z-!Kc3R%J!@akY0v&QQ5SuN z`!Tw7q3i0RF8PeOpDG+TYR>`Ydu+-tnK=PHk6hHt9bcy}CJy2I*Gsy@yU6|xnK8P< zB|VYx$HdP4p5@-;>|d#ox*O zd*|6%w{ws60LE<(1?GE4nAYwEab~K~HplzMmQnyy8$o zo^elfvDXr}NZ?fN=O?=8AESWt z@V)#KJ%RC~V}adOm7NdqeR;17%adPX(U9`{%v6 z{=|{wHy?C)A3*&5#Mp}0KImc}X8n2FmX1pS=KEb~Px!ws`8xgpy&C^M>JqOw9a!E| ze$*x3$V}jPu*y7&`T zgI@Pyi$A|X{srC#k-)X0OO$Ge{0!9ppuJ^hP$47)aeidWZt1$bH;Dng-MS;! zCa38Ve-j5R`6-Yef%}tqt8<6mCqL@Wl+R&LGT)nHJsJOV9$5SlA9cy+bs4z(&bOfj zu%6`S*MMceV*a_m9s)~#2ISMAy)7^Nvv%_uFAICG%YESh{Pbhi@{ZV_oKO09aoaR% z^j?>EW%z%!-cJ8K2tfV|#v?faQ=Pbnd>!ncC$Q`f}3+v+D^wZG4>>;TR9!kMsr}c_8KJ zu6Me|`oz9}e1-B|iZ1q=PQdHvpij}CGG3AK5sb%t zk)lgH2K!%o^gPG36kYCTj!*c1sxJApIDW<_zQ_F2{>lD|yqBVfGX8%O@I9yO2|M2D z;vZZFyn*NEow@(F1Mh~u@hkF|Fn((%Fyn_p(SQ2q_5zFkhWdP`5(_N*4eLk!QwM&@ z^Ym7id;`aUpK!mv)kVKd0G9oS`DMR|DIOFBf2Kd|ByjJ`zW=^T*5!R2adXC_B0DR+zy;mm#lfUc-w&i{J z%9MwQk5Ybnrc1s~u2+qtVQ01g(|@rISmytkF8cRY;8?z=d8&s~-`)f)^5s)KjP{TX zzyY+EJ<-+1JV(o{0!}ElJHm?l{kU7;ij}~L<*Tj#9r)apxH!gV&0Kx_@aQLcNSh1s ziQGSa4}L1&^NAkNqq}wd65s*Ue;(_h%m)(z>`VRau^vwU$Q1;*a!3Cwt*KY_OHD9sVQ-%Ytwf**{x~GdiFdjI#xkHEc_jJiWF#$Lx zddQ)J_e^&*mK z`kT9l9_HT9zyUmu4|RF>#qpf2{UD>)BRzojfVsf=|2*{1j7Pe4Ch`N$1MYXl^X}ru zx;mSY6TtP5^ZZzsJXTz<`%lZ?zWqcOf7>2lk^i3P;-BOBtIPfURG0TU+&}jz??GOo zznc3`;u)UlA@ZIQnD&XKFLd#*a(@fINH)iR7I;aoLX%s+)g|xXMPNDqZ_V~D0n7XS zce><3@C%ynoJb$B<9Sd0)f$UXOu$*!dl8 zkN!0ndFME>$Ybwxv1hyirg~KGtuFa{-T|+p`~`l__}vs>$#3&km;9xvz`6Wm3GL@L zh+n-$c{^E`_{luLx%@}sKZ$eslf-}6153Q|TV3qI&cM0+Q{ML={#i>R|9xx9vy5k6 zGjZ~)%Ww4{)$+(R#4l^kvphyFL4GO5TO)p1>&W~p|G^@EzSH@fbvNl%DL;bWQ~zZB zILZUKU+B*w4y>5Ba9iZ};(bCqmG*!XUEZT0eqB565pv=;%y(`)yEY=UR)arq-!LBk z8_>U_eIQjAdm+n9KCq9v#D^muT6;aalos|$M-t5OHi%C)<;hH4@*~y`wZS&nE9xX|A+p^L7;c;)%OQi8$oY1rST}A;MDH8o}>4>569wEV37}U%=1Vr`e}|X`3a_> zKIJP-Gh{udgD&~9G&7$~IOwG>kD5?LGxOcd1ZKXT{+c23=AXd1^Cj_7#LQ>45OltW znGG!Rqh`o`GZ%Of^4+`yooYC77vv}EW@AXa72n6?9qZPxjg2Aq-wO1{|LR)%Akcp; zH*W7L(2F2|JD8c@?@;haUCig2OWhj*TUR~%<~Zh4^vAz}nLn-*)>Goi zP+soq99{BNtOJ&Obve4^i$!@&<`?^g{;9RVISC`4?#?#zw-I+e-m2h;Y+dZlk-&0Z zvdw&V><^dkYNjs!zvaNIso!Oq_s=rm$@3Ohe+zwt?Gt~Xr6EHXdkb-{z9IPoh?#dX zD#N@lh?#$>Otvom9QHrmU3<_eTbKC8^}r&}X6uqKYy-wG`NuRv@;yWW8}rnZikN@O z^P5nf`LY^oU-BVY3!M4g%Mtmg81JrRYt9FLSOPp`!hYHGL<~u_Ft(of^k8hL5 zNTmOS_($6B^L)uSWu-YFAdh*zknc(IQC_h#BwlPc+WQpt^x#1|L*m8u08@WjXlIDN z3%YeU`4jT1QJ&fb`dYkSR(6KiLrItZ*crjhkF^(gpI?>0t#(Ej+^ z4qJ9Sv@<0Bm^imRc|SyK^Wpra)0j`n2gI?|Z|#gPbcx5udQcBBFh0HqcxP)QF&`6g zZoWD>Z@|{G$j|e@))0PA+?VZFJd`wdB2QD`?J^n_3!f<{`4y! z1AP$kzkSGSsJTC_8cm#Ys`-Lec(JW<%vaT zpYj8+*7I&_zqR&;$VC`uf?DH5KBHaN5hx#SHv;QU+8FvKZW(D#HN18=lEqm zXtz=_``aPE8s8%w0evvn%fS%)3HO_v7krQQzgS?A&ya78^7|oRnscu^nD+^=_(uym z8flmDK8AF;A05qnh=)O!^>Q>q`2LLhk?r{-KOOCzz#8+@_&OSrN9QQ$l5Y_C>Li~D zu;g1rzB$H|a{WFs-y+(h{pbYf^v~k^qW31Sf0P$cpYrHQVCLgn-{&%JVz`oAMFnlkuF1px4(nwK|0Pr#^oXbQ!Oc5lVm4J;%{a)A*``j~>mwcCn4RM=1 z2VMO0h0T0}FF?1TKXnTmzC3@gK+iY);NqL8Py5bW&?VoUvk}2}OK*Thzi~F?y)4Qr z=Eqv?Y=}LV?J?gKu-te29{J7R&gOnbf8>4L7H3o5cnZ4s!=26h1mjWl?TxT2sLyyJ zV2$R*Th69D25g+i{blcBNWRubz_i!6xfqgv8(5veL%(4zhP-EE{om(rtu)HzOZ$dX z&a=E@Tnx!ij`>pS29~`$&czUWG5V({Z;p2{M80HyL!j@Ebuq#ikA(3UF`h#Vv=>Bs z7_bU^`OA(zE{4442A1>N%f(z@&d2b+!Gl9xjPMA=I|Ivn^>8sFc#JL9B}* z_O49OcOk#!8IP%cOfM1a>1ys5+aP7_ z71X+{kE;>G_-J5Nxk&Mp@~&n+P-41cy15$i-T+v8Jvw`L95C|(ARmI{H$35Lo)_dx zkn!I|`;7kw)@=75o%h7m2z}vsqzdybh`azg?ZXbhv^QVI_o%M`E4l;Ep*_iG1$v3H zUh9Tp{+SOD`5vsUlb)BvdWd}kSp3Iru^xQiT@dtyQQ!Su3+2g=oX{TCp=vHh0P~*! z8&me*K3x&>#dr)sBF7IOU6JTqZd@l$1Vg4A`#P;{Sbk6a`{-S(~{1Zkg*e|?L zp8UfF<;m|n(H{4UEAVaR7X@a#vm4rHd_)NsL;NZ3sQ(A^wYnIRzt978=C`be^AHaqc-*18aLHqf4pz}P}bv5(FGQSA(ar}Vx zIp4r?Udy-|;*STmioXKw(OwKJ=g}AYo&1^jWy>|(?-Cza4(;(gqP=UBZ@xu)p4k@* z0w*&5y)4Qns8!u6f&LHj;Q$-lkNBR%JAH%l)K^QQJmaN^<-W&$p#2Zyk@H#*`-%2_ zV9^&ZI2&T`L3wRA&$qL=ztO&;eI^cc-Z#X#`&s0D%!l>#vXG?Z*#Gp0BEO2*bK-z$ z9|KlxAow2zKP!14GM3}5P5Hsal&32K^S&AAYUabOfbz`8dkynVd4u^{79(G*t(zh7 zk!-Kxj;dacZieXV{2u*f1>Fp>XOk}ZG~G=3g5L|8if999DLC7&evC+7|I>0b&2{s!?5 z4sM3zS8Rm(vcIt(>A!A_@AJL%b5|po@%K%EyUpBk>MYiuX7V7kPkHea_K*C25b863 z>-1cH*c@2$XQMprf5hY;16)o00r_;S4x5{7|M_csT7e6HHty|eNcd zzAxvw6Z*&ZTg=D9^=as8MDqRBkHB32KvyG}`3Z=HUtzydp8pB;wT!2iz5%~vePE#v z!2aU9`VRQs)m5Ebqn(X#-tQej7yY5IA^9PYAILf%@g=c^bMsXLOa9`*hQv#B0saB+ z15Oq;`CDhym-xe6`JoeV;cxv{?k#M@FdiQ5oB5mz8}i<}f9@4B%JF>z`%6B!xsYkkVSmzE%=)yhka?bo#ea?Rd>_d1DA>0y z7BnP&m-N>32Ng8;C;D%deDsjN7+)R&%zOmJ3mWo%oZl1q*2%nYIDhmPZ~ltKpSKM1 z9QiH#TfR-tL4i(&_;0%di+{_>5dT?EVD6`x$fryBq8Hj1dzOVqak9vqpa$XfFb`9vI)A@*B2O%OK3)L!NFRMHozV7PwMKY8B2Vh*Vi!L)|4YF3zUYv70;U6 zaQ<)8o(}sR^F8qViGMR&cjo(K@|U-aN66AeA0_``zQGy)!L&aP%F@ODf%B{}K7Bxz zF7H9vp4j)Y^e^XI{P$U=zl?OrFPmlB*SOyDdj(nM?^(11mj0kT^;7m&exCsLYx?Us zUWo_EGX2No&&Oy#NB<}1aT;(IebiR;JwC{;h|^4^2+)Wz2eACUN4hTWGeUux-ytwvPoy0Q{7Gxbc${?8UpoX?&L842Y~io{ z9oUSoH2r~-fuA$JC0&<%RFi;nYRoFuB3%!o{$K^3Lxmz;7keJ*5+9Oo#tRXXJU3mJ zd>PY#36G?k@m;fkB|auyk7E9!<-mO3`{2mTiF?SFwKz9dT*es~sG;w7?l z$@h95Sbo0)<(bdtBJf7~`?5@bIkEgcNR}@0{3YOA`?mP+h~JEOGUJzQUF7AyZl;0)NSFJzm)FGAeI*CAp}wl4B3%ZtAY^F#jesKAO1<|o5b}P zZbY2XnXvg zjpWq^7XNbY{2T-p`S6`Czel$lSo)9n8Tma8U^$QQXY*Yi`Gu_KTQmM_2XJ1-Pro(& zsl>VQj}ni)6FAr3ZRPtkVuSI*Z%qFUF5nuV4F7oy(UGn3Q-eh>6N5x*5{%f}1 zdjFAww_fTJPc8h4{05l!JNxI+JJkEc3*G#EP2dR1FE7k^BJ#&PjBk6cOI|bLc6^xj zsBrO@dI7_JO6-wzjDRr3-0TZf1mj5q(=^(Nv8Zlyt_fj>~C(G@vU2c!%s{o z+Tw;8PezE^Pk^FAN&Y#BTJlmy+idkU z%TVU)CiY0Lw7$|!i^My57c?#=!J8aZ{ux3Bw)$2PJ`MpJ+w=${g_gQXPzT_Ww4!r#I@->V6-opXV zD_DE=IeFC*&io?8q2&KpEQx%-MlARBC5!3r1NLY6ix$bhN_x9yeMmNVyz@%7<_@~&Pp^QgAXc7KQ98H7YE{nu(#{nDRdwW0MY5AOQUJL#0 z#PZCY7RmoWext%GTsXSR@+E(L^zOF9_aC!Z`FjiGzX@smZ!JGzzNaC7cIJjkutYOo z(hcAs#xI>R->>jK^JiegX^Z?m67Rbp#-pFNL{RSIeW;d~sQ>JuMSkDoE^xcnubkT6 zw3zvMfE$Fpx{&w2Mc#+K1n!!3t&D!(BJ$NM;PQ;8erS>R-yD--5q&ue_;gaa(eK||`dzo5G7!I?pgFgj-M!TZOC;rC{9c5%^IF*= zvp<;cPw;yYn&CLjA?<@jes7Gwzp$$O-D<8ME%H9EAh5*ud^F!<6b5ec{)$mF%_8wT zp1|wrKTWfUy#l}gp~?HyG>bp;7kvYKnD1HAEZ1m1Fe`TQ55#=$X_IbAYmR3( z{JoQ1jAumu_&%T-@Uy<|r(dO6#GXSe`RdXw&Wz`82yDvd7K#7v2z=s?As_OkTY_m1 z?+iSM@wVv}x&MCw#&42q+9!+ThZ+iO;qU2XSS0^j81V2Bi(bFR`!DA28x8Ej^}u^9 zwl@Y??z>FOHR=mvfzR26JS>)Dk^G|*o8{V%Y|Q-pQ-M>E-z&-1%pdm$u=tbg%->HY w7Jr_d@~1t0I@)9Yq+WLB@7WN`@8{T=`9x;`uV=g%-WxK1<4n~5pWie3KUIrB!vFvP literal 0 HcmV?d00001 diff --git a/examples/working_with_grib_data/cropped_region/shpfile/france.shx b/examples/working_with_grib_data/cropped_region/shpfile/france.shx new file mode 100644 index 0000000000000000000000000000000000000000..a16c3c8205531f1ee308efa1db2e30a22043fc8a GIT binary patch literal 108 zcmZQzQ0HR64$NLKGcd3MF=C%E)ER(_xf+kD?21;3)ije_H@9m M9YxfLfx+$(0H=8n)Bpeg literal 0 HcmV?d00001 From 7960837b8b00cd3dc40a113d1d5836ad2f442b95 Mon Sep 17 00:00:00 2001 From: Elliott Wobler Date: Wed, 13 May 2020 10:49:51 +0200 Subject: [PATCH 02/10] Example for filtering Aviation grib within an area --- .gitignore | 1 + .../README.md | 0 .../cropped_area/get_aviation_data_in_area.py | 117 ++++++++++++++++++ .../get_precip_data_in_area.py} | 5 +- .../get_upper_air_data_in_area.py} | 3 +- .../shpfile/france.dbf | Bin .../shpfile/france.prj | 0 .../shpfile/france.shp | Bin .../shpfile/france.shx | Bin 9 files changed, 123 insertions(+), 3 deletions(-) rename examples/working_with_grib_data/{cropped_region => cropped_area}/README.md (100%) create mode 100644 examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py rename examples/working_with_grib_data/{cropped_region/get_data_in_region.py => cropped_area/get_precip_data_in_area.py} (95%) rename examples/working_with_grib_data/{cropped_region/get_data_in_region_at_vertical_level.py => cropped_area/get_upper_air_data_in_area.py} (97%) rename examples/working_with_grib_data/{cropped_region => cropped_area}/shpfile/france.dbf (100%) rename examples/working_with_grib_data/{cropped_region => cropped_area}/shpfile/france.prj (100%) rename examples/working_with_grib_data/{cropped_region => cropped_area}/shpfile/france.shp (100%) rename examples/working_with_grib_data/{cropped_region => cropped_area}/shpfile/france.shx (100%) diff --git a/.gitignore b/.gitignore index e43b0f9..14c27f3 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,2 @@ .DS_Store +gribs/ \ No newline at end of file diff --git a/examples/working_with_grib_data/cropped_region/README.md b/examples/working_with_grib_data/cropped_area/README.md similarity index 100% rename from examples/working_with_grib_data/cropped_region/README.md rename to examples/working_with_grib_data/cropped_area/README.md diff --git a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py new file mode 100644 index 0000000..03937ee --- /dev/null +++ b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py @@ -0,0 +1,117 @@ +""" +Extract regional values from an Aviation GRIB file at one vertical level + +This program extracts clear-air turbulence data from a GRIB file +at a single vertical (flight) level. It then crops the data +to the horizontal area of a provided shapefile. +""" +import argparse +import xarray as xr +import pandas as pd +import matplotlib.pyplot as plt +from osgeo import ogr + +# Load the shapefile area +driver = ogr.GetDriverByName('ESRI Shapefile') +shpfile = driver.Open('shpfile/france.shp') +AREA = shpfile.GetLayer() + +# Check if point is inside of shapefile area +def area_filter(latlon): + # Initialize flag + point_in_area = False + # Parse coordinates and convert to floats + lat = float(latlon[0]) + lon = float(latlon[1]) + # Create a point geometry + point = ogr.Geometry(ogr.wkbPoint) + point.AddPoint(lon, lat) + # Check if the point is in any of the shpfile's features + for i in range(AREA.GetFeatureCount()): + feature = AREA.GetFeature(i) + if feature.geometry().Contains(point): + # This point is within a feature + point_in_area = True + # Break out of the loop + break + # Return flag indicating whether point is in the area + return point_in_area + +# Load and filter grib data to get clear-air turbulence +# within a region at the specified flight level +def parse_data(filepath): + # Load the grib files into an xarray dataset + ds = xr.open_dataset(filepath, engine='pynio') + # Print information on data variables + # print(ds.keys()) + # Rename the clear-air turbulence variable for clarity + ds = ds.rename({'CAT_P0_L102_GLL0': 'turbulence'}) + # Get only the turbulence values at flight levels + # to significantly reduce the volume of data right away, + # otherwise converting to a dataframe will take a long time + ds = ds.get('turbulence') + # Convert the xarray dataset to a dataframe + df = ds.to_dataframe() + # Retrieve flight level values + flightlevels = df.index.get_level_values('lv_AMSL0') + # Filter to a specific flight level: + # FL100 = 10000 feet = 3048 meters + df = df.loc[(flightlevels == 3048)] + # Get longitude values from index + lons = df.index.get_level_values('lon_0') + # Map longitude range from (0 to 360) into (-180 to 180) + maplon = lambda lon: (lon - 360) if (lon > 180) else lon + # Create new longitude and latitude columns in the dataframe + df['longitude'] = lons.map(maplon) + df['latitude'] = df.index.get_level_values('lat_0') + # Get the area's bounding box + extent = AREA.GetExtent() + minlon = extent[0] + maxlon = extent[1] + minlat = extent[2] + maxlat = extent[3] + # Perform an initial coarse filter on the global dataframe + # by limiting the data to the area's bounding box, + # thereby reducing the total processing time of the `area_filter` + latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) + lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) + # Apply filters to the dataframe + df = df.loc[latfilter & lonfilter] + # Create tuple column of latitude and longitude points + df['point'] = list(zip(df['latitude'], df['longitude'])) + # Create boolean column for whether the shpfile area contains the point + df['inArea'] = df['point'].map(area_filter) + # Crop point locations that are not within the shpfile area + df = df.loc[(df['inArea'] == True)] + # Trim the data to just the lat, lon, and turbulence columns + df_viz = df.loc[:, ['latitude','longitude','turbulence']] + return df_viz + +# Visualize the data +def plot_data(data): + x = data['longitude'].values + y = data['latitude'].values + color = data['turbulence'].values + plt.scatter( + x, + y, + c=color, + s=10, + cmap='Spectral_r', + edgecolors='gray', + linewidths=0.1 + ) + plt.title('Clear-Air Turbulence % at FL100') + plt.colorbar() + plt.show() + +if __name__ == '__main__': + parser = argparse.ArgumentParser( + description='Extract regional data from a GRIB file at a single vertical level' + ) + parser.add_argument( + 'filepath', type=str, help='The path to the Aviation bundle GRIB file to open' + ) + args = parser.parse_args() + data = parse_data(args.filepath) + plot_data(data) diff --git a/examples/working_with_grib_data/cropped_region/get_data_in_region.py b/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py similarity index 95% rename from examples/working_with_grib_data/cropped_region/get_data_in_region.py rename to examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py index 9d25332..e651dde 100644 --- a/examples/working_with_grib_data/cropped_region/get_data_in_region.py +++ b/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py @@ -1,5 +1,5 @@ """ -Extract regional values from GRIB messages +Extract accumulated, regional values from Basic GRIB messages This program extracts precipitation data from 2 GRIB files, and takes the difference to get fixed-interval accumulations. @@ -42,6 +42,7 @@ def parse_data(filepath1, filepath2): # Load the grib files into xarray datasets ds1 = xr.open_dataset(filepath1, engine='pynio') ds2 = xr.open_dataset(filepath2, engine='pynio') + # Print information on data variables # print(ds1.keys()) # Convert the xarray datasets to dataframes df1 = ds1.to_dataframe() @@ -103,7 +104,7 @@ def plot_data(data): if __name__ == '__main__': parser = argparse.ArgumentParser( - description='Get fixed-interval precip values within a region by differencing 2 GRIB files' + description='Get fixed-interval precipitation values within a region by differencing 2 GRIB files' ) parser.add_argument( 'filepath1', type=str, help='The path to the earlier Basic bundle GRIB file to open' diff --git a/examples/working_with_grib_data/cropped_region/get_data_in_region_at_vertical_level.py b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py similarity index 97% rename from examples/working_with_grib_data/cropped_region/get_data_in_region_at_vertical_level.py rename to examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py index 23e9331..22c56a9 100644 --- a/examples/working_with_grib_data/cropped_region/get_data_in_region_at_vertical_level.py +++ b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py @@ -1,5 +1,5 @@ """ -Extract regional values from GRIB messages at one vertical level +Extract regional values from an Upper-Air GRIB file at one vertical level This program extracts temperature data from a GRIB file at a single vertical (isobaric) level. It then crops the data @@ -42,6 +42,7 @@ def area_filter(latlon): def parse_data(filepath): # Load the grib files into an xarray dataset ds = xr.open_dataset(filepath, engine='pynio') + # Print information on data variables # print(ds.keys()) # Rename the temperature variable for clarity ds = ds.rename({'TMP_P0_L100_GLL0': 'temperature'}) diff --git a/examples/working_with_grib_data/cropped_region/shpfile/france.dbf b/examples/working_with_grib_data/cropped_area/shpfile/france.dbf similarity index 100% rename from examples/working_with_grib_data/cropped_region/shpfile/france.dbf rename to examples/working_with_grib_data/cropped_area/shpfile/france.dbf diff --git a/examples/working_with_grib_data/cropped_region/shpfile/france.prj b/examples/working_with_grib_data/cropped_area/shpfile/france.prj similarity index 100% rename from examples/working_with_grib_data/cropped_region/shpfile/france.prj rename to examples/working_with_grib_data/cropped_area/shpfile/france.prj diff --git a/examples/working_with_grib_data/cropped_region/shpfile/france.shp b/examples/working_with_grib_data/cropped_area/shpfile/france.shp similarity index 100% rename from examples/working_with_grib_data/cropped_region/shpfile/france.shp rename to examples/working_with_grib_data/cropped_area/shpfile/france.shp diff --git a/examples/working_with_grib_data/cropped_region/shpfile/france.shx b/examples/working_with_grib_data/cropped_area/shpfile/france.shx similarity index 100% rename from examples/working_with_grib_data/cropped_region/shpfile/france.shx rename to examples/working_with_grib_data/cropped_area/shpfile/france.shx From e1bfe56770ddd358bde058287cde1b95eaf1ccb2 Mon Sep 17 00:00:00 2001 From: Elliott Wobler Date: Thu, 14 May 2020 14:14:53 +0200 Subject: [PATCH 03/10] Switch example shpfile for cropped region --- .../cropped_area/get_aviation_data_in_area.py | 10 +++++----- .../cropped_area/get_precip_data_in_area.py | 2 +- .../cropped_area/get_upper_air_data_in_area.py | 4 ++-- .../cropped_area/shpfile/france.prj | 1 - .../cropped_area/shpfile/france.shp | Bin 32304 -> 0 bytes .../cropped_area/shpfile/france.shx | Bin 108 -> 0 bytes .../shpfile/{france.dbf => italy.dbf} | Bin 485 -> 485 bytes .../cropped_area/shpfile/italy.prj | 1 + .../cropped_area/shpfile/italy.shp | Bin 0 -> 37320 bytes .../cropped_area/shpfile/italy.shx | Bin 0 -> 108 bytes 10 files changed, 9 insertions(+), 9 deletions(-) delete mode 100644 examples/working_with_grib_data/cropped_area/shpfile/france.prj delete mode 100644 examples/working_with_grib_data/cropped_area/shpfile/france.shp delete mode 100644 examples/working_with_grib_data/cropped_area/shpfile/france.shx rename examples/working_with_grib_data/cropped_area/shpfile/{france.dbf => italy.dbf} (62%) create mode 100644 examples/working_with_grib_data/cropped_area/shpfile/italy.prj create mode 100644 examples/working_with_grib_data/cropped_area/shpfile/italy.shp create mode 100644 examples/working_with_grib_data/cropped_area/shpfile/italy.shx diff --git a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py index 03937ee..74c71a8 100644 --- a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py @@ -13,7 +13,7 @@ # Load the shapefile area driver = ogr.GetDriverByName('ESRI Shapefile') -shpfile = driver.Open('shpfile/france.shp') +shpfile = driver.Open('shpfile/italy.shp') AREA = shpfile.GetLayer() # Check if point is inside of shapefile area @@ -55,8 +55,8 @@ def parse_data(filepath): # Retrieve flight level values flightlevels = df.index.get_level_values('lv_AMSL0') # Filter to a specific flight level: - # FL100 = 10000 feet = 3048 meters - df = df.loc[(flightlevels == 3048)] + # FL360 = 36000 feet = 10972 meters + df = df.loc[(flightlevels == 10972)] # Get longitude values from index lons = df.index.get_level_values('lon_0') # Map longitude range from (0 to 360) into (-180 to 180) @@ -98,10 +98,10 @@ def plot_data(data): c=color, s=10, cmap='Spectral_r', - edgecolors='gray', + # edgecolors='gray', linewidths=0.1 ) - plt.title('Clear-Air Turbulence % at FL100') + plt.title('Clear-Air Turbulence at FL360') plt.colorbar() plt.show() diff --git a/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py index e651dde..95536d1 100644 --- a/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py @@ -13,7 +13,7 @@ # Load the shapefile area driver = ogr.GetDriverByName('ESRI Shapefile') -shpfile = driver.Open('shpfile/france.shp') +shpfile = driver.Open('shpfile/italy.shp') AREA = shpfile.GetLayer() # Check if point is inside of shapefile area diff --git a/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py index 22c56a9..4d7ed0b 100644 --- a/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py @@ -13,7 +13,7 @@ # Load the shapefile area driver = ogr.GetDriverByName('ESRI Shapefile') -shpfile = driver.Open('shpfile/france.shp') +shpfile = driver.Open('shpfile/italy.shp') AREA = shpfile.GetLayer() # Check if point is inside of shapefile area @@ -100,7 +100,7 @@ def plot_data(data): c=color, s=10, cmap='coolwarm', - edgecolors='gray', + # edgecolors='gray', linewidths=0.1 ) plt.title('Temperature (C) at 20 hPa') diff --git a/examples/working_with_grib_data/cropped_area/shpfile/france.prj b/examples/working_with_grib_data/cropped_area/shpfile/france.prj deleted file mode 100644 index f45cbad..0000000 --- a/examples/working_with_grib_data/cropped_area/shpfile/france.prj +++ /dev/null @@ -1 +0,0 @@ -GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]] \ No newline at end of file diff --git a/examples/working_with_grib_data/cropped_area/shpfile/france.shp b/examples/working_with_grib_data/cropped_area/shpfile/france.shp deleted file mode 100644 index 166a4d0ecb3a800fa589cca22007ea3c1babdcd6..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 32304 zcma)lcX*H28~2k$NC>i!ghYg@su2`1zb9tQre^F|tzAWl{k1A6V$~+p2#VOT@;nhE zC}MA7Z$g4Z*8BO~Ptf;wy??y9E?2Kl?{m&`=6&vU?yshOn_v5X{#iVp+G(0SXjZpz z7gJ}r8=>VcWUbiNNNJVt%)ME%vHzwxe4~DONH5hOK$$r>v8F)gR4K{UQh2BChz z8o&G4msaJT|68vNaHz}R6PJL)er{%62JD+>cxoDO%;rQ@0rf*WTlZehgYxx9P0j+2 ztY5c9giUFcR^i-~gDueBu{y?rY>cONNY0a%82`Nmt;=YoRrvI^YBjL$evCJNX?3k| z>8VXo-+F4@A2pm&-{lXR7ERFph{Z=cx!`+yF9mjQjP`QZ-nz70gXeyz|5rEv7@yq! zd7yrSu-(6vD6ImDmCxzyjQ%W{HnMf`(kkigl1Zlup}l|u%|{h0trG1@PAO9G>-I8$%}l`Wp2&?l@fZ-`w%PMEm`Z)pS3L{n6V& zoAaWPvij}}a$|dI3L1Hzqy13ZeXmLPC{_2y(?-e&Z|qbD^{w6h$Qf}R-|OA5W=1^r z%ZJ4J9WLQ}Z6A$oas=&X?>RK=BHFKrc|VB$a(&OEeCd>glIyS^!k3QsIfM4tzgd1N z>hZ8CYmT6Nc5=$yv1spFle*XUqraTb3HV;1o9d+{6Sj%%h= z+78V19tt}5GtPGC-om3#561rFdI2Xr?{KbJ51g0Wv#-iH+5OekPdSvIW49f2-*y;y zXW(0X_1D1G=-FXA8=^h$e{zQJM0;HSI>0G&W1H>6_+|f>QsJvNH?TX5@yhuqrOLf3 z80!ygoGaMs`aR(9qO}dNpnunO?vcx-RK$w@M?UDFFP=Gj^di(>U!h@%6X;)ycE1)} zSV|>woWRDCRnbQmfX?#3z5_2c{9!&Y=kqM)vv{vVk5NCS@4)f%5`izYKJ(}=d=H;_ z4;;EC=;QEZrIZ#|qTU3opZ31u@B=GKDTi-cO<7Cq7;pV%HNF@3$ub?-DE07A4sdXj zu9_F=iRk|t^q2bw?WrqK)BCOa+I}SGQ!l0Z{ct7w>;=?kIRo@3vkn)-{xQZ>&3SsU zlu9~^b9)8z>AJd3+!d4`Tr;lbRkVLk&G-&XN8pm=EvY67m9HOTBJ$mALW#A12HzrJNUQnQcFyez7+vUd=^$?pI)Ik)(rX zW?_BLIy4vsoU{=KXFSI1`)Z;U*vjvZMS1R5;860T(P*Fho9*#F z2*dh(>SCMx9`$*@i~>DqL&J^0k#8@?)ch6mP5zaN@8zAWc@DsMd2WD>IVYUjb-?-! z4GU}ptZjZ*uXG^Rt6_0#L162;8KbO~(H_?c{4TO;K=bYu(ckDcfsHdj=lKK<;oS=? z{1D}1IFH26qu!UVjrQ0+_@^)Llg8-JorJpYNUyN6@VVxgAAXPgRo}0VX$M?o(S##e zD9`iO9_tmPkN3_-e{Z_9E`a{Z`2qIjIrs_d)p$advkmxt?tIDm+2cMa-fZ$v%%^{k z#0Iu`zhc?Xz$!L!TAp#(Pn`dJxNlQ&zPe(3{r<^XiTl9V+P7+nrZ|5Gm(}fC7?}4( zO{~W~$HUpYPn^8#L{-4~JCm*U7Xh98wG8Ta`ej^?5@?_ETo?1_;b7ax7v;&nTjD&j zzomdFA9O3Fg6b`um`W`C4egUp@IKqMCpIV)^P6vUy(Pd_p6?!|R5I`P(rBOOA2_C0 z`K+nHky%&w_iu>xeG2;bz{2m)fA*sSFwbKR?5{dCY~KR=j_=%fqCfh(>R-zzVC^pM zgYR?q3$V)AKKx=?e4qTJ3g(CM3f3oz=PwZb8L8(_9t@n6JUJZlfa3oD4d;RUi1+tV zKirU|R9Z2NpYq3V9U8SNf%{~3nZOvxE5<6{9k;!4zqJmWP$MLFJSB1eksktEeg3YS zQXcn9){4oQoq=V(LFfMKg8Ms{pIa$kbwm687Q}yB5BF1K{J7D;Ntfrgde;Kq`|C;E zZD1?;MeDCvD_gwqUfgH0|GT0;d6(Coi~B61LA~*LfVJwO5veo$ly<$0<$fphkM-x^ ze&Kqef4-DQ=J~09Jl`D8nx0jj&qsNle_&O$r1R5-e(EXjM_?=EzQ1ta^1m$4dtx>2 zBg!XeFSPpTQv=pQ-r)Y?__>~cgHHa3?}u(}nYMl#=40ZO%ruNA^x`l1x^72%lrOsD zdmSw`P69_v?P<*Kf%yf=g<8(0OegFhpqBcL748jz)9TqE79KMV&m-x=FTtrC->__w8#Aw zjq&ttgA)!+KC%XMB9Q(owW{&2ouV|?7tJyD+b$5X8T-3^uu z?mz4DW3wP{i#*T~^Z!5cxc0hU*I^}6^d!o&&zj&qjv4CPCq?%sKYs%3h5P?9=;Yt8 zfR}zhWq@6(e(j<)@WLD5UXbsmr0T*?Q-JU9Sbc1Ms_x*F$EIp3@SIr#TwLDk(OX^O z0zLryv<|I3_`R-OTwDL-N8sJFEk9jmu)c0^WG)0oL%DB1=o;leV)paf54zlU#5@n@-|N@7FIfNT zphw^6@Ac4$hmTAq{`Pg)f*z^5@Y@`GukzYgOAe&yQMb3-j^p?3n{>Z&^qro>{lxLs z5A1dD;5$8$^7cF6N-Y0Q4=DSqb?IB+gZaO+JbS0d=!=g`c?taHepXD@JG~s&?>TVg z>tWIMm~ZMMod5q_kM{=}hgL|{tvv7U=-;|pJKxPh|9F470oN#b^^a4jdI;|)(%ZRS z&*zExBtIp7#q~|olh{8m;FEQxS8bQ3Cnj3rjuAJSZp^c$>EV>`ivxcjRITXjH2vx5 zcA0mHW&P9iD9Rx|zV%M)1d z^B}Hhsvepr;P9*>z;n63QuQS23;)4i#{YBWo2`qd>KgYW=i`6pljpO%tr5WQg@Ar~ z^{)kL*c#WUj}m8JSX=*@tr5cW+^MOuir@?S@CzBoiT6E8znIs~NaB2U27Y&TjZ+a| z&R-YctxfNZakn$9wZ>%L=?eV8r&6s#c82h~ZounTE<63o)`+0|&>gtx<~N!5ZH*|N z7vhDkliOdmHA0)Mw3a2_KB9izEw)B5_bcn)IKDb+kgee?=N?y-Gzbz388){U(4 z=#R{AWn05R?gy0TeODIrO^~C|f9-$A|6u6jjtgvz0P@qxpp$=m1I+z78n`|8myHoY z{u>5dqeHJ%MQjY=&!fCQ@yWi6qY=aN46H2~RQK9sM?>sEr0+g@s^2=$d0&$rl0B|Vw4)*VHSr6tiun#W z8sU_Wi2Ki2bUwlHYkz;n-(z6P3sGpVLFe9y&m0X0f9E_2#Bx6J8zHnmZA1MrxBdK! z<~QWN*$#SN+T{wznspdDc+%D3cr9gS<`Z@?PY zdy<3UPx%Djlk(#ojBwh6`2FxglS+dg!1hW1pZPYR?*A0vZU{fG9i-IG6;m(#;%JRnM zKG;r^2JYti0e}9!1LZ?tZH9VZxT?DmAaWz>lbuv@H_v+=(BqR`s#JG394NQod!Orn z?!Wc-*?-xsbTY(V@iWR(E{ysQmi_2tM0Y5g+2$9tUtw>v#(z5*q4^ISUI(oCMR^@w z=46CXt|unHo#$jEXm@NK`vLR*n&xEq2E3p2kaU@UC&QomA+R-L$br7ooeXE{0mT2) zAL}CUxAu9y*hZ}w-nJ8YR1EcKG?ggh#O_K1hOcT3LQ7D!N`7~ z5AnJ=Ffgx@`y~{3#E$;!lk=*`wkNgVE-26YrE)$c`==A=YsU->ot4kD-*g8)$NL9# z@+HiocKmOKHMNvL!2m0^jX^JP_3xqe@~a^BrxEC)59T-Z zn}(pDOaE?8@BAv9dQb!4Pi#NGx<w+~KAJCi4Ve|_L7oUei^fcBs| zsQ=@cM|m3-REcwDt3$Pc|M{u#`JjR-hV2p8xjp)Rr-G(ECjeN+Q&2gqoSZobSR1(a z-TWRX&+pX){p6;VJqHw2q111yf}YIvDx^Z%gxa*M2prgFURj^QO74g6fxm?yaksE? z=6zS8nNlxKlua+?tURLroVXh075VzN&PwD>*603;a#o2>_wDMG!S{IooN!kCGDg(> z*#~$*v8C4S&MNxIwFVI`C~sS_TijnLPkG%2?FFsBc7BPo8d~w+26eJ<{+3<%)MY2| zxFv@N0UKjHj}1HMZ0gUMzym7u9DK`JMgC=1@6spmpUll&qh30zpq6*EY8jya+Mtwe zwzCSReHPf-tkAW~ja*a|??=>^{%>?q4!p0^@x32{;@ZZzsHd?_v)-qH{_MM9;R&FV z&k*m$KDz8;+UJ3-)7_S|zUiXEXuk(G>K1-|HovQBPe*&!Czz+}`k1SVA^*+~yr4w%mXoe3@dWI01<*e2Nd?_hDCIxQzm@k+12+{; z`&$w8hxUgiZmOKuz=^*A8_kw)9^1}MMbW-Y`uepyK1@e>+SS~Exi1!?J=#;yo*H2I zK3jnDv{wKd|KjgYH{TJ<< z{KriN)1QRzi`^&FO+`?i09{coYFk8!K6455IuC!2nO8(5z>K^79O$ikkFB_*h`B$2 zt#W>fsvqi46v+!5v6Ef{1;gCVU(vm<{0q5=O280Ttqogo;r&5 zs?_T_<4F+}P5T(IcBkW`29JuUDC%4B7;lxlSAM%yM2Y@%1oa#KdG*i@(8aF-On=h7 zBI+9D>o{QAvmc_rlz$9h_V;NK6~pxewoVw*?^L0pU(3IMy}M*l(|(Nl#-Gc!&+k!G zIZ%GZ_Z9d5^rGgxp?^yJF-1*&!tq2yKlr|wX-@*Sc6WNzs7^7JF!XorD6sMU!O)@g zim7O>C&%Yiy~j6}Vk#)y+Axaa=Xg37Q!yi=v(K^r+_wXZDUrw6f8TvQ>OTXW`*lC+ z>lf0KUlvp4X#W9LwEuVYF#T)9HD|xt6Y8Nv9yx&TPfhOkAk0I>ke?g^roDO$Fy|Xs ztAPHE_b~6L!@#mXfk%D{>=ujud7{4)JyhCv*q6YH_UYB2(?0XLf15m%mGU02#`$>R zVcIh}9`29#9!lgx&j0niuT>WM8$2s69@uy}r9y!kp1J-Ol&8NZ*wfsP=${qlr(453 zmH+&D4bEUZvOm^)D$(!Qf7-7%qdf0R;@McgyC~0neGu(G#d&t{GX0$~!1P!7dMS~Q z_M!X{*m1t|GWYXd&}kp9>}BrfJ?PJMln?b%V(-|7@`rHG>R!sq`*k(S-%N8`blXdX zaz2)z{HqB?l5TpL{!(Bqocz~IIne&H80Dik>@0T+{o#F0?ByTy>7kctzgq+>`_)Tn zv{M6Xov}_Y@jad&U~9enSN~4-QspS063++!Y*t+PS9ojPxd7$M)(Y*|wzx_=4*iT+ z_)~Gy9|0`xV%ETaxeVXqdG3n-(2otQIDg&n{luQJhe#KD zH^#&DTMi6i=xXoc%1V0)u!=gC)N=sZBYyxEd)zj($NPK*F!y^*anrv5Ed1_Jaq~U} z7XI&6!nB*Czv4gZT0%w9{uqJp@xEMM!t}SyMS1e$vffJU19Q;6={V?cHuzea!nR9Q9`}TJp;@A0_%Daa$OAmiu6zCQUG=p*;D`KR(Kr_bsr|u2^!_ z6dxt}60q2do0U}8Xs={>vCow>?X7pa1A<-hbnQR3!T`+*gHl{w~k3vG_jiuKj&g+Bxi(G3YP(e@|bf=${^q?@``s ziu$xC3GKx4A&r(ptWzzkCqBr+L;M8Q`muD31&Trk%5f zuhI%Po>aeokV>MxqdMB>eFA+<{Arbeso(#M_B+5{bG@VrEtpYnM_2UM3I45VB~=*b zzdiaxeptPv3IY4u-3;Zs&3@TD!$(EeOgqx22C&!@d{iRsoz=c#8DABQm-{=-$K0Ql zLBHO$`Z*iS|BLX3H7ekH`LMoPNmD-m9+>{DOdn-!7eC?0@~EGp6-__p1GyFVTWQeS zoSPgx1nud|?D7;r|L(z_+y?y_QYm|HVYJVCG#LAV@(b~lL7ie-`zVjY$KuBpLVd~~ zO?^}l{htLu4}d(_1pABr*8KS1gSDL-HS$qWjEBgF_J2Bb>IUf6*1Oa}dz62B?Od;B zJ}QR#dLFbV{xHztCg=xjr9Zqq=+yV@K)?0PZyiSXnDUy2_EI_~bR7*$`)5v5_z!uX z`KVC(qlw9{C!#*>d)ZBuA@`Y&a;7|$1^Wc~D9Vd}GZW=0KXvd?*SP*ED35TICACps z;x&NDABy{^2-+7P0yAEs0OpJQ?FQ@{m&cahSP&xZR$)p?%s1+eyrtywhaE9r z^kJATm*fmNOR5e0wnQAxDNo&-G%4$jK>9{GI&#>4r;_=0KAH~}p3JoXpQC9u}A zhR+}ye2?eqINH06@nw4}v9}U)J+i>h&On|#hW07v*<$>RA25KAfnR2VpYi_H(Z0mn zc&o6e!SUq|q5T!me-DCA{rCXNlV5D|R=%`P#Q|Da3!hF-#quVQ=t1zxS#TSA4?U%VgnU*0bH zW>E>{8y2eF!+dDVmM&fDSwcD7f1>A$1D*?i{s-LWTo2NzZ_Oxfo^ROyw0-4v1^xkf zf$|;ggY?HwE3U$6A1BVG%X)0Z_y!(yjNM;cC6eC*8Q~|Xc$xYH?86d2H5Zut+6v75J=IGEaXu!ZJlAWimlAs@uwwjF zL&$3qCxG&ce`{;!4f&7b90z(6*xRpqDzQHf0~Y<&)70MwqJJH0mt1ujblP|NfKGAy zlBWuw{k=EZll|&x`s;y(Umf-|*Q+P!j3*f7Y05KQ(La%|JXI*|16|NQ=d)L?d`nC| z<>slJ8IRBr^=17$%Wa??fDfKQQCP)_SNA`kO1G{U$G>1^|cgJOZoLhzD4S{*hl)0={ z`(X`^Z!2s9=B-ROJJ+$``8b( zpM3{9W@j4oLkG(HsvWx+4$U&MaU!WiF%?=xPe0LqKK68xF=s(iqd5A92+ z7>Rdn0)B(@?f`zy@xebY`dP^m=6-^I-uh}!yC%R~-xu)zi~S$tr@b2S0aljB{7Zb# zGtlR~Y4f})zR&oYM`-V@OOZmXBP#o+p)EDOCdz3GCd#Na{2e36FwSSS>IDeG4BGBH& zcXl0Tc&X&eCmPruY{0=(xRU4c~>bt-O<10OL?G3}xKgt8JSCpgw?N^kS`vUe0#$OHr4$yn9 zornEP`3YG36{}#M;Qkqm_GsVRg7S<91KptB7@KQ9L3=V^r!k+r|JZ(uI@K57M1A^` z*}m9EvA?O00Ds;e!avwP=Qn=|6)_$0^MmmHMX)dX;yiOc2juqO8~cI!To2S|e_mk! zQ$7j-{T|NOJ?uZqM;*}~<>fQE=dV5J)KB_je6+_mMtzAN#r%k!9(V`#%OublzvmCk z{V@gdBIAN8qyLxi-zWGU`9K-a8J~jwNxX1Lw7)E|%#J>=cYO4k{JvA4sXBKCP; zu}6T;`xbQd_wVhh?|^*G?*W_kIM6A7xS%}sN_Xg2cMzZDhVndbzeE2Zzbghzd({T$ zb8`RT`xe*})4f+Vr$D6P8Ali3d1Lx{r z(ZWxG&%htz1pSTiozD>eM*DIJ=&OtmeF(b5^J0<1CK@Qt_W zcR_h=I1GMq-r$!Lr+i34ecGQ4=zEOcy9au%y~>~QS@+Rj-q-t}|4}|5jsXANnXAtc z^L@lNZxu~_mDry4UtrpMfUOb_5B-kvCfYaohqsdWxx2unZ_L>=%iFZS{s)JVzuiH9 znwCtlnFsoYMGbs!15^KLg88ey+veI0^q=}e9?-d-#Psi^LO+xD7r?pvH;ndyOQ>HJ z_RbY0On(t^%fXwbv@BuTlTM<1F26`a*we{<=wCAAMe1kthZ6HX@0F`x?L~Q2)w^~@ z@CWi2Vi^zk8PC^7%!l~1pub4G3cg4Fb_o2G=U^S$*x!G_Ke--jK_3nM;1ul9l&68M+|TpSKJ7b;(I3CN>o4_1dEO^WP@neh z5-88}2`uu;YS{ZZKMO(UeW$~p!1#g);J-!=sI)Ivo(9(B{)aqB`|@10KL~!q&7kxB z#~fgUAO8~t`JMY2*vjv(hdx00Xg1oTy&w99_$R_qp8N~`3ehM20A21Ew9j~n>8Q{6 z_mLhdi1G@`Yuyi(+-LDH{WpIC%lm|4<~s}ahyEPBnCZWqh59THY~}q3Eaxw#m~x;! zWhUxV-WUgYpZpcyll?ucnCY+Q_dolCIG@Cv-=EMv`5pT&@*ea93~w&lGg#gW{w1y# zzNZ+^3LFv9H|{9EFY^z~`9}Xmzw$%>so!FLO!*c4CI16f5|0l|{T=hEbzOMfw;{?? zzr=X09Zyv~8dp?BI<(92<@#RiTV==oqAFo{xrXh5&3NOYrhSxH&b zzmV_0mIFK9Iry9-ZrtTmgDE;!j2tQ4y4vfUVsBgW=DkKMh!`3VZl3 z@E=m1UilTv`B;Ve5)TAA`SWVjmw0rv&;1sO{)>Gc?UVnmL3zq;Z($?{mBzihax8?btD%4;*Pjc=!d|@Rm!vOsvP}Ez;a)I>#mYw@eYIS zi~iwm+UJ3_3BPS>{=K^jO}*8iV>HS)eN=Y9cWD1a-&>b}4TOiq0mrO?z`6stV3qDE z<=vHU>Bu84JAubG>%F^@yBd0{*MuR!%B$LpF@f&N`M}hMzwTmx)-0Rf(jD(ivd13> z7W>JM_}=iQIj4ztth+V7ySsXtTItSQV3VJ^o9`?4fKGeTa(DB70yg~-?kdd}`~>_} z;>BK~J?aAoLFfJQ+THY*0h{`YyQ#m$qWmrJo2O`x_CX!(i~NH568k3T`LVvm+?7A| z|Kq^aPl~vk@g=~fJdE~f&pm?gas3_LP5C?y<$2y+K&SkQ?^$VYLVF@V9tM{C80|5h z4cK@Fdj;lC^c!Nv%T~wyalZk}{aPFSB`3YL8qL-^;@(!^T!yp$MK`Shp}*y9k9y2(t2STcV#S3TD}4E zsd~IBcNYC0`sn4#^SGakVTf<~cVJ`5nzxOD(f-1;TaKhpP1)4DJ>oC6PMLBT`$;RZ^;Utd zjPK~Yas~HS+oy+)cXv}ke>R&~nfp)6Sy;ZOn=*=~-toZxwXX7;9*%gBG=y!u<9`45 z?AlSy-IPa`Ti1U;*N%R3VkP2PeC@+0d!oMaZJ#HDD{%bp8xF$vwG-6e-PBY6^S<`n zuX3K*AJ|JdAGE)wBYuW@1II^u=LgrX^O1`segNxZ+CN;?Q`+mXo}b$j{e%0N@|cGC zf6UeNhp;{B+bs~!Mfr>U zO{cvQ_4zIiGO3ywULakbp3K3&HMI0`!D(S zRsf3#PkJ$b){_50jEvDb4ycA-3h_2c@JztH|u2JO+WPX0rAJ1^Fo_5tu; zGad->ZM>g|Y2Qn9Q4!+bL3?7abTQ>q)@M9JG|Kbb16!%TwsKM7)aQuBe(m!0dyGeG z>|(xGV*8Q2e-VF2eT!J+As16$1^@h9U*aEdUX;Y6p?!J(3p)MjXiwrnaDGJou8aEA zAHm-h<2}l_nDMhbU*Zo!dD_3wo<{j2%UM~ekKlY7ySmn>{n1&K+qU9xHQonuf4Z3Q zP#BLvzfD<;pK>X&oG;X;{K4^ZzT=(0%%7?6BHobktr(BY_aDxt{et{}^6NyDXS@o> zC;n4sl|+3M{WUn>lblWe6UQU^hqFq%M}HH(C;l~OQy(I({bXan9K=&neggk6=ntHY z?@|5$|4>aI&$EO(s}TCj!9SGPr+{fcI)?s;eID_bybpPwihs`8l#foJJ&|8Pryc>U zL|(^y@qHQjjo4!`AM)NB{Sp1Luo+Lt_S4$$5AIZ0$@>8G#|mqjZ^Oc7d)+?H{%o60MB5&e14U{`Hlph{cq`s&cJ+cvl3Y1mmHP6hnWZ5a+tAg1LB=&F9`=O zSm)1Xs~uD*<7KA-^L<2D&?#?>0j9q`pM&Yw9}3L(H+%D$?|%oOe|KB$dl{Wig_9ou zoBhjY+Uo`aOMG}fb3T7TdB&4p&S%O$z~V3RbWrjh;%DH+f1h~M%E6rPZYX~e{;IYP zDuVmFHE;>~_kpQ@wBq*>|JN7s;FO=50E>MM{ipq`G1{YlcdUbH4<;VsytT+|jF7N5O?<;(d`Wdmr6FZvzga#-t@z9PY{~+diH+57I zw0G1)dD`Flf=>TxEzpmR>UCux>UV10;8{)3AHqM=9dybgz}CFei#2NGXzKH%bH823 z{8Qeq0WA7C#!GphC|Pu|Danf#Gh-cQ(?{DA#$SA0cyeOu_mr}V!#pNwb!)>eh_d=rcR z+gAD0KFj%(_hmL_d=lzwrJh|Z?`31^18gq=?|&RXXZ+X?p#Lx+wt2Ru6 zZ#n*j@W(sidyMNP?s&6R@|hfq_+u&q-*A~eC^E+){EN6T-w) z`XBq>g!F8S#QS4^YNv*|Hea1(k@JlGA^O0WOpCnls1Gdh&>0rVe-H@#fbU5&ED|qG zJY(GAHj6VX;-BPsDb4pO85YTJKs>SL?Va%%7P+r@UfqxUJ^Mk1<#T=*E#LTOuL@^c zZI388(l8SrhMr~hEr&6i$I%CrP!oSKr#^27OlG{YkL6#2#27PWd* z$gqe%AQ;%y+qS7~x<%rJ+X8QSRW|K$nnm7kwgVpYaf^2MqeXH7k^YwP)E_MYJWp+a zH*8EO<@eE|QD15WEcWFOmU8aTCbVYxMUToXtpC9h!22Ww_`1Abwa9z8F2Lm$c->I% zEmrc&uE0kj_kHu;BJUGOFJpVzlJL$V_QTG=)BSFr>;KLo_IZ|<_^NjnvEP$Fe$V#a zS!DkZ#|G~1@WVTc$m`v|(#2jt?8NsXD9>{e3Y>E*aiKT9$N1o$!16xitwrK3djXG| ze01cfw-)h7^#P8+^T4ieEzuIM0Ibna_0l5oHvNE|7~lTfBJp$sfUog+$`gzD!v+J# zZa+2c)MJapZx9dt=V;yUA6vvfNxbUr$6vcYvWR|-`$Ow`W7Gay4=rL(;P*T48`JvJ zLyPzy*#DiG>3c&TS>%0d57K!a9$6$`2j?SC>BBTFRhzntGs z+-Z+2<>Y-Suxrqf*p-hgPoMU#@5}W|7k|l`ozAWFb_{6n4Z(773)DgH5<3Z0`!s{L!_k#5kl(TQc z^A_MwX*Kx1dpWMHp+eb}2BsdlidPnLpv@a4z@`27K z{mXo)T6?Os+-klT=JUV4k`w#)2A2JFLjSTK!}Z-!Kc3R%J!@akY0v&QQ5SuN z`!Tw7q3i0RF8PeOpDG+TYR>`Ydu+-tnK=PHk6hHt9bcy}CJy2I*Gsy@yU6|xnK8P< zB|VYx$HdP4p5@-;>|d#ox*O zd*|6%w{ws60LE<(1?GE4nAYwEab~K~HplzMmQnyy8$o zo^elfvDXr}NZ?fN=O?=8AESWt z@V)#KJ%RC~V}adOm7NdqeR;17%adPX(U9`{%v6 z{=|{wHy?C)A3*&5#Mp}0KImc}X8n2FmX1pS=KEb~Px!ws`8xgpy&C^M>JqOw9a!E| ze$*x3$V}jPu*y7&`T zgI@Pyi$A|X{srC#k-)X0OO$Ge{0!9ppuJ^hP$47)aeidWZt1$bH;Dng-MS;! zCa38Ve-j5R`6-Yef%}tqt8<6mCqL@Wl+R&LGT)nHJsJOV9$5SlA9cy+bs4z(&bOfj zu%6`S*MMceV*a_m9s)~#2ISMAy)7^Nvv%_uFAICG%YESh{Pbhi@{ZV_oKO09aoaR% z^j?>EW%z%!-cJ8K2tfV|#v?faQ=Pbnd>!ncC$Q`f}3+v+D^wZG4>>;TR9!kMsr}c_8KJ zu6Me|`oz9}e1-B|iZ1q=PQdHvpij}CGG3AK5sb%t zk)lgH2K!%o^gPG36kYCTj!*c1sxJApIDW<_zQ_F2{>lD|yqBVfGX8%O@I9yO2|M2D z;vZZFyn*NEow@(F1Mh~u@hkF|Fn((%Fyn_p(SQ2q_5zFkhWdP`5(_N*4eLk!QwM&@ z^Ym7id;`aUpK!mv)kVKd0G9oS`DMR|DIOFBf2Kd|ByjJ`zW=^T*5!R2adXC_B0DR+zy;mm#lfUc-w&i{J z%9MwQk5Ybnrc1s~u2+qtVQ01g(|@rISmytkF8cRY;8?z=d8&s~-`)f)^5s)KjP{TX zzyY+EJ<-+1JV(o{0!}ElJHm?l{kU7;ij}~L<*Tj#9r)apxH!gV&0Kx_@aQLcNSh1s ziQGSa4}L1&^NAkNqq}wd65s*Ue;(_h%m)(z>`VRau^vwU$Q1;*a!3Cwt*KY_OHD9sVQ-%Ytwf**{x~GdiFdjI#xkHEc_jJiWF#$Lx zddQ)J_e^&*mK z`kT9l9_HT9zyUmu4|RF>#qpf2{UD>)BRzojfVsf=|2*{1j7Pe4Ch`N$1MYXl^X}ru zx;mSY6TtP5^ZZzsJXTz<`%lZ?zWqcOf7>2lk^i3P;-BOBtIPfURG0TU+&}jz??GOo zznc3`;u)UlA@ZIQnD&XKFLd#*a(@fINH)iR7I;aoLX%s+)g|xXMPNDqZ_V~D0n7XS zce><3@C%ynoJb$B<9Sd0)f$UXOu$*!dl8 zkN!0ndFME>$Ybwxv1hyirg~KGtuFa{-T|+p`~`l__}vs>$#3&km;9xvz`6Wm3GL@L zh+n-$c{^E`_{luLx%@}sKZ$eslf-}6153Q|TV3qI&cM0+Q{ML={#i>R|9xx9vy5k6 zGjZ~)%Ww4{)$+(R#4l^kvphyFL4GO5TO)p1>&W~p|G^@EzSH@fbvNl%DL;bWQ~zZB zILZUKU+B*w4y>5Ba9iZ};(bCqmG*!XUEZT0eqB565pv=;%y(`)yEY=UR)arq-!LBk z8_>U_eIQjAdm+n9KCq9v#D^muT6;aalos|$M-t5OHi%C)<;hH4@*~y`wZS&nE9xX|A+p^L7;c;)%OQi8$oY1rST}A;MDH8o}>4>569wEV37}U%=1Vr`e}|X`3a_> zKIJP-Gh{udgD&~9G&7$~IOwG>kD5?LGxOcd1ZKXT{+c23=AXd1^Cj_7#LQ>45OltW znGG!Rqh`o`GZ%Of^4+`yooYC77vv}EW@AXa72n6?9qZPxjg2Aq-wO1{|LR)%Akcp; zH*W7L(2F2|JD8c@?@;haUCig2OWhj*TUR~%<~Zh4^vAz}nLn-*)>Goi zP+soq99{BNtOJ&Obve4^i$!@&<`?^g{;9RVISC`4?#?#zw-I+e-m2h;Y+dZlk-&0Z zvdw&V><^dkYNjs!zvaNIso!Oq_s=rm$@3Ohe+zwt?Gt~Xr6EHXdkb-{z9IPoh?#dX zD#N@lh?#$>Otvom9QHrmU3<_eTbKC8^}r&}X6uqKYy-wG`NuRv@;yWW8}rnZikN@O z^P5nf`LY^oU-BVY3!M4g%Mtmg81JrRYt9FLSOPp`!hYHGL<~u_Ft(of^k8hL5 zNTmOS_($6B^L)uSWu-YFAdh*zknc(IQC_h#BwlPc+WQpt^x#1|L*m8u08@WjXlIDN z3%YeU`4jT1QJ&fb`dYkSR(6KiLrItZ*crjhkF^(gpI?>0t#(Ej+^ z4qJ9Sv@<0Bm^imRc|SyK^Wpra)0j`n2gI?|Z|#gPbcx5udQcBBFh0HqcxP)QF&`6g zZoWD>Z@|{G$j|e@))0PA+?VZFJd`wdB2QD`?J^n_3!f<{`4y! z1AP$kzkSGSsJTC_8cm#Ys`-Lec(JW<%vaT zpYj8+*7I&_zqR&;$VC`uf?DH5KBHaN5hx#SHv;QU+8FvKZW(D#HN18=lEqm zXtz=_``aPE8s8%w0evvn%fS%)3HO_v7krQQzgS?A&ya78^7|oRnscu^nD+^=_(uym z8flmDK8AF;A05qnh=)O!^>Q>q`2LLhk?r{-KOOCzz#8+@_&OSrN9QQ$l5Y_C>Li~D zu;g1rzB$H|a{WFs-y+(h{pbYf^v~k^qW31Sf0P$cpYrHQVCLgn-{&%JVz`oAMFnlkuF1px4(nwK|0Pr#^oXbQ!Oc5lVm4J;%{a)A*``j~>mwcCn4RM=1 z2VMO0h0T0}FF?1TKXnTmzC3@gK+iY);NqL8Py5bW&?VoUvk}2}OK*Thzi~F?y)4Qr z=Eqv?Y=}LV?J?gKu-te29{J7R&gOnbf8>4L7H3o5cnZ4s!=26h1mjWl?TxT2sLyyJ zV2$R*Th69D25g+i{blcBNWRubz_i!6xfqgv8(5veL%(4zhP-EE{om(rtu)HzOZ$dX z&a=E@Tnx!ij`>pS29~`$&czUWG5V({Z;p2{M80HyL!j@Ebuq#ikA(3UF`h#Vv=>Bs z7_bU^`OA(zE{4442A1>N%f(z@&d2b+!Gl9xjPMA=I|Ivn^>8sFc#JL9B}* z_O49OcOk#!8IP%cOfM1a>1ys5+aP7_ z71X+{kE;>G_-J5Nxk&Mp@~&n+P-41cy15$i-T+v8Jvw`L95C|(ARmI{H$35Lo)_dx zkn!I|`;7kw)@=75o%h7m2z}vsqzdybh`azg?ZXbhv^QVI_o%M`E4l;Ep*_iG1$v3H zUh9Tp{+SOD`5vsUlb)BvdWd}kSp3Iru^xQiT@dtyQQ!Su3+2g=oX{TCp=vHh0P~*! z8&me*K3x&>#dr)sBF7IOU6JTqZd@l$1Vg4A`#P;{Sbk6a`{-S(~{1Zkg*e|?L zp8UfF<;m|n(H{4UEAVaR7X@a#vm4rHd_)NsL;NZ3sQ(A^wYnIRzt978=C`be^AHaqc-*18aLHqf4pz}P}bv5(FGQSA(ar}Vx zIp4r?Udy-|;*STmioXKw(OwKJ=g}AYo&1^jWy>|(?-Cza4(;(gqP=UBZ@xu)p4k@* z0w*&5y)4Qns8!u6f&LHj;Q$-lkNBR%JAH%l)K^QQJmaN^<-W&$p#2Zyk@H#*`-%2_ zV9^&ZI2&T`L3wRA&$qL=ztO&;eI^cc-Z#X#`&s0D%!l>#vXG?Z*#Gp0BEO2*bK-z$ z9|KlxAow2zKP!14GM3}5P5Hsal&32K^S&AAYUabOfbz`8dkynVd4u^{79(G*t(zh7 zk!-Kxj;dacZieXV{2u*f1>Fp>XOk}ZG~G=3g5L|8if999DLC7&evC+7|I>0b&2{s!?5 z4sM3zS8Rm(vcIt(>A!A_@AJL%b5|po@%K%EyUpBk>MYiuX7V7kPkHea_K*C25b863 z>-1cH*c@2$XQMprf5hY;16)o00r_;S4x5{7|M_csT7e6HHty|eNcd zzAxvw6Z*&ZTg=D9^=as8MDqRBkHB32KvyG}`3Z=HUtzydp8pB;wT!2iz5%~vePE#v z!2aU9`VRQs)m5Ebqn(X#-tQej7yY5IA^9PYAILf%@g=c^bMsXLOa9`*hQv#B0saB+ z15Oq;`CDhym-xe6`JoeV;cxv{?k#M@FdiQ5oB5mz8}i<}f9@4B%JF>z`%6B!xsYkkVSmzE%=)yhka?bo#ea?Rd>_d1DA>0y z7BnP&m-N>32Ng8;C;D%deDsjN7+)R&%zOmJ3mWo%oZl1q*2%nYIDhmPZ~ltKpSKM1 z9QiH#TfR-tL4i(&_;0%di+{_>5dT?EVD6`x$fryBq8Hj1dzOVqak9vqpa$XfFb`9vI)A@*B2O%OK3)L!NFRMHozV7PwMKY8B2Vh*Vi!L)|4YF3zUYv70;U6 zaQ<)8o(}sR^F8qViGMR&cjo(K@|U-aN66AeA0_``zQGy)!L&aP%F@ODf%B{}K7Bxz zF7H9vp4j)Y^e^XI{P$U=zl?OrFPmlB*SOyDdj(nM?^(11mj0kT^;7m&exCsLYx?Us zUWo_EGX2No&&Oy#NB<}1aT;(IebiR;JwC{;h|^4^2+)Wz2eACUN4hTWGeUux-ytwvPoy0Q{7Gxbc${?8UpoX?&L842Y~io{ z9oUSoH2r~-fuA$JC0&<%RFi;nYRoFuB3%!o{$K^3Lxmz;7keJ*5+9Oo#tRXXJU3mJ zd>PY#36G?k@m;fkB|auyk7E9!<-mO3`{2mTiF?SFwKz9dT*es~sG;w7?l z$@h95Sbo0)<(bdtBJf7~`?5@bIkEgcNR}@0{3YOA`?mP+h~JEOGUJzQUF7AyZl;0)NSFJzm)FGAeI*CAp}wl4B3%ZtAY^F#jesKAO1<|o5b}P zZbY2XnXvg zjpWq^7XNbY{2T-p`S6`Czel$lSo)9n8Tma8U^$QQXY*Yi`Gu_KTQmM_2XJ1-Pro(& zsl>VQj}ni)6FAr3ZRPtkVuSI*Z%qFUF5nuV4F7oy(UGn3Q-eh>6N5x*5{%f}1 zdjFAww_fTJPc8h4{05l!JNxI+JJkEc3*G#EP2dR1FE7k^BJ#&PjBk6cOI|bLc6^xj zsBrO@dI7_JO6-wzjDRr3-0TZf1mj5q(=^(Nv8Zlyt_fj>~C(G@vU2c!%s{o z+Tw;8PezE^Pk^FAN&Y#BTJlmy+idkU z%TVU)CiY0Lw7$|!i^My57c?#=!J8aZ{ux3Bw)$2PJ`MpJ+w=${g_gQXPzT_Ww4!r#I@->V6-opXV zD_DE=IeFC*&io?8q2&KpEQx%-MlARBC5!3r1NLY6ix$bhN_x9yeMmNVyz@%7<_@~&Pp^QgAXc7KQ98H7YE{nu(#{nDRdwW0MY5AOQUJL#0 z#PZCY7RmoWext%GTsXSR@+E(L^zOF9_aC!Z`FjiGzX@smZ!JGzzNaC7cIJjkutYOo z(hcAs#xI>R->>jK^JiegX^Z?m67Rbp#-pFNL{RSIeW;d~sQ>JuMSkDoE^xcnubkT6 zw3zvMfE$Fpx{&w2Mc#+K1n!!3t&D!(BJ$NM;PQ;8erS>R-yD--5q&ue_;gaa(eK||`dzo5G7!I?pgFgj-M!TZOC;rC{9c5%^IF*= zvp<;cPw;yYn&CLjA?<@jes7Gwzp$$O-D<8ME%H9EAh5*ud^F!<6b5ec{)$mF%_8wT zp1|wrKTWfUy#l}gp~?HyG>bp;7kvYKnD1HAEZ1m1Fe`TQ55#=$X_IbAYmR3( z{JoQ1jAumu_&%T-@Uy<|r(dO6#GXSe`RdXw&Wz`82yDvd7K#7v2z=s?As_OkTY_m1 z?+iSM@wVv}x&MCw#&42q+9!+ThZ+iO;qU2XSS0^j81V2Bi(bFR`!DA28x8Ej^}u^9 zwl@Y??z>FOHR=mvfzR26JS>)Dk^G|*o8{V%Y|Q-pQ-M>E-z&-1%pdm$u=tbg%->HY w7Jr_d@~1t0I@)9Yq+WLB@7WN`@8{T=`9x;`uV=g%-WxK1<4n~5pWie3KUIrB!vFvP diff --git a/examples/working_with_grib_data/cropped_area/shpfile/france.shx b/examples/working_with_grib_data/cropped_area/shpfile/france.shx deleted file mode 100644 index a16c3c8205531f1ee308efa1db2e30a22043fc8a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 108 zcmZQzQ0HR64$NLKGcd3MF=C%E)ER(_xf+kD?21;3)ije_H@9m M9YxfLfx+$(0H=8n)Bpeg diff --git a/examples/working_with_grib_data/cropped_area/shpfile/france.dbf b/examples/working_with_grib_data/cropped_area/shpfile/italy.dbf similarity index 62% rename from examples/working_with_grib_data/cropped_area/shpfile/france.dbf rename to examples/working_with_grib_data/cropped_area/shpfile/italy.dbf index 2cec8549f82ffee81c84eee86e7bc8d386a0cb12..708d516865004261bdfff474f31488a542b2acba 100644 GIT binary patch delta 75 zcmaFL{FIr6xq_8%BTF44zh?*tIvQITc$OsQR8C&VC_i}vqkyWBrHP@Tf`Wpng_((& cv6-Q%fr7E6f`Xxuo`r#df{Bryxq*Qc0QR8~@Bjb+ delta 72 zcmaFL{FIr6xq_8_BTF5lfLjmWa-?b8ok_0h&o4JWGYI@;$Itc+ zPI5a3eR<}ihoQHy?TJCpCAsePFB|>J0Ls6p+~KFaI z?6}ZXl!pd?IPLK0WS10;T|XLJQ00!*?~YA&JI~D@cNSdue$qQF9;dx(ACK+U1^iU4 zWv@-9KbIdI-4Ptt|DOf@ap$vVP(Q5se<|4&j(le1AGzQoe;j#Z33%Ju=+2W4wvgXXsf^tLd>r>y&RQ((1&$8)5-@d!PTe+}u zv@AHfbNgrK^Xj{uRpKVJxt{q_KYG`9Cx6+$z8pB5S+(?*T zRjtx$Y_kT?(|rDt;xe^w5NQ;eH=By!_7;xAOfRE$*mI`|o^ya@|SlH+W|BM&aRC zefY>3%KN^4?s;&y*M{qMU&Z_l&$@6x-v{H(kJ-ECLUnMZ(j~IGGC!+_Hh&Nt3eUax z`CFO)>G3UAUQvt>yngk%3~+Szlal|AI{;hgF8&{bg5%v(OmR!aXTZj9O7Ok-$@$iPUzevppM{$(JJ;HUw0_XMbY`D|+!*7wzD z|JZjWzCF|Wzx`dhe)h)klt-_OY4UxT{qx7M@vDT7U4DJbc<8@(yxA?Hr+t)6xyDI* z(I?AK&#O;=TdXWu@j`3oH2>Eye-##vPX`xjzdG7?-(LuUBihe7#orfJy6&+$t?2LO zUTdd7FI;-iv6JBZw(CdL28V|1Yo9)NlfifjnP2UXS(Nt~FzQKgXxr5G(b=>g`l)0Ea5(P!Cti6Ctn;*s`Otp;n*AsK z`XB0R|9`{&O?)Ua7hL$n$CbK*w@c0lSAid|qW-YP8~c4i{VkmHcbG5npKX+X#dw!c ze$6-MKL@+6=igiN9Q1U)sUHcy-S#s0UH5;EH16;z?XRpe@pt;4)cCrRe}iqjbJ+hn zFP}kQ@?;+Ku`kJ8{yFs46-+EWKUja^?+%uGY*>BQH=TxdLVwMZ!}boL{%-i&cVL~r zPP8|2WcFajU$mbxYrlSB&~E0-m{6qUm z^DTLJDdUxV-otnwI6HaU#o(Jl=aa$F#%H#Tuf%@-vs;OEzku^wRcZ`2IW4Sx#d*!2 zaA)+XpBbOl13a_&*|R5pf}Z$0^}8p1d2T*9Z}H?Ikt*yD@msLVE4kuN+FPdn{J{J@ zn125K3n?yF^Zh;Ly|-tV{0aU$__C2-eMA4Xf4@s{A)Oa+X#UTc|Jjn_%4qDaFelu*uhtQd~s+SAEGz=;v#{ zQf~AAMT(oL@q$Czum4GLJGD>rz2xD}6jykn#<)GKpPfJC!OB;+yHwUMEPjrBUD;*d zh}MiRZ_dQQ9l=H84Ylw3P~{zrNBRWw;p$8&IqFO5iysMZTm1NS+mTn=Uz)FHdY8R> z4fwVn#@xevMr}VLzu2aauzm%@LQ~J)#e9iBgTvz2IVrBM=9m2uPOMqweTV!H_KV5; z8<1zshKxI>^)-IMc&F@%z6Ore$ZUH$p79l(H|Y;?%%AuP=P&&8fbvg(SI%kI{1?U- zj?DXTY6AUfeS4?|;}5;NKkM2CV4b(Gp!a^2VV|V29>MtxEn&Z;!tcdzIG+)n`!MTQ zbY7pnvGN0<6jycI&ud@YPI<Yxg8A8=IH}XBWVgN2?oy38f9~E1E6UAH zb~9(a+~Pl5=+CuzGmrI4b|-&AzuW{)d7{)?t&`n>x8GaWHp+VFJT^i9Iyz(Bjq4fz zr~FGrUpn2hAmz>2UXmw4K!dpxVa%tDyhOtd8-8Nv@IBdky8{ z|LpadHSb#UEB$fO%l4zsYQL|8-YoRNgGsL7`v=E81TN70pwDg*zhr!&-Ovl6pH@$~ z&_noD_+Sa6Kn=N`VbWrwri*`c#tz=b+@=h6Qq&%m~SN+pZ#ew{XI~vQ_~dsBYo&Y=u7`iX1&LJbM~aL!x`{y+4J@|BsUf|Hp-#nDa z_?GrQIC3c1?5#4ar{*6V-Eg}3qzcTB_U|a>=ck)Lug?4~)%<}y|Hqz?y)}aRH^F}{ zXTMAT1AG09`r41fi`zH;`4IKh?s57jec%Dwms~u`{*?`TKm8MbKEQlxfA`~itvCDC z)}t@<*L|>l_+I*d_Q%Hk!FksX+tz<~a6W`}p1})4`3ugIeh!XyX8b=D+9gzRoxEk*D*B{b~FG>@;3*q4ZPw7m|L9J(_oOUWxX77{Bz9_mf=G zu1Rb5-3xu4ujiQ`$<+ari=RBr{*=B74ojbUiusm30*;=3_WE8=FkekpkNlna4axqU zMElaG?g3A}qxJF$*vq#p9NYaazR&n+#;!3*?&PQJ&t7~ldu|l{6TP04_noz=9@y<{ z-Q>I5m@m!mXvQ!7tsCR{>b`Qf&j|QY6Ut3Lqdn=1*VEsw)emRA!+c0y#Y6wn7aDJ1 zeEDO;?(taY%idkXdP#oPWj{#ni~qG6eXiXqzPnttBOMLyeCHm48vv-bbFR_KjckNz=`^C3G9 z>^{D`Y|04ujpXgwRxYpcltDYNx2rDSu<=H4DCU!KlP6Iwy6Q+pSZhx=!xHHPj*{f?NZatL{x zD}TdY=;hqf{-tgyZch025)%vgK9J{y;s-xbF8gLyk-ozBm%rKOm*-O47LE67##={fhp}|A0PX^5_f3|9I_>7XO8O7k~bo`Z~whS4q;(z1hfxd5Sb_?x^|29M4)BgU5{>d(F9_WL@lIPe* zJM-s`s`DZBr$6`BQA+S+bULoeTU8CQn|czdBEEqYul!FopS*e*6LUiS&gC^cRGe z|F{#MZfL3X>_OI)R+FViTd~67qeN);q`JU$T zdp&;P(HQ87kJU|cZ3hl*(XtlhvRC6Mmwix^{zz_Io96uiHK4!ovf<}iq`8^;{wluz z^R-77-kjzlT8}IFzEbVROYi4<$@eS3Iu8$~xv=zlu=x`nf}Z$JwPKvF{d76>>l@wDo%wqx zFKh_^S`R&)r=!%@ylhK%nW=wA-Ub^#`RaeL{2d3=T_n5dsM5zM|4{l|x?84kgA2s( zug-8Q-?(H$Bj}rd<(3S8-u?m0Uv*oCoB3(E(l>yk(>UL~GrT+phh+ax%<%ey@RZv! z9-oroGR0q1-{ePzTdMhjerWE3Wt+bOYoBWTlFOws-BQ_C%+E~io6?!Cy!s7xU!s7P z%X9~H&cLRhRnBzzI^QR$U;5m{I@L10oew?pW5j3vw|}{ZDzD2-fWG7u96}* zy2GtyFz zM~1f#wnJa`(5KK7KmVNeS2kRK=Qh^Yqw}QKOAK0Awxw1Dt=6kI_^h|%)%>K=4)b5VY*dNkIH$hMS^lvk~y|teCll-Co zNm{41d@p~`aoU&ux03qu$DXEtlCvvXx`E=a|%KF%RzsdTIIeF@@QDDjG0{SogZz=UloM+C>P&LZ{YHEo+hyWZ2vTH5%H_>tpBX_BigiR;4-zIqrugo-?o8Eic1eoA4&gp zUfV%WdeR86^vDj>zxLe{JBL%h>DwRlzqx_;gARqh_W4l0*FNeGmK{H=fsa4*WBrnT zZ+O|525zU~1AUoK$%~B*Twdu$Yp3>N{^f7_tAUqKw=&*wFxrw?p5NUZ%wMT2x4mp$ zsaSAGc3{~oukUnZ{L*(SWO@H$yOwTyubZ}%19#VcyAj+qzs+v2*~@LHU#?l%`W3Uh zf3-F9B{_O|mdlktIfwPp`3OT#_H}dGlU~v~%Z0=@uYun6%|Cqje)?0Y?)Yj6tXKZ( z;ng01p3ZMPG|a z&eZv<3cVmkXK|3q^hf8Ba?^h*alYhN8BTqZA7Jz6(I4qIWuPy9G$hOG6Q!A7*(Z;>@Qi_m-Tp z|J#0WkBV*2bfH}Oi?I9!9kbj}trPU4T9*!4E?@S+LFlRdmaM=0oxkO{s?uMZ^S$&V zu*K1CV7=wf0$UvB>MS3R_?`JvztX_+*Zz^?1}grTN`3kN!MXCc)?MjoOOqqJ;3t|-&X?`a?;H5oRLToz}qnKfuQC#xbAbt6+;i zjD>&69|j&M`|%$5tMv60`l~p_HS|yVH~b=`^L#b@P3tfIq4@w8iho=id{2F|Kf#6F zwtoC)vw)x8z<8x^v~1wda}(%`&%&QgzXxxZz0)a}A8^&D;qRRrczy&f;@7$IXEde0 z{HR@m`DjLc@mu(L5x=Wy@xBJG;NUx@-h}@Z(Lebm_Bl9rb?-7Kub_SH|7_;V_AC9r zY5%5ogypZkg!xf?7;OGdlwLX6!|1{ss&tdWRgXlYoUtG`pbu8Ov>(A(8(wDA=e*a6?#Qd1)+=ZBP z#~VOTa`;p9AB{7K@tB?f4)%lb|0w#7{Fm&%nSXzU2796GPWsFbu>YLD0JpNMVtKEq48H+PrwBm}9@l{w~$%hw_ z|JsiiGd`{F3$!OW%=xf*#RBw4?F-INVRp&Zv*$ry@sx`gkL1I1d~fki=%2b|{atf2 z@#9xmzXSPDDE|i7>~OGC+?elY%HPO&-kx*Ks`2yDN6o*%`4@kfiT)zF0Kd)@y~*@P z`qW=JZkhCp2;ZCj34ffQn;#iNe*%75p!q?c$$OyThKBH8lb2w*QJ#Tc8-E*#ek=de zo?_fc`+PV2QT3>wDSq@b@?v_^5$Tf{zx4gDXeKoJEp{Mg7hd!qDe+T|4{Us4B{a`uYYhP1t^7k$3OMj20 zT>9>t%%}9h+QE5Q3O0WT=TH4x!ubAKQM#}u{6~7%Lg-okL<6r6OlQ5sx9T+T`sXy} z$Mk#3wXY^YPy9TA^Q-;+IQ`Rq>0f!tr-{_pIZuH2-p>R6xts{Jv=*zy%d zF#b_JT8#+@{P;2Yr+KddKPWe>>6}NPr}KIh{6O~qqpYX&&nxM_>}zo0b?005sgAxV z{>b-L=T<5I=xNqp@@gpc(;sM*dW!XsyaGG<8<_u{(wD)}CXrU7{{|}_0k-)&l50s0mnhTbmZTWjV=dhIOE zpXNWC@8yRD@7$I#zQGNAul)xuFL~RD{Uf`L{@ZzN2$o&@B>P+T@pbGE*&{k{(#Nx) zCwVp=ey#P$EIzNx#Bb8TvWJG!f6IqqKPc|~NHE^|e4p^@in9F~kN8qD=SzI97yXmI zS&#V>ALs%9m;MH}IQK1?UjI*IzNMdZVZIetNnkx>FJjMH{?8@!*YYVCpX3AB<}-=< z;&)ZSl5_O}`}Sh!1@^e~G1XQ`zotqU0&^%=Eu(Z)a9P z-bs!er@r<>CFseY3O4z09{XGN=Reu5K=IVQ*w>0*Q*P_AGsERQQL^O*u-SR5v7hBH z5IyC?JxhI^f4(>SYzFkCUkm3hK6Cx_Vr=&QcU~C?rpH&&HkXi^y60a$Mjdq&wcwrzZ~evequgN zKNXfdEy@1)fc0-j`#Qhn!7IpTYmL3HcCTQ+X@6(q50E{5CHlJT0LOeN9(+|Xw)kib z)>rvlE$EN@<+W(f{E_&V6u+xYee-|fFEG9fR(!k@^fkYAXy4+&)R&wI(|&FIZjVr3 z=N@eF-66&07M~aq_%C8Ozlty5zZ$6gzF6q}a7o9DSReC$#6fSX@>McCe~$;tzFC0( zMD`))A)@@E#n7v`YVBgqPm%w_;xE^;AEjS?!FozRZNm2tuHJq-{*TZN>M2zr^NO{6_15e`UMufg7o>cxjaWNRPh>toYx%^hf%0N9db= z&iEBy1Lr9(YboEGUQ2)F&sjo$q#t(Td+iT!Nb%L&V7*_Z|B4TFrd;_%Z!o`>&&c;D zA3XZea`u((f5a?4{&~mivPpUo%E%v;4jMG16v+M4fvh<2Y(-^cyA2+LiRG{xylbn zg}>^&-x0|3H0X6JeW54vW2XGu>BukfEpV>*eFNyrUcC!?@@HIwzNhow2mWUMbo!_K zn0sko-!;ti{*wNI{AvU}`O^k4Kfmo8@*H@J&hJC;U)fh+i%%e*i^`3k45nP`Mfozx z2k>^uZ|Ix95L}@1L;uXaK>i*!J`cZ=zXSQ4Yjzp@Ui)Pj-^gaENKMZXC7I0Ml^I4o1>5co?-_p-!2Kyg>MBbybH{bRo-%EZT zg1+J(l$$;DC-vn&c!Kds|2hnP`3J_qPi@?ks~=bwTjbGb3_RH@7OxEWSGmC7cRl=F z{*LmLOCF`c50#fz0c?5$^CLSH9MS%ZfuATp0_?JfzWZ=3_=)_3;IQ~rMf#(2s&eHs zmw~?Y9&n+>ulQd4n)Y1k^Hsk1E#2pb(|@OY!=1!SbUrUI-f8kCs^tmis_KmA6!*FW*Egx`^0nD*q~WxmWm zJ|*1^l>I{gjNea4|L=GUrN6fe;xX8t1t!1JeY~U^^RN8bCh0!^2wb3e$aRcQ{P_yj zqtyr3jBY@@Nc&M(`gYlLpAUT%-|O7$CVnP=3;s=?Kau9D%KnX|f8xi7(tP}L; zPo=q&FOaX8#&{GzJ54-K`UBYV7tip$?D2HUwO(h5he@7iLf`U#h?iO1gYhc9PJPqc zvG)rkPiPM-;9OPt1MGYe&lCS^O@BK+^Vd~d(>xz(%l9UKh_5OCpcCy$UcZv&4oi>8 zr9I_WD_*Dl(K(<$o%SRb@K-zKBTl6~`ANY(e?HCY8{h)Pmq*cm@hNamEB=(9>Q1H-9|4DyPd$p|#C->VKi?PqYF{L@t^ zmw)DwVErqzK8mLgqJN#(?-f$Le)<^mDfw}Z{94&b!>KQNC&0>28wq`jzmb2T{LIO; zFaG^H`3}lEn8o;YUdd0kd`99?5$RLUlAoad&V`=Y2hfv!I*;}yo!RmR`NoB%8lS&t z0sWQy(fthRAurIL?gKnPzJ%%(Tk@-w-v$o7 zK>h^z8;zt-=zE=uhR~OO01nBY#{GdUrWZp``5Q6hKPX>@{#gF@v*fGDUVVx2==@AC z#(urYN0ok0d3cHLlaOB{{a`WkA^nm38M9{=QLg-}oA~}!;>Gl@Fr9p;=H#17f7N(3 z-wmlReM$47`zuw+Kb3r;zlDR>S3F!f#SN8zi0|z@l_vjI@{{%p6n7*))$Rwp%y@16 z$fwhMyux^7PaRG6eEC)SXZdj4-;rJW2H%Sx{YZY2@}J(KzjptG{2|$!%V~d}@}0?V zQoQ4Buo7+FgTC}(;+IbRpd0y4a(t~~zNCM4PWJi+*y8=|l3ju2moh&2ixbHYRQxXr zJ@H@i1jBV9P(+P|xRU3oHKhK|N>rm8Dv_sOby! zJU;?kzQe2a+)nv@z+tnmpfCOawtU~0>iPUM=!KV~56q`r`b;_UNtB;7ivGzCs7n5d z@`Z-ib2H^{zKs5T^}@Nf!|J&MKlE<;Cpav9Xej-YJxP9z?XN-gyu7MTf5dnD2K^`h z$L!lyv@iWMfqWLT&l#`eYa;cP57(UWh~I%D(nl_#J^A73&(93?d z%w_u%$#2?vVQ&Ul`pQR%?tuKkS2G@+$MuPByZp^y%ST^DeZ~E*0V^MPQliUMeEM3( z+avP+*Ao&0I|_P={|`=dRn=e0y?vkP^X2(IPxI6_(c6!rr+mr#5`8>7i~6!>!Ao_2 ztO5NOU%DgF=R2#v;?KPj-Avgr>5NzT`#lp~zWj^eJlUtWK~H{Uu;n9MM}L$L0=>{* zJa$oU+OzYW;Pp#k%hyft`9gOxAC?c8;I=4Ua~D|U zlM>L=*&qF&w-LYSL{e7pE;7ifJ*TwrhmJe7D$@dlUKEAn%_GK@=8t?Pl zR#UF~5-(A%e8@G>S3G!eyvw)ze%e<&XimJ(2iQ!x^pn}~ULJqQd`J#F8}IK|kgpoK z`tj>q%!+qAQ4`+!g!-D#>Clt@y%TKuNxYx$?}~A*@`HCV|I**4(I44s-XU-+BvCBGl0 ze-LSMgxozkV~;>qqrkyRiJpuf{s__kbf6 zepoecNNf<#pueSvpFI}q^`lhEbw6NXjJN-;BR^jLgo!aOU-!Mh;WgMxV`990E3ACu zkul!i2e$m&p)uZ{1}^*?dDJGx`zsoNWp7;wd-;(Z;M_BO|>YLv@%=qkn zQP}hQE1{?Re4mDWyy6PllfJ$s?Dbu+`CDEM`}1%)<(mHmVSiuhGRk${p9%YX7_i;v zn-TW%i}f=5eKPdq@41Bj>i*cUu*+9GxH9G9w}ZoOi}ck>^iTe*+_3jQUSR)s#UnDZL>8prTEb$mY89mOT8> z9d+DJ`Qe}!WqU8`{6ARv!|nNA^Fg`0=cy;(3DeS6?{Jcruh;SZxGG@XFMNsll|QH|^u}{vjrleG zjr|vDuJg`(DbCIQwDb3J9Ul+lJ_#3(1`K7qR|OF8`PCJSg*1x8|Kbp<>!Yg_=>qoiv zLo52bV?@f5&uaSorCTWfWla6=eyQp56kp>0j^!EtPJ6PyyHh^<;Vz|W*Yf&*Z}2nd zU-ZxH<^Iq+IVr7a#aceE`hLDwJgsCcAJ2Y({{Pf%U-rJ5KK}e5*zQl&bUPIv0Y`P; z?30?_|N0Qv_<2oNUV65${4KB5^!g3;LoM!kGI0Ul%U>z_joANBGCt*7i2iT!J$pS! zefb|%U;Xb@)91s9p1qI2{Fq)ueY@XCx$N`D=>JEZ_WX3VhQI#=_WP#>dHLjLPUQRG zO%~H5o}j+;*^xDTULx3a#h*H^h6~FdG=utI9Vyjqat(L*>yLAO21mGET5Wm_?~k8J z{~GU}S^3=>{{GxkeBb`MI`?m=;orj$*8Fa(;q9MU(6jq_HCj;*;$M>PP*)JQwl4s9?)!*z|UZ0!~jwKIzOf8>JP{8+E&vC4$ z`Deg;7WHU3f&C!;b|L*Ueg%GK)`rf@_&!hmq*`vE?nAF&ytA$u)4pddxAd<0>np4U z2m2#m_P|EynLK3wDUT3r=j|WHqj=tC%CDP#=)FSvD}Ugp(66d^ZcR5-_y@{mZ#Avy z?_c~#`OdHRCN~CK+y;7oU(z5UtEM|VV&3^b_E7%hUpM~-w*10<^ylf0@pEpd2_I5E zKIP-K#CB-H{@ZmO zj?RLE_ZK3E-YYnfSj)@H6O3n3PGMWe{M&sD+Lynv6Z}PaW=Ft1@hA17zVcK4rv2ET zU)s@!a?=kfzZnP7fLdPvqrHghx3u$6>dRgfmOi+e^%uVYo4vN77)Nyfc5CtXPUrde zT3&xw`{GwAwf%Y>XFT@41oB4l3$V${tC1)2&x0-g(zCW(DSzKT)Hi-u+vgjBL%Wy1 z@ZnRn-Aw84!lSq!yArJZE_#=}b4R7GYr8zXk8qOj?f!Wke;?%><|%@3(f{u=E~q>8YFM(jV7i%)&PJ z*L4G5`DgTt!p{!wpFRZrLH5@vzE`|!Y+dhvI18SCv`ei?bzP?UeZh+N%!i)k_krcF zUtHHUvV392D|!BDG4}djT`x~A(EowiF(uDKUwUMS_hYo*N~2FI-okq+7OyXdeiyu_ zV)v2Squ(jNiT7UeB+tN>A1g4Yv11_AwsC2UMd^$_^#d)GChy>#UG$w zXy-BPwo6_&YUAHS`IG)?J~QdR>>sebUy?z&?BL%hm%lZoxIJ6%Wa#U@=I*eM|0U7B z{4YPDzgqqW^<~e3hiX43Kws}Cpubz3v@Y-4$UlRAZ~2E{lb63U-FH}81HWteT{Ds_LJSeqyM7+GVN&|p>OYjyheMne|i7M@>Q3` zcz;_(u>6I~W86-~bHE|_o8AG-zf^(sXn_CWUFe?>ya{aa7_h%@9OK{XC<{G% z?mIeEXUD0l&8Ut6+;4!_V!0s>%a?U!eKLmd~fj$=xH9{Zx&ywgncdl57^&di1qjN;fLmbInVq_FM@xC<^QGsmZ!@6+5NBb zv2Ll(S4sAV@&_1?-S5zP>AWx=^VhR~BC=O=sBivg>gPXq;OLF?Z)V2AalA)m?}c>6 ze%JbdEgs#2?{z;4eiTvs`Sw_!PYJesrabI_`Iqz_mc6$Y>)#9D{j6w(o0=4ijOD!D zJHCA#=x-+eJ)QQvy}J43S=*V?fzLB z=g0ClV*UM8_*+==cn1BK9|?X|D0_1%>nr^jZ0CJE{nP$v2z~h{#?qed`+&nC{zVv% z`D>wX_xGtUeE@zH)%!Zrm|w-KnlT?*&zWF-&wFbA{Uq8~zO5_nZ+GR_fqlF%*7GN@ z`NLK+KIsQ7z=8k8?sHRa{__KYKcxw{?df-?{7Qf1|7Sb}nx})YUQY1dn#EIoV}2DU z0bBg3Vw~4E;D;8!sut(bC`;#fR`yIjfo5%TlNAXMf|L=+O_IM)S zYk&2JzUCY3`CFXN&jDM!c?#uk*Bkp;ed-%Oh;#Xt-vFLLe$cydK2DhdecfmJA`ZQS z{8aky-{Xn%@)R5~|4f{-_h=*^6wmk-|CRJ5u#M*=-^-to&iC@Sor&}Q0``m9>u2NK zQsr-I|Hyu#+}>|sf0@7JcpUS<{XXQ2`8)BSS^N%cc|+&oeBKW8Ve!M-@h+@*BKtk0 ze3UT$L7gw;uRs6suCMOvfGxh0fWJ}vNagYeCE?#wyculyMA`WFlSmhUj zEg!IL{D0+9f%2zr#lL9p_AoydAK-iW7sITlJ#5NBozH z&ojT~56a;C;QUzpEG^!@E5LrU``oekHx&=#yg17r!vAV{Z+tKP?JCBr`)iWtijP*O zzU7}#U-}@}@>Mxc1@cc_L4S0A8~woIN#OFzZ{<8$ei+#NrJM)Lw}k!{*^jNDFaHSs zPqWv+(IqIFP2=4_>9-w&^}aork6hXd{Iz!9pfmGh{EBkrLxFw1Y0y8gy?2TK*X;RD z!FrBkJUTC6&p+s&;#Ra*xEp`cX#B6TPufHOkN!uV9>w>{hq#Gy`TfE6-j}fAb=0?f zj&_Vk{^jRrU;g|ye6RVPAMfK)t!dBl52&yG4YvH6Um367YhnChT}=Fq{V=M;+JRtu zKl9Ic{~nFX761C1`Lg^UzSnz6M;VXoF4{AH>q+P<|5E+4`^}6;`X%Fun10Up%I9Ug z_TJMe`X~FG`7r$y`WF9S{_MW_z94>ZC-nz!dcPIrdTulSA^KzYrSV_Oo_G*!`GR~e zc>^vmy`1x+_uL+Up5~=4@sCN|_qm_;l)n{|;Pa8e{{A8H4(WT;H~!g{a`AiGv-m-W z1pnR=*yPVG2|oS}wtTCe|AVD}-I3t)?^WO4!-SsvJEA9jaRTug<+l%@y&zt-U3x`- z%5}c;6a4<_S6puXV{oDTZ_hwq`{!QPSN@3Ci1%p!+{1i{-+u&s<&WJ(|K!IhN4!+> z9&GwYg+%`z=G}~6_FG(Ha6coM{{-T9vPWspS^gUFRJ)f;eajn5bb0b;KTQ1~UTW_v zJVLqTYi1B19z_2o@4%*S@_uX)Jg#+yMt$v<>!E+<(I)o}X8&kEHz7W% zc;XQ1iw|~9^ygs&<5&JhH{!8rx^GRn?2F!s?xgO;js)vH!V|=ACHKZMe%UjP>$&_X z-1h-TEq{!7xyGw<)$3Q!>$78659I?qP|w?UV7vb@D2TU@g1+L(!-((8J_MV-J&x}+ z9K?rKcW0+aDm<{;yqsT=ZK#8GT7e5oJ@bTUXSozk^G_gln416_I}eu z=u1EE!}~#YUy1gW@56h)cE4;qSm)~w+Sh$OVa0no^8SzPH*i?_eyw?5N^*W2^z^<_ z%On?8el^(6Ukma-WZyF1=C1(Tdk|oIFBDw#K5>Ee_wV#y`2>erQG}mgDckIUkN#Mdkz4Q&1uu)R+Nw)aNP z;cr*|8@MR`;r(g6M`ZR2<(6N`_{1-XkA!u8{-*yyyu|zif6zbWXQ*89!vmD-z6kW~ ze%r6izvcUaN3IyQhxeD<D@=Rx zqR+SU9@&qduRB6KF{FDUyl-dkS1>=8Z~S%eo)!4t^PTr&(_eP;-dXn+KlPYPeoi!J z$?ae8eqHV#GY;Jeb}d@fY`&lNKD^{?qhl@Izw4WP(0h6E7rlo)X7BHU<=+9De#?7d zc7DL7uTwu?@(CP1eDe648&WrNn-h#g6 z>oA|vPv3-|*^~5N{=+wjkC{CRJ^5>22TMLI1j}9)R{VJ-`%(UT^+$FU?_-7J7kHoc z$|GOav%eJY2b(>=k@-?S{R+w#FIs+__r**OfeV!H^jUHFzvsu^k6ecSD*x&P)<^tl zA^N8DwFv90{}#mgcnvsDeCPQ%{~pL#_Mg39ioR|9jP(>hor`|1^Dz!QvGla`+336C zqtFk@Uo#JVU3nmrz~ZA|^B3h)-{SN1NBMM<>5s;rVFJD1F7e7_G$)h+Q?*yBD z^A6?8$9X*1zsu>5@@r}T{~Yfx=vP|D`=NJ?c-ar=6Y^Kw&i5MMF7#*dzn);_(|(UW zW%ofi50+0J?@oT9d{^4H_hive#6Q4x-{3v;N9C*C$@h|HZ=)}ZAA$39pXV*~EsYm! z`95!;uPC1rZ24kyp(lGu<+6u{qJK%wlAmJZCw_17kUMB!`5HIVp6rKS)YmxLLr>=$ zZ2Ped-|PH?{rgzxfAX*Kz0YTcp7b5C=^MoV?cN>jh2BRWxR(A)AE!S~>v~O~uipih zzvgPN;w^Uv>j56B^VNs`SiUFvllalS^hf&s4bT(+02kQ(F7!9)L-+B$@^#uVe)%83 zPWoyu@(*;sp)XkZdHvB3CvY#F@;tp?{1Ez_)*pKI-r^(0?b-SahQ7`t{jvMM%x75h z12+E7`j|g~@1wdO!TRmgc@wt$fA)*~JnEm_mx7+wvmgD}{ez9@gBF)#eD?kg^(CJl zfWEyi34M+KLF!9i*^WJ8`XBv~y!?{&k-zRC%I$sv?W;Xuy>Iq2^dz^TXY#s`@u~md zh~n(*XS@HR{jBr+Kl|JAePu6cKi$ap=6{Lz`AuN6-xHZ%ooBGK_gk4?7N1pM#*TK>@v^0jo&GMWCGd?8;*;}+KY!JjAid&-#ql-m`?B_(=-w8UIM|_AdSZ_jse)UyIlu+qnOm zM0sF;nSBlR@eKBd^enLVUooG`*8zwA)ccW~cl8(gmj6!vlIg4egUw!0|I~l#+j$22 z`;5>NKTV~-=I?@E=zJH=C-$Me-v^FrJ{NMnbsv-ZMfq3V74HK_%s&i0=}*x2_X*iQ zvbUL!B5d(T`uFeghot|NMLx-%c?x|&c4A%Rm-gQb^aFbj9eoqj$H9EB^HKtNB7gT|l*^w@x#kP$DOY}1_e-(Lb`bR7J z8_0WG@0OH{Kcf#=J|fuSO^cZidxwYqmg0WJOL1#oryBP@z)pFvFXM01 zdS%mpjei02uk~*n%oqBD^}iAQm*0CT^P_x?Ec#>iEAylK#0@An`@V(-{_oAQ3zD=dSvM+PN@}JgYJj&N< z&Hj>o6wiFvdzJJ@aj+Q5E&rMJV?{*vCOP|=Ea?9`D1(v_P1NEifenfvHU)r+X@{g^fKRSQRhy5PN z3hv`+A6?CU*82#$|Ec_fSmsCP^?B+mpC4@TE!`hgesLK3l6P|%kM=J(SL-u}{%Jqe zi*s$|FPTk!&0iAZ)BXU5#P7ite|;AEy3ZcR`YFCR3oQN?!+Ocye2V@nF`#ywj}JXb z|15ul_A9W?GpMgX#%|&h%1;32NzQ#qJV*SF@BMv_Sg(&h9rW*G{P)u1z#)sj6Tgvu zLx0R4{T5i`Vmx8lzl-tL%b)rj^i2Pb_5PoE;KMt=xT^yGcZ?DzCt~^9?T8ObzkL`i ze%KiLvLE&Si23t^c;r~-NBg@5_2oZ$oc=wRp@k!lhQTgxabL5B4+*&j5S8#atzyoRL!>-Y?TgH8;@>{N$*y~u>&1v>%i&4y1 zVcz+QbB|L0lIoGx;JmFfPF4eVA2%&hQTU>A*>4{XyRgjsanu(-Cf;rLz36Xb@4YKa z>?eM|xmk(J$Iu^(Pe4!i6_|gsCy7s+KXoMSD}Ru9y4iEX>7VX-e@XtP_%YbodJ+GZ zy#x087xC|LdM}*$v-ixyuC4C>jR#BrUqSw<^4TX)U;c&V(9?Y}_J`9uPs@mBn|(*Q z^t*S0e9oz~ulpRt|1Cblev8Oo4n5-+Pw>6v=hJ`jS8zn_e@A=rw^Bb(_Qv;=>pnEN zC_mQjmx#XcLF&tXW&cJmZqx1HujJF}eT8YzyW;q}o0z|X@*iz@iTVYVufAr%0pjtE z+SIPC@1M@-8*`BQox1NXA$)pHmGXZOzfb8D{sVdzPX#aSTPGT;@|Wjr4zpf;-NFUU zM1RK5yN>8oJrv#){e_YPQp-Cq*6_m9KgUk?ub4gcB7dP%;3^CV9{0-OJX_9P$I(O=!)dW-c@ zf57&>E!g-m`N?L#aDP8+_u-gdy??Nt`bGKFI`7*Vuf3;2{)qg?|Djy`aWC|B{~v7f zh5c^t9efK`J}}t$spMUde_`_D7uH++knextY~^-Z6zMm|H4d{#UL z{$u%A2PoHl!P+tYeUU%-Uj9h1OlzdTHT zOuvO*@Sa$q-hr(U^WXOl{e4IB6%-#l#{4ROoBeG47q<{V7;E?PP&Wpv%!FKn+9Kn|}su_8auf{{%LFHSL=}18nb=gF~iIGCt+U zwFOJ=lfSiH`2paf{I3G(C)Bt5DK{Zsr0;;u{wKf7-p``FsPqf)$r|jt4%C;O3^seX z6ZEwo+Hu~b--6BFr#;Ijz+Q27e~$V(U)VE6T zFVlx97r(S4sAoQiDHs?GmUNaD^eCZbO59Pms^TbbE!hdu=9_D+~ z*JJ$spGRn4_rp8DKXl&$Z1MQJ=#TOZm_N%;8bE&#ZeC% zvC8fKKHux!2H)F$oK{?J>-ltyvv>2b-wPElT7W*Me0tV1q~B{HzpUsz!+W8v!eS6n)s_ll%*^AIhQc%FYHCDqrMs z^kdzRoC$r)*G7Mqy#Y3TE^P0sKu`MZ9O~PBZRp7!S^z!e z19t&SUjsX{w}Skh7x>=xEBRS!zku=o%Rgf8d%VH<5}%z!eev^G0)7RKn!g=+sdxg| znSIXrmOo47lIyeJCpy1iiw`|X{-pWynGf;z{NnG;pD=>`uKT~^>A$_N0e_eNjXx$T zzW50AH9l~j>F1m;#b25KsNN%a0Df+M5!w^KUL$KL<;Hd6vz6pKt%Y5kB`&GsB zY4+?P?#oLaa6T;G@%P|9{lH*;4)A*+${$j>>6_fgmp=~d_3>oaR{msgp56o7%l&@Y zRh*{+*`Ire7b^Zbi29a4o=n`Dc#`;&!RP&v-hG@Zu&d#KiE5gVEGr{<@YnBU-V#p&EL*@67t90L3?KJg2fN>7{B?~c`riz z@J_y0zSrjZKK=vt`W(L(qVXUPyuQZw_MRj3bRK@?JqhK9K;QD44nR-#g0SZKH|U9< z_hSC-_c-~z4!ytMvlyGc3;y@`J%8i9kq${MqivXf`I|@ZUWnaKrhUbONAq5Y@^dH; zS^ggHfyn;{_U{3udVhq~;38-4DRtvv_6%`L1{X*z!pqMt@Si zE&dnN2M59r74H|8eM-6c1D{5}*6*3Xuk1Z}>@Bm8N5ZePU-8Ej<*zT5KSKT(i;o8S z2L7Z%>EF*&Kkyg*S3i{hawhGWKOg?7{V99a;-idD@gDVG{Czh1pUw^T;lJm@=a2Ay zl=^=c<=W5vi*ZEracA(p)ZOUM;+J{+zK8tz_fX%?Rl1kQedw?3$pPs;{&XMZ(!cKK zJt^&Pu;u4HNPWozu-C8By*>@jv-`-rZzcN-Z1Lg|yq6_8eQzHdUXk)+yVL)7$S3Q}`!AB;;HbT4kmB>c!KUAL z;C&b4SI{$mYl?r5>NeWf{_4VeFtTrZLQnF&E5Dzld=zkj?x)k9*%!A{uK4lo{GOrm zDTS3kcL%@ktN1cFV&@^not#TP7T@PdpXkGTF=_`KwtN_Ve@Xnd2mKZQzlU=93BjiK zL*L$4(fE{K)RW)8mA(M}_xPRV52Shd(30=v|5(NE-zaZ9hwqi&^8I^jU-6X%yx%3i5!m(v z?b~?++xc0;`(TQ9-w2lexjxOm*CMR^DzN=N9Q2FI?R^UHzsFag_Yw~B{+8tH^~|T@ z4ZkuT=_QT8n&+>euYAYGjK|*7O!N28nm}Lj?KA4jegH=`PoFS9(odQ(Us^|g-^b3U zaPVH4`L9|qKE-$b!~0~qKLRdl&+ON1a4GcOuW4WQB-s4t-_gGO``|*e2bdp=kI+Be z&;En{_obrFq zm-#b!-_71{NvFQ<&!6}oZ0`uB`TOsb+xrBXZ|Sd@^k4epe)=zaLD=HYw6A=vtHI(g zzwmzAN91pU?L6$I|Ki8jf~5!i#`|>Q7Y%7&@nrgM@fuWw*1g^7nc4~p7xagvJ3tuy)4B1>-Y55!4H)m z!u!Et@q6AIH2v~qw#&2knBmv5pY~F2?{UGe<-huca@{9@9~%GImF<6z4{Z67-)Hkq zpyVl7`JZ29dw)+)-V>C6a4Y4OpH2VNpDo!gr2G80Fn`kLKc>F?yScP4ef^_s=kMRA z`*`Mu)R+I9_X_R42iW)@?-N@48>ugQhTo^M_o3H=b>1@gUiuH%&QCi1Q9NTE?a6LU zWj>U@vNqcl*!wnM#amW`?Yar_d}Q;>0e+UUxmK%1HobO=lS$k_UJU`!}71veLQO- z*y8=vw|72hPwyi?&Up0u8>48?>?6i6zu|D&lRbZXuzo|BFUyzY{YvHMKSq7=ulCe8 zdz^CZuSQ_=AMm~9(^6mgK=-nrIyZK)8cP;x*_G}*CD;{zK z<59j!Z~CivSX0(Z{PPaVCGT1>KU$Y=(3iXeTfX+Kl*`|mlkT=iF5SZSmJb4b$=fcp z7wm_jy59^A>Gy4uDVIG2Hvjfjj9+>Z^!@uYjL+mF^RM~P@2iRb-Nty7zfytqSH254 zs`v2V|CTR&JN>hB!SBh*AKr`piC-YE?0!8sYVn8Q_u#-5Z!F+FNX=(Y=qn%PiQxC@ zdIa)*8fTD0ma8B1oJ;Rus0qD>wUjb*bf%p;(MLfj?kCCj{P06 z_rZhyvHvZftr71X>h~#i9_;*rWp{AC?Dy#|@LpkX-omHrt?YiVK7R1~o9u+1zdwon zX8Fp{w|Gb~E-V9I-iAG@{jT;EFW$)SPfEUn?Y+3+^}Rj~Kd|>CU@qnMJ_*0qD1GNSu-^CRP~Yc^&tp8=pEvRzqWH~xu;LH#)K`A| zBI@fL)TMp#{THEc@lotg<;N^$Jrs{9Nqzahz?MhxRf-F#{a3)!YnGz_i9f$d|25xF zpg+n#x18^FUZ$e|jzyn*JLu13%C*nlpymCp6I{NA(l2(ZzA4u6RJ3EQA=?;(SwPg3srb>Lr7eevU= z_+zB6BJb??7amUb@123oKF&+_@g&-}_~mWM{(WWjPxn8%Cj0xol;_Exl1sj};#J^? z_(uoEBmWxM$JgnP_WzDxe*YprSL^p3<@Wn}LH_YRzL$TWd}Ny+VSE3Id}qa%f2BXN zr^sJ6{bzr0K7J;@SosTJdtZg$2e*7du<1km-m(22IoRxV@~17{q3=CfphkugK zZ1?l|-u5&8DDmGC=u`3^@O$6({#i-%A;n8-;g8aI%2BTTnL4bG;^$!ho)h0ozeXSP z`3~$Sdj}kSOa6^0zuzu?S_*wHcpuaBPjKjGy+49~PWg7UXZMe{vtH6W!DbJA&3egB zpuX|@ACi6kufA8m50ZZ``@1y#RX%bB>@oTA=wG4y?6o)_iU*?q73lpney`qs4*>lz zWcObJdk_85^7|74`w|?IJOo>Oyb|9_|KNM`6INk-vM1{V_G?wj#qVg(^lh-kPikU+ zD&DF25nlnD{|#*M`E=+jo^%EMm0f)`?~{rTRfoRGbL?5Y9|ksm+amg_e2ki4*{_S~ zkI@B7U()XhOHN+N_qrdmf^yxD)AyEt$$P2dBh_e6^AQc~=gW$*-8U1K{k(?$DBg4_ z^prpM0rMk&E90~H*(&&p_yhA{{^YgvS9-}A8hN|Sl7R{9v&^x9|O&-Q!Jlpi_Jy8B}IbAxg%+VH*k=RTx7 z_`M7J{q!%Pul*?f-tu>mSGvE>evfLtzM(zo8(@2HpWpkn-y70?)9**@!yhVtF8eE_ z_bAJydb=O&?7bKKZ~9#p_N&kLOZD+*(bGD

jQh@2*buzjsFckn*S3;(xRE+Q6p& zV86*eOscRXrHrx!}fa|*u%Q-0XBW>M&7fweNVacv(D6)eW(2_{3QC3;?u0B z^#}Xi{D-W+<)dMr+I(IPy=vs^91Z*t)HnZkBKoxA4XkgGJz)2j!S>z)_Cis4Nb$UD z@IPt)={y+!MZc8)i~Zy5z9RJ{|7uWfzmJ#U^WhTckM!Y6;NbT+?0(sfef&Qp} zwJEoJINtxa`@X?>r~`fN7shY)^Z(ehQR!m|$Q!+%aT@t#^m*Uc-v492OCDXxeHYoc zlw17r3d*&Az^30`9LOuqgXN=DL7v$CBhH8HraDR9pKzY<8}dFtUG87$|AYVCzV}D* zd-Qs5>nQaXl283M@<#Uwz|P*AL!ODB{6l-DkJ6s(E3myMIW_pb_!H07i& zym%V&O#VRG*QTG-f4#Q|4(*0N6(CRbegoLvM|_R`>U{HkfyH~Er}!e+@`+Y)zs}yT zL0(&ad6L^AeVhJ7w0|f!`}7#!D<5wK^dvvP{~oW|;pOR%JgpAPo=6ZZ`jKfjaj)&BSO{O>>XVLnWssOR5DxR?Iu{`0r>{Clx| zDOdi-&U!vyr62TVpZ>soMfo55L(kqTfu7D6xWN25w5NFnTYPvg_ZMZ44S=5H?*Z;F zia&r0%pXw`Udu@*~{$bwu&Eu|Gggn4?p&y AoB#j- literal 0 HcmV?d00001 diff --git a/examples/working_with_grib_data/cropped_area/shpfile/italy.shx b/examples/working_with_grib_data/cropped_area/shpfile/italy.shx new file mode 100644 index 0000000000000000000000000000000000000000..9208c591e1c06976b76907185380d4f88710e05b GIT binary patch literal 108 zcmZQzQ0HR64$NLKGcd3M Date: Sun, 17 May 2020 12:28:13 +0200 Subject: [PATCH 04/10] Example for computing wind speed and direction within a cropped region --- .../cropped_area/get_wind_speed_in_area.py | 140 ++++++++++++++++++ 1 file changed, 140 insertions(+) create mode 100644 examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py diff --git a/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py b/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py new file mode 100644 index 0000000..e455622 --- /dev/null +++ b/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py @@ -0,0 +1,140 @@ +""" +Extract regional values from an Aviation GRIB file at one vertical level + +This program extracts clear-air turbulence data from a GRIB file +at a single vertical (flight) level. It then crops the data +to the horizontal area of a provided shapefile. +""" +import argparse +import xarray as xr +import pandas as pd +import matplotlib.pyplot as plt +from osgeo import ogr +from math import atan2, pi, sqrt + +# Load the shapefile area +driver = ogr.GetDriverByName('ESRI Shapefile') +shpfile = driver.Open('shpfile/italy.shp') +AREA = shpfile.GetLayer() + +# Compute the wind speed +def wind_speed_from_u_v(row): + u = row['eastward-wind'] + v = row['northward-wind'] + return sqrt(pow(u, 2) + pow(v, 2)) + +# Compute the wind direction +def wind_direction_from_u_v(row): + """ + Meteorological wind direction + 90° corresponds to wind from east, + 180° from south + 270° from west + 360° wind from north. + 0° is used for no wind. + """ + u = row['eastward-wind'] + v = row['northward-wind'] + if (u, v) == (0.0, 0.0): + return 0.0 + else: + return (180.0 / pi) * atan2(u, v) + 180.0 + +# Check if point is inside of shapefile area +def area_filter(latlon): + # Initialize flag + point_in_area = False + # Parse coordinates and convert to floats + lat = float(latlon[0]) + lon = float(latlon[1]) + # Create a point geometry + point = ogr.Geometry(ogr.wkbPoint) + point.AddPoint(lon, lat) + # Check if the point is in any of the shpfile's features + for i in range(AREA.GetFeatureCount()): + feature = AREA.GetFeature(i) + if feature.geometry().Contains(point): + # This point is within a feature + point_in_area = True + # Break out of the loop + break + # Return flag indicating whether point is in the area + return point_in_area + +# Load, filter, and process grib data +# to get wind speed within a region +def parse_data(filepath): + # Load the grib files into an xarray dataset + ds = xr.open_dataset(filepath, engine='pynio') + # Print information on data variables + # print(ds.keys()) + # Rename the wind variables for clarity + ds = ds.rename({'UGRD_P0_L103_GLL0': 'eastward-wind'}) + ds = ds.rename({'VGRD_P0_L103_GLL0': 'northward-wind'}) + # Get only the wind values to reduce the volume of data, + # otherwise converting to a dataframe will take a long time + ds = ds.get(['eastward-wind','northward-wind']) + # Convert the xarray dataset to a dataframe + df = ds.to_dataframe() + # Get longitude values from index + lons = df.index.get_level_values('lon_0') + # Map longitude range from (0 to 360) into (-180 to 180) + maplon = lambda lon: (lon - 360) if (lon > 180) else lon + # Create new longitude and latitude columns in the dataframe + df['longitude'] = lons.map(maplon) + df['latitude'] = df.index.get_level_values('lat_0') + # Get the area's bounding box + extent = AREA.GetExtent() + minlon = extent[0] + maxlon = extent[1] + minlat = extent[2] + maxlat = extent[3] + # Perform an initial coarse filter on the global dataframe + # by limiting the data to the area's bounding box, + # thereby reducing the total processing time of the `area_filter` + latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) + lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) + # Apply filters to the dataframe + df = df.loc[latfilter & lonfilter] + # Create tuple column of latitude and longitude points + df['point'] = list(zip(df['latitude'], df['longitude'])) + # Create boolean column for whether the shpfile area contains the point + df['inArea'] = df['point'].map(area_filter) + # Crop point locations that are not within the shpfile area + df = df.loc[(df['inArea'] == True)] + # Compute the wind speed + df['wind-speed'] = df.apply (lambda row: wind_speed_from_u_v(row), axis=1) + # Compute the wind direction + df['wind-dir'] = df.apply (lambda row: wind_direction_from_u_v(row), axis=1) + # Trim the data to just the lat, lon, and turbulence columns + df_viz = df.loc[:, ['latitude','longitude','wind-speed','wind-dir']] + return df_viz + +# Visualize the data +def plot_data(data): + x = data['longitude'].values + y = data['latitude'].values + color = data['wind-speed'].values + plt.scatter( + x, + y, + c=color, + s=10, + cmap='Spectral_r', + # edgecolors='gray', + linewidths=0.1 + ) + plt.title('Wind Speed (m/s)') + plt.colorbar() + plt.show() + +if __name__ == '__main__': + parser = argparse.ArgumentParser( + description='Extract regional U-wind and V-wind data from a GRIB file to compute wind speed and direction' + ) + parser.add_argument( + 'filepath', type=str, help='The path to the Basic bundle GRIB file to open' + ) + args = parser.parse_args() + data = parse_data(args.filepath) + plot_data(data) From 5ce4f2779eb030954f3b8f99184fe2cc7d09809c Mon Sep 17 00:00:00 2001 From: Elliott Wobler Date: Wed, 20 May 2020 18:13:01 +0200 Subject: [PATCH 05/10] Create flight level lookup dictionary for aviation example --- .../cropped_area/get_aviation_data_in_area.py | 49 +++++++++++++++++-- 1 file changed, 45 insertions(+), 4 deletions(-) diff --git a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py index 74c71a8..0e538cb 100644 --- a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py @@ -16,6 +16,47 @@ shpfile = driver.Open('shpfile/italy.shp') AREA = shpfile.GetLayer() +# Create a dictionary for flight levels +# and corresponding values in meters +flight_levels = { + 'FL100': 3048, + 'FL110': 3352, + 'FL120': 3657, + 'FL130': 3962, + 'FL140': 4267, + 'FL150': 4572, + 'FL160': 4876, + 'FL170': 5181, + 'FL180': 5486, + 'FL190': 5791, + 'FL200': 6096, + 'FL210': 6400, + 'FL220': 6705, + 'FL230': 7010, + 'FL240': 7315, + 'FL250': 7620, + 'FL260': 7924, + 'FL270': 8229, + 'FL280': 8534, + 'FL290': 8839, + 'FL300': 9144, + 'FL310': 9448, + 'FL320': 9753, + 'FL330': 10058, + 'FL340': 10363, + 'FL350': 10668, + 'FL360': 10972, + 'FL370': 11277, + 'FL380': 11582, + 'FL390': 11887, + 'FL400': 12192, + 'FL410': 12496, + 'FL420': 12801, + 'FL430': 13106, + 'FL440': 13411, + 'FL450': 13716 +} + # Check if point is inside of shapefile area def area_filter(latlon): # Initialize flag @@ -53,10 +94,10 @@ def parse_data(filepath): # Convert the xarray dataset to a dataframe df = ds.to_dataframe() # Retrieve flight level values - flightlevels = df.index.get_level_values('lv_AMSL0') - # Filter to a specific flight level: - # FL360 = 36000 feet = 10972 meters - df = df.loc[(flightlevels == 10972)] + flmeters = df.index.get_level_values('lv_AMSL0') + # Filter to a specific flight level, + # using the lookup dictionary from above + df = df.loc[(flmeters == flight_levels['FL360'])] # Get longitude values from index lons = df.index.get_level_values('lon_0') # Map longitude range from (0 to 360) into (-180 to 180) From b15d4554a6057edb89fc6415c709194456469133 Mon Sep 17 00:00:00 2001 From: Elliott Wobler Date: Wed, 10 Jun 2020 11:26:59 +0200 Subject: [PATCH 06/10] Add variables name lookups at the top of each script --- .../cropped_area/get_aviation_data_in_area.py | 20 +++++++++++++++++++ .../cropped_area/get_precip_data_in_area.py | 15 ++++++++++++++ .../get_upper_air_data_in_area.py | 17 ++++++++++++++++ .../cropped_area/get_wind_speed_in_area.py | 15 ++++++++++++++ 4 files changed, 67 insertions(+) diff --git a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py index 0e538cb..c13c722 100644 --- a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py @@ -16,6 +16,25 @@ shpfile = driver.Open('shpfile/italy.shp') AREA = shpfile.GetLayer() +# DEF_VARIABLES = ( +# 'TMP_P0_L102_GLL0', # Temperature +# 'RH_P0_L102_GLL0', # Relative humidity +# 'TIPD_P0_L100_GLL0', # Total icing potential diagnostic +# 'TIPD_P0_L102_GLL0', # Total icing potential diagnostic +# 'UGRD_P0_L6_GLL0', # U-component of wind +# 'UGRD_P0_L102_GLL0', # U-component of wind +# 'VGRD_P0_L6_GLL0', # V-component of wind +# 'VGRD_P0_L102_GLL0', # V-component of wind +# 'HGT_P0_L6_GLL0', # Geopotential height +# 'VIS_P0_L1_GLL0', # Visibility +# 'CAT_P0_L102_GLL0', # Clear air turbulence +# 'lv_AMSL2', # Specific altitude above mean sea level +# 'lv_ISBL1', # Isobaric surface +# 'lat_0', # latitude +# 'lon_0', # longitude +# 'lv_AMSL0', # Specific altitude above mean sea level +# ) + # Create a dictionary for flight levels # and corresponding values in meters flight_levels = { @@ -86,6 +105,7 @@ def parse_data(filepath): # Print information on data variables # print(ds.keys()) # Rename the clear-air turbulence variable for clarity + # See DEF_VARIABLES above to lookup variable names ds = ds.rename({'CAT_P0_L102_GLL0': 'turbulence'}) # Get only the turbulence values at flight levels # to significantly reduce the volume of data right away, diff --git a/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py index 95536d1..48791b6 100644 --- a/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py @@ -16,6 +16,21 @@ shpfile = driver.Open('shpfile/italy.shp') AREA = shpfile.GetLayer() +# DEF_VARIABLES = ( +# 'TMP_P0_L103_GLL0', # Temperature +# 'DPT_P0_L103_GLL0', # Dew point temperature +# 'RH_P0_L103_GLL0', # Relative humidity +# 'UGRD_P0_L103_GLL0', # U-component of wind +# 'VGRD_P0_L103_GLL0', # V-component of wind +# 'GUST_P0_L1_GLL0', # Wind speed (gust) +# 'PRMSL_P0_L101_GLL0', # Pressure reduced to MSL +# 'TMAX_P8_L103_GLL0_max', # Maximum temperature +# 'TMIN_P8_L103_GLL0_min', # Minimum temperature +# 'APCP_P8_L1_GLL0_acc', # Total precipitation +# 'lat_0', # latitude +# 'lon_0', # longitude +# ) + # Check if point is inside of shapefile area def area_filter(latlon): # Initialize flag diff --git a/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py index 4d7ed0b..f25c518 100644 --- a/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py @@ -16,6 +16,22 @@ shpfile = driver.Open('shpfile/italy.shp') AREA = shpfile.GetLayer() +# DEF_VARIABLES = ( +# 'TMP_P0_L100_GLL0', # Temperature +# 'RH_P0_L100_GLL0', # Relative humidity +# 'CLWMR_P0_L100_GLL0', # Cloud mixing ratio +# 'ICMR_P0_L100_GLL0', # Ice water mixing ratio +# 'UGRD_P0_L100_GLL0', # U-component of wind +# 'VGRD_P0_L100_GLL0', # V-component of wind +# 'DZDT_P0_L100_GLL0', # Vertical velocity (geometric) +# 'ABSV_P0_L100_GLL0', # Absolute vorticity +# 'HGT_P0_L100_GLL0', # Geopotential height +# 'lv_ISBL1', # Isobaric surface +# 'lat_0', # latitude +# 'lon_0', # longitude +# 'lv_ISBL0', # Isobaric surface +# ) + # Check if point is inside of shapefile area def area_filter(latlon): # Initialize flag @@ -45,6 +61,7 @@ def parse_data(filepath): # Print information on data variables # print(ds.keys()) # Rename the temperature variable for clarity + # See DEF_VARIABLES above to lookup variable names ds = ds.rename({'TMP_P0_L100_GLL0': 'temperature'}) # Get only the temperature values at isobaric levels # to significantly reduce the volume of data right away, diff --git a/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py b/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py index e455622..f237e73 100644 --- a/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py @@ -17,6 +17,21 @@ shpfile = driver.Open('shpfile/italy.shp') AREA = shpfile.GetLayer() +# DEF_VARIABLES = ( +# 'TMP_P0_L103_GLL0', # Temperature +# 'DPT_P0_L103_GLL0', # Dew point temperature +# 'RH_P0_L103_GLL0', # Relative humidity +# 'UGRD_P0_L103_GLL0', # U-component of wind +# 'VGRD_P0_L103_GLL0', # V-component of wind +# 'GUST_P0_L1_GLL0', # Wind speed (gust) +# 'PRMSL_P0_L101_GLL0', # Pressure reduced to MSL +# 'TMAX_P8_L103_GLL0_max', # Maximum temperature +# 'TMIN_P8_L103_GLL0_min', # Minimum temperature +# 'APCP_P8_L1_GLL0_acc', # Total precipitation +# 'lat_0', # latitude +# 'lon_0', # longitude +# ) + # Compute the wind speed def wind_speed_from_u_v(row): u = row['eastward-wind'] From a0577086b40df1d10f4ec5851e2efd40388b1c79 Mon Sep 17 00:00:00 2001 From: Elliott Wobler Date: Wed, 10 Jun 2020 12:02:51 +0200 Subject: [PATCH 07/10] Add example for vertical wind speed --- .../cropped_area/get_aviation_data_in_area.py | 4 +- .../get_vertical_wind_speed_in_area.py | 207 ++++++++++++++++++ .../cropped_area/get_wind_speed_in_area.py | 10 +- 3 files changed, 214 insertions(+), 7 deletions(-) create mode 100644 examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py diff --git a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py index c13c722..50f2ecc 100644 --- a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py @@ -22,9 +22,9 @@ # 'TIPD_P0_L100_GLL0', # Total icing potential diagnostic # 'TIPD_P0_L102_GLL0', # Total icing potential diagnostic # 'UGRD_P0_L6_GLL0', # U-component of wind -# 'UGRD_P0_L102_GLL0', # U-component of wind +# 'UGRD_P0_L102_GLL0', # U-component of wind (vertical levels) # 'VGRD_P0_L6_GLL0', # V-component of wind -# 'VGRD_P0_L102_GLL0', # V-component of wind +# 'VGRD_P0_L102_GLL0', # V-component of wind (vertical levels) # 'HGT_P0_L6_GLL0', # Geopotential height # 'VIS_P0_L1_GLL0', # Visibility # 'CAT_P0_L102_GLL0', # Clear air turbulence diff --git a/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py b/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py new file mode 100644 index 0000000..028c617 --- /dev/null +++ b/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py @@ -0,0 +1,207 @@ +""" +Extract regional values from an Aviation GRIB file at one vertical level + +This program extracts wind speed data from a GRIB file +at a single vertical (flight) level. It then crops the data +to the horizontal area of a provided shapefile. +""" +import argparse +import xarray as xr +import pandas as pd +import matplotlib.pyplot as plt +from osgeo import ogr +from math import atan2, pi, sqrt + +# Load the shapefile area +driver = ogr.GetDriverByName('ESRI Shapefile') +shpfile = driver.Open('shpfile/italy.shp') +AREA = shpfile.GetLayer() + +# DEF_VARIABLES = ( +# 'TMP_P0_L102_GLL0', # Temperature +# 'RH_P0_L102_GLL0', # Relative humidity +# 'TIPD_P0_L100_GLL0', # Total icing potential diagnostic +# 'TIPD_P0_L102_GLL0', # Total icing potential diagnostic +# 'UGRD_P0_L6_GLL0', # U-component of wind +# 'UGRD_P0_L102_GLL0', # U-component of wind (vertical levels) +# 'VGRD_P0_L6_GLL0', # V-component of wind +# 'VGRD_P0_L102_GLL0', # V-component of wind (vertical levels) +# 'HGT_P0_L6_GLL0', # Geopotential height +# 'VIS_P0_L1_GLL0', # Visibility +# 'CAT_P0_L102_GLL0', # Clear air turbulence +# 'lv_AMSL2', # Specific altitude above mean sea level +# 'lv_ISBL1', # Isobaric surface +# 'lat_0', # latitude +# 'lon_0', # longitude +# 'lv_AMSL0', # Specific altitude above mean sea level +# ) + +# Compute the wind speed +def wind_speed_from_u_v(row): + u = row['eastward-wind'] + v = row['northward-wind'] + return sqrt(pow(u, 2) + pow(v, 2)) + +# Compute the wind direction +def wind_direction_from_u_v(row): + """ + Meteorological wind direction + 90° corresponds to wind from east, + 180° from south + 270° from west + 360° wind from north. + 0° is used for no wind. + """ + u = row['eastward-wind'] + v = row['northward-wind'] + if (u, v) == (0.0, 0.0): + return 0.0 + else: + return (180.0 / pi) * atan2(u, v) + 180.0 + +# Create a dictionary for flight levels +# and corresponding values in meters +flight_levels = { + 'FL100': 3048, + 'FL110': 3352, + 'FL120': 3657, + 'FL130': 3962, + 'FL140': 4267, + 'FL150': 4572, + 'FL160': 4876, + 'FL170': 5181, + 'FL180': 5486, + 'FL190': 5791, + 'FL200': 6096, + 'FL210': 6400, + 'FL220': 6705, + 'FL230': 7010, + 'FL240': 7315, + 'FL250': 7620, + 'FL260': 7924, + 'FL270': 8229, + 'FL280': 8534, + 'FL290': 8839, + 'FL300': 9144, + 'FL310': 9448, + 'FL320': 9753, + 'FL330': 10058, + 'FL340': 10363, + 'FL350': 10668, + 'FL360': 10972, + 'FL370': 11277, + 'FL380': 11582, + 'FL390': 11887, + 'FL400': 12192, + 'FL410': 12496, + 'FL420': 12801, + 'FL430': 13106, + 'FL440': 13411, + 'FL450': 13716 +} + +# Check if point is inside of shapefile area +def area_filter(latlon): + # Initialize flag + point_in_area = False + # Parse coordinates and convert to floats + lat = float(latlon[0]) + lon = float(latlon[1]) + # Create a point geometry + point = ogr.Geometry(ogr.wkbPoint) + point.AddPoint(lon, lat) + # Check if the point is in any of the shpfile's features + for i in range(AREA.GetFeatureCount()): + feature = AREA.GetFeature(i) + if feature.geometry().Contains(point): + # This point is within a feature + point_in_area = True + # Break out of the loop + break + # Return flag indicating whether point is in the area + return point_in_area + +# Load and filter grib data to get clear-air turbulence +# within a region at the specified flight level +def parse_data(filepath): + # Load the grib files into an xarray dataset + ds = xr.open_dataset(filepath, engine='pynio') + # Print information on data variables + # print(ds.keys()) + # Rename the clear-air turbulence variable for clarity + # See DEF_VARIABLES above to lookup variable names + # Rename the wind variables for clarity + ds = ds.rename({'UGRD_P0_L102_GLL0': 'eastward-wind'}) + ds = ds.rename({'VGRD_P0_L102_GLL0': 'northward-wind'}) + # Get only the wind values to reduce the volume of data, + # otherwise converting to a dataframe will take a long time + ds = ds.get(['eastward-wind','northward-wind']) + # Convert the xarray dataset to a dataframe + df = ds.to_dataframe() + # Retrieve flight level values + flmeters = df.index.get_level_values('lv_AMSL0') + # Filter to a specific flight level, + # using the lookup dictionary from above + df = df.loc[(flmeters == flight_levels['FL360'])] + # Get longitude values from index + lons = df.index.get_level_values('lon_0') + # Map longitude range from (0 to 360) into (-180 to 180) + maplon = lambda lon: (lon - 360) if (lon > 180) else lon + # Create new longitude and latitude columns in the dataframe + df['longitude'] = lons.map(maplon) + df['latitude'] = df.index.get_level_values('lat_0') + # Get the area's bounding box + extent = AREA.GetExtent() + minlon = extent[0] + maxlon = extent[1] + minlat = extent[2] + maxlat = extent[3] + # Perform an initial coarse filter on the global dataframe + # by limiting the data to the area's bounding box, + # thereby reducing the total processing time of the `area_filter` + latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) + lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) + # Apply filters to the dataframe + df = df.loc[latfilter & lonfilter] + # Create tuple column of latitude and longitude points + df['point'] = list(zip(df['latitude'], df['longitude'])) + # Create boolean column for whether the shpfile area contains the point + df['inArea'] = df['point'].map(area_filter) + # Crop point locations that are not within the shpfile area + df = df.loc[(df['inArea'] == True)] + # Compute the wind speed + df['wind-speed'] = df.apply (lambda row: wind_speed_from_u_v(row), axis=1) + # Compute the wind direction + df['wind-dir'] = df.apply (lambda row: wind_direction_from_u_v(row), axis=1) + # Trim the data to just the lat, lon, and wind speed columns + df_viz = df.loc[:, ['latitude','longitude','wind-speed', 'wind-dir']] + return df_viz + +# Visualize the data +def plot_data(data): + x = data['longitude'].values + y = data['latitude'].values + color = data['wind-speed'].values + plt.scatter( + x, + y, + c=color, + s=10, + cmap='Spectral_r', + # edgecolors='gray', + linewidths=0.1 + ) + plt.title('Wind Speed at FL360') + plt.colorbar() + plt.show() + +if __name__ == '__main__': + parser = argparse.ArgumentParser( + description='Extract regional data from a GRIB file at a single vertical level' + ) + parser.add_argument( + 'filepath', type=str, help='The path to the Aviation bundle GRIB file to open' + ) + args = parser.parse_args() + data = parse_data(args.filepath) + plot_data(data) diff --git a/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py b/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py index f237e73..750b620 100644 --- a/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py @@ -1,9 +1,8 @@ """ -Extract regional values from an Aviation GRIB file at one vertical level +Extract regional values from an Basic GRIB file at one vertical level -This program extracts clear-air turbulence data from a GRIB file -at a single vertical (flight) level. It then crops the data -to the horizontal area of a provided shapefile. +This program extracts wind speed data from a GRIB file. +It then crops the data to the area of a provided shapefile. """ import argparse import xarray as xr @@ -84,6 +83,7 @@ def parse_data(filepath): # Print information on data variables # print(ds.keys()) # Rename the wind variables for clarity + # See DEF_VARIABLES above to lookup variable names ds = ds.rename({'UGRD_P0_L103_GLL0': 'eastward-wind'}) ds = ds.rename({'VGRD_P0_L103_GLL0': 'northward-wind'}) # Get only the wind values to reduce the volume of data, @@ -121,7 +121,7 @@ def parse_data(filepath): df['wind-speed'] = df.apply (lambda row: wind_speed_from_u_v(row), axis=1) # Compute the wind direction df['wind-dir'] = df.apply (lambda row: wind_direction_from_u_v(row), axis=1) - # Trim the data to just the lat, lon, and turbulence columns + # Trim the data to just the lat, lon, and wind speed columns df_viz = df.loc[:, ['latitude','longitude','wind-speed','wind-dir']] return df_viz From ac3b997dd71f4be87b0184218f980063133f44eb Mon Sep 17 00:00:00 2001 From: Elliott Wobler Date: Thu, 25 Jun 2020 15:21:45 +0200 Subject: [PATCH 08/10] Pull out common functions into new grib utils module --- examples/utils_grib.py | 71 ++++++++ .../cropped_area/get_aviation_data_in_area.py | 113 ++++--------- .../cropped_area/get_precip_data_in_area.py | 64 ++------ .../get_upper_air_data_in_area.py | 77 +++------ .../get_vertical_wind_speed_in_area.py | 151 ++++-------------- .../cropped_area/get_wind_speed_in_area.py | 95 +++-------- 6 files changed, 193 insertions(+), 378 deletions(-) create mode 100644 examples/utils_grib.py diff --git a/examples/utils_grib.py b/examples/utils_grib.py new file mode 100644 index 0000000..9861909 --- /dev/null +++ b/examples/utils_grib.py @@ -0,0 +1,71 @@ +from osgeo.ogr import Geometry, wkbPoint +# Only one OGR point needs to be created, +# since each call to `OGR_POINT.AddPoint` +# in the `check_point_in_area` function +# will reset the variable +OGR_POINT = Geometry(wkbPoint) + +def coarse_geo_filter(df, AREA): + """ + Perform an initial coarse filter on the dataframe + based on the extent (bounding box) of the specified area + """ + # Get longitude values from index + lons = df.index.get_level_values('lon_0') + # Map longitude range from (0 to 360) into (-180 to 180) + maplon = lambda lon: (lon - 360) if (lon > 180) else lon + # Create new longitude and latitude columns in the dataframe + df['longitude'] = lons.map(maplon) + df['latitude'] = df.index.get_level_values('lat_0') + # Get the area's bounding box + extent = AREA.GetExtent() + minlon = extent[0] + maxlon = extent[1] + minlat = extent[2] + maxlat = extent[3] + # Perform an initial coarse filter on the global dataframe + # by limiting the data to the area's bounding box, + # thereby reducing the total processing time of the `area_filter` + latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) + lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) + # Apply filters to the dataframe + df = df.loc[latfilter & lonfilter] + return df + +def precise_geo_filter(df, AREA): + """ + Perform a precise filter on the dataframe + to check if each point is inside of the shapefile area + """ + # Create a new tuple column in the dataframe of lat/lon points + df['point'] = list(zip(df['latitude'], df['longitude'])) + # Create a new boolean column in the dataframe, where each value represents + # whether the row's lat/lon point is contained in the shpfile area + map_func = lambda latlon: check_point_in_area(latlon, AREA) + df['inArea'] = df['point'].map(map_func) + # Remove point locations that are not within the shpfile area + df = df.loc[(df['inArea'] == True)] + return df + +def check_point_in_area(latlon, AREA): + """ + Return a boolean value indicating whether + the specified point is inside of the shapefile area + """ + # Initialize flag + point_in_area = False + # Parse coordinates and convert to floats + lat = float(latlon[0]) + lon = float(latlon[1]) + # Set the point geometry + OGR_POINT.AddPoint(lon, lat) + # Check if the point is in any of the shpfile's features + for i in range(AREA.GetFeatureCount()): + feature = AREA.GetFeature(i) + if feature.geometry().Contains(OGR_POINT): + # This point is within a feature + point_in_area = True + # Break out of the loop + break + # Return flag indicating whether point is in the area + return point_in_area diff --git a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py index 50f2ecc..6e66d93 100644 --- a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py @@ -9,11 +9,18 @@ import xarray as xr import pandas as pd import matplotlib.pyplot as plt -from osgeo import ogr - +from osgeo.ogr import GetDriverByName +import os +import sys +dir_path = os.path.dirname(os.path.realpath(__file__)) +parent = os.path.join(dir_path, os.pardir) +sys.path.append(os.path.join(parent,'..')) +from conversions import wind_speed_from_u_v, wind_direction_from_u_v +from utils_grib import coarse_geo_filter, precise_geo_filter # Load the shapefile area -driver = ogr.GetDriverByName('ESRI Shapefile') -shpfile = driver.Open('shpfile/italy.shp') +filename = os.path.join(dir_path, 'shpfile/italy.shp') +driver = GetDriverByName('ESRI Shapefile') +shpfile = driver.Open(filename) AREA = shpfile.GetLayer() # DEF_VARIABLES = ( @@ -38,65 +45,20 @@ # Create a dictionary for flight levels # and corresponding values in meters flight_levels = { - 'FL100': 3048, - 'FL110': 3352, - 'FL120': 3657, - 'FL130': 3962, - 'FL140': 4267, - 'FL150': 4572, - 'FL160': 4876, - 'FL170': 5181, - 'FL180': 5486, - 'FL190': 5791, - 'FL200': 6096, - 'FL210': 6400, - 'FL220': 6705, - 'FL230': 7010, - 'FL240': 7315, - 'FL250': 7620, - 'FL260': 7924, - 'FL270': 8229, - 'FL280': 8534, - 'FL290': 8839, - 'FL300': 9144, - 'FL310': 9448, - 'FL320': 9753, - 'FL330': 10058, - 'FL340': 10363, - 'FL350': 10668, - 'FL360': 10972, - 'FL370': 11277, - 'FL380': 11582, - 'FL390': 11887, - 'FL400': 12192, - 'FL410': 12496, - 'FL420': 12801, - 'FL430': 13106, - 'FL440': 13411, - 'FL450': 13716 + 'FL100': 3048, 'FL110': 3352, 'FL120': 3657, + 'FL130': 3962, 'FL140': 4267, 'FL150': 4572, + 'FL160': 4876, 'FL170': 5181, 'FL180': 5486, + 'FL190': 5791, 'FL200': 6096, 'FL210': 6400, + 'FL220': 6705, 'FL230': 7010, 'FL240': 7315, + 'FL250': 7620, 'FL260': 7924, 'FL270': 8229, + 'FL280': 8534, 'FL290': 8839, 'FL300': 9144, + 'FL310': 9448, 'FL320': 9753, 'FL330': 10058, + 'FL340': 10363, 'FL350': 10668, 'FL360': 10972, + 'FL370': 11277, 'FL380': 11582, 'FL390': 11887, + 'FL400': 12192, 'FL410': 12496, 'FL420': 12801, + 'FL430': 13106, 'FL440': 13411, 'FL450': 13716 } -# Check if point is inside of shapefile area -def area_filter(latlon): - # Initialize flag - point_in_area = False - # Parse coordinates and convert to floats - lat = float(latlon[0]) - lon = float(latlon[1]) - # Create a point geometry - point = ogr.Geometry(ogr.wkbPoint) - point.AddPoint(lon, lat) - # Check if the point is in any of the shpfile's features - for i in range(AREA.GetFeatureCount()): - feature = AREA.GetFeature(i) - if feature.geometry().Contains(point): - # This point is within a feature - point_in_area = True - # Break out of the loop - break - # Return flag indicating whether point is in the area - return point_in_area - # Load and filter grib data to get clear-air turbulence # within a region at the specified flight level def parse_data(filepath): @@ -118,32 +80,12 @@ def parse_data(filepath): # Filter to a specific flight level, # using the lookup dictionary from above df = df.loc[(flmeters == flight_levels['FL360'])] - # Get longitude values from index - lons = df.index.get_level_values('lon_0') - # Map longitude range from (0 to 360) into (-180 to 180) - maplon = lambda lon: (lon - 360) if (lon > 180) else lon - # Create new longitude and latitude columns in the dataframe - df['longitude'] = lons.map(maplon) - df['latitude'] = df.index.get_level_values('lat_0') - # Get the area's bounding box - extent = AREA.GetExtent() - minlon = extent[0] - maxlon = extent[1] - minlat = extent[2] - maxlat = extent[3] # Perform an initial coarse filter on the global dataframe # by limiting the data to the area's bounding box, - # thereby reducing the total processing time of the `area_filter` - latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) - lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) - # Apply filters to the dataframe - df = df.loc[latfilter & lonfilter] - # Create tuple column of latitude and longitude points - df['point'] = list(zip(df['latitude'], df['longitude'])) - # Create boolean column for whether the shpfile area contains the point - df['inArea'] = df['point'].map(area_filter) - # Crop point locations that are not within the shpfile area - df = df.loc[(df['inArea'] == True)] + # thereby reducing the total processing time of the `precise_geo_filter` + df = coarse_geo_filter(df, AREA) + # Perform the precise filter to remove data outside of the shapefile area + df = precise_geo_filter(df, AREA) # Trim the data to just the lat, lon, and turbulence columns df_viz = df.loc[:, ['latitude','longitude','turbulence']] return df_viz @@ -159,7 +101,6 @@ def plot_data(data): c=color, s=10, cmap='Spectral_r', - # edgecolors='gray', linewidths=0.1 ) plt.title('Clear-Air Turbulence at FL360') diff --git a/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py index 48791b6..b995021 100644 --- a/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_precip_data_in_area.py @@ -9,11 +9,18 @@ import xarray as xr import pandas as pd import matplotlib.pyplot as plt -from osgeo import ogr - +from osgeo.ogr import GetDriverByName +import os +import sys +dir_path = os.path.dirname(os.path.realpath(__file__)) +parent = os.path.join(dir_path, os.pardir) +sys.path.append(os.path.join(parent,'..')) +from conversions import wind_speed_from_u_v, wind_direction_from_u_v +from utils_grib import coarse_geo_filter, precise_geo_filter # Load the shapefile area -driver = ogr.GetDriverByName('ESRI Shapefile') -shpfile = driver.Open('shpfile/italy.shp') +filename = os.path.join(dir_path, 'shpfile/italy.shp') +driver = GetDriverByName('ESRI Shapefile') +shpfile = driver.Open(filename) AREA = shpfile.GetLayer() # DEF_VARIABLES = ( @@ -31,27 +38,6 @@ # 'lon_0', # longitude # ) -# Check if point is inside of shapefile area -def area_filter(latlon): - # Initialize flag - point_in_area = False - # Parse coordinates and convert to floats - lat = float(latlon[0]) - lon = float(latlon[1]) - # Create a point geometry - point = ogr.Geometry(ogr.wkbPoint) - point.AddPoint(lon, lat) - # Check if the point is in any of the shpfile's features - for i in range(AREA.GetFeatureCount()): - feature = AREA.GetFeature(i) - if feature.geometry().Contains(point): - # This point is within a feature - point_in_area = True - # Break out of the loop - break - # Return flag indicating whether point is in the area - return point_in_area - # Load and filter grib data to get regional precipitation def parse_data(filepath1, filepath2): # Load the grib files into xarray datasets @@ -67,32 +53,12 @@ def parse_data(filepath1, filepath2): # Since the grib data is forecast-total accumulated precipitation, # subtract the older value from the newer one to get fixed-interval values df['precip'] = df2['APCP_P8_L1_GLL0_acc'] - df1['APCP_P8_L1_GLL0_acc'] - # Get longitude values from index - lons = df.index.get_level_values('lon_0') - # Map longitude range from (0 to 360) into (-180 to 180) - maplon = lambda lon: (lon - 360) if (lon > 180) else lon - # Create new longitude and latitude columns in the dataframe - df['longitude'] = lons.map(maplon) - df['latitude'] = df.index.get_level_values('lat_0') - # Get the area's bounding box - extent = AREA.GetExtent() - minlon = extent[0] - maxlon = extent[1] - minlat = extent[2] - maxlat = extent[3] # Perform an initial coarse filter on the global dataframe # by limiting the data to the area's bounding box, - # thereby reducing the total processing time of the `area_filter` - latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) - lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) - # Apply filters to the dataframe - df = df.loc[latfilter & lonfilter] - # Create tuple column of latitude and longitude points - df['point'] = list(zip(df['latitude'], df['longitude'])) - # Create boolean column for whether the shpfile area contains the point - df['inArea'] = df['point'].map(area_filter) - # Drop point locations that are not within the shpfile area - df = df.loc[(df['inArea'] == True)] + # thereby reducing the total processing time of the `precise_geo_filter` + df = coarse_geo_filter(df, AREA) + # Perform the precise filter to remove data outside of the shapefile area + df = precise_geo_filter(df, AREA) # Trim the data to just the lat, lon, and precipitation columns df_viz = df.loc[:, ['latitude','longitude','precip']] # Convert from millimeters to inches diff --git a/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py index f25c518..cd9a3c1 100644 --- a/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py @@ -9,11 +9,18 @@ import xarray as xr import pandas as pd import matplotlib.pyplot as plt -from osgeo import ogr - +from osgeo.ogr import GetDriverByName +import os +import sys +dir_path = os.path.dirname(os.path.realpath(__file__)) +parent = os.path.join(dir_path, os.pardir) +sys.path.append(os.path.join(parent,'..')) +from conversions import wind_speed_from_u_v, wind_direction_from_u_v +from utils_grib import coarse_geo_filter, precise_geo_filter # Load the shapefile area -driver = ogr.GetDriverByName('ESRI Shapefile') -shpfile = driver.Open('shpfile/italy.shp') +filename = os.path.join(dir_path, 'shpfile/italy.shp') +driver = GetDriverByName('ESRI Shapefile') +shpfile = driver.Open(filename) AREA = shpfile.GetLayer() # DEF_VARIABLES = ( @@ -32,26 +39,15 @@ # 'lv_ISBL0', # Isobaric surface # ) -# Check if point is inside of shapefile area -def area_filter(latlon): - # Initialize flag - point_in_area = False - # Parse coordinates and convert to floats - lat = float(latlon[0]) - lon = float(latlon[1]) - # Create a point geometry - point = ogr.Geometry(ogr.wkbPoint) - point.AddPoint(lon, lat) - # Check if the point is in any of the shpfile's features - for i in range(AREA.GetFeatureCount()): - feature = AREA.GetFeature(i) - if feature.geometry().Contains(point): - # This point is within a feature - point_in_area = True - # Break out of the loop - break - # Return flag indicating whether point is in the area - return point_in_area +# Create a dictionary for isobaric levels in hPa +# and corresponding values in pascals +isobaric_levels = { + '1000hPa': 100000, '950hPa': 95000, '925hPa': 92500, '900hPa': 90000, + '850hPa': 85000, '800hPa': 80000, '700hPa': 70000, '600hPa': 60000, + '500hPa': 50000, '400hPa': 40000, '300hPa': 30000, '250hPa': 25000, + '200hPa': 20000, '150hPa': 15000, '100hPa': 10000, '70hPa': 7000, + '50hPa': 5000, '30hPa': 3000, '20hPa': 2000 +} # Load and filter grib data to get regional temperature # at the specified isobaric level @@ -72,34 +68,14 @@ def parse_data(filepath): # Retrieve isobaric level values isblevels = df.index.get_level_values('lv_ISBL0') # Filter to a specific isobaric level: - # 2000 pascal (20 hPa) - df = df.loc[(isblevels == 2000)] - # Get longitude values from index - lons = df.index.get_level_values('lon_0') - # Map longitude range from (0 to 360) into (-180 to 180) - maplon = lambda lon: (lon - 360) if (lon > 180) else lon - # Create new longitude and latitude columns in the dataframe - df['longitude'] = lons.map(maplon) - df['latitude'] = df.index.get_level_values('lat_0') - # Get the area's bounding box - extent = AREA.GetExtent() - minlon = extent[0] - maxlon = extent[1] - minlat = extent[2] - maxlat = extent[3] + # 20 hPa (2000 pascal) + df = df.loc[(isblevels == isobaric_levels['20hPa'])] # Perform an initial coarse filter on the global dataframe # by limiting the data to the area's bounding box, - # thereby reducing the total processing time of the `area_filter` - latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) - lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) - # Apply filters to the dataframe - df = df.loc[latfilter & lonfilter] - # Create tuple column of latitude and longitude points - df['point'] = list(zip(df['latitude'], df['longitude'])) - # Create boolean column for whether the shpfile area contains the point - df['inArea'] = df['point'].map(area_filter) - # Crop point locations that are not within the shpfile area - df = df.loc[(df['inArea'] == True)] + # thereby reducing the total processing time of the `precise_geo_filter` + df = coarse_geo_filter(df, AREA) + # Perform the precise filter to remove data outside of the shapefile area + df = precise_geo_filter(df, AREA) # Trim the data to just the lat, lon, and temperature columns df_viz = df.loc[:, ['latitude','longitude','temperature']] # Convert from Kelvin to Celsius @@ -117,7 +93,6 @@ def plot_data(data): c=color, s=10, cmap='coolwarm', - # edgecolors='gray', linewidths=0.1 ) plt.title('Temperature (C) at 20 hPa') diff --git a/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py b/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py index 028c617..7b82c09 100644 --- a/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py @@ -9,12 +9,18 @@ import xarray as xr import pandas as pd import matplotlib.pyplot as plt -from osgeo import ogr -from math import atan2, pi, sqrt - +from osgeo.ogr import GetDriverByName +import os +import sys +dir_path = os.path.dirname(os.path.realpath(__file__)) +parent = os.path.join(dir_path, os.pardir) +sys.path.append(os.path.join(parent,'..')) +from conversions import wind_speed_from_u_v, wind_direction_from_u_v +from utils_grib import coarse_geo_filter, precise_geo_filter # Load the shapefile area -driver = ogr.GetDriverByName('ESRI Shapefile') -shpfile = driver.Open('shpfile/italy.shp') +filename = os.path.join(dir_path, 'shpfile/italy.shp') +driver = GetDriverByName('ESRI Shapefile') +shpfile = driver.Open(filename) AREA = shpfile.GetLayer() # DEF_VARIABLES = ( @@ -36,99 +42,31 @@ # 'lv_AMSL0', # Specific altitude above mean sea level # ) -# Compute the wind speed -def wind_speed_from_u_v(row): - u = row['eastward-wind'] - v = row['northward-wind'] - return sqrt(pow(u, 2) + pow(v, 2)) - -# Compute the wind direction -def wind_direction_from_u_v(row): - """ - Meteorological wind direction - 90° corresponds to wind from east, - 180° from south - 270° from west - 360° wind from north. - 0° is used for no wind. - """ - u = row['eastward-wind'] - v = row['northward-wind'] - if (u, v) == (0.0, 0.0): - return 0.0 - else: - return (180.0 / pi) * atan2(u, v) + 180.0 - # Create a dictionary for flight levels # and corresponding values in meters flight_levels = { - 'FL100': 3048, - 'FL110': 3352, - 'FL120': 3657, - 'FL130': 3962, - 'FL140': 4267, - 'FL150': 4572, - 'FL160': 4876, - 'FL170': 5181, - 'FL180': 5486, - 'FL190': 5791, - 'FL200': 6096, - 'FL210': 6400, - 'FL220': 6705, - 'FL230': 7010, - 'FL240': 7315, - 'FL250': 7620, - 'FL260': 7924, - 'FL270': 8229, - 'FL280': 8534, - 'FL290': 8839, - 'FL300': 9144, - 'FL310': 9448, - 'FL320': 9753, - 'FL330': 10058, - 'FL340': 10363, - 'FL350': 10668, - 'FL360': 10972, - 'FL370': 11277, - 'FL380': 11582, - 'FL390': 11887, - 'FL400': 12192, - 'FL410': 12496, - 'FL420': 12801, - 'FL430': 13106, - 'FL440': 13411, - 'FL450': 13716 + 'FL100': 3048, 'FL110': 3352, 'FL120': 3657, + 'FL130': 3962, 'FL140': 4267, 'FL150': 4572, + 'FL160': 4876, 'FL170': 5181, 'FL180': 5486, + 'FL190': 5791, 'FL200': 6096, 'FL210': 6400, + 'FL220': 6705, 'FL230': 7010, 'FL240': 7315, + 'FL250': 7620, 'FL260': 7924, 'FL270': 8229, + 'FL280': 8534, 'FL290': 8839, 'FL300': 9144, + 'FL310': 9448, 'FL320': 9753, 'FL330': 10058, + 'FL340': 10363, 'FL350': 10668, 'FL360': 10972, + 'FL370': 11277, 'FL380': 11582, 'FL390': 11887, + 'FL400': 12192, 'FL410': 12496, 'FL420': 12801, + 'FL430': 13106, 'FL440': 13411, 'FL450': 13716 } -# Check if point is inside of shapefile area -def area_filter(latlon): - # Initialize flag - point_in_area = False - # Parse coordinates and convert to floats - lat = float(latlon[0]) - lon = float(latlon[1]) - # Create a point geometry - point = ogr.Geometry(ogr.wkbPoint) - point.AddPoint(lon, lat) - # Check if the point is in any of the shpfile's features - for i in range(AREA.GetFeatureCount()): - feature = AREA.GetFeature(i) - if feature.geometry().Contains(point): - # This point is within a feature - point_in_area = True - # Break out of the loop - break - # Return flag indicating whether point is in the area - return point_in_area - -# Load and filter grib data to get clear-air turbulence +# Load and filter grib data to get vertical wind speed # within a region at the specified flight level def parse_data(filepath): # Load the grib files into an xarray dataset ds = xr.open_dataset(filepath, engine='pynio') - # Print information on data variables + # Optionally print information on data variables # print(ds.keys()) - # Rename the clear-air turbulence variable for clarity + # Rename the wind variables for clarity # See DEF_VARIABLES above to lookup variable names # Rename the wind variables for clarity ds = ds.rename({'UGRD_P0_L102_GLL0': 'eastward-wind'}) @@ -143,37 +81,19 @@ def parse_data(filepath): # Filter to a specific flight level, # using the lookup dictionary from above df = df.loc[(flmeters == flight_levels['FL360'])] - # Get longitude values from index - lons = df.index.get_level_values('lon_0') - # Map longitude range from (0 to 360) into (-180 to 180) - maplon = lambda lon: (lon - 360) if (lon > 180) else lon - # Create new longitude and latitude columns in the dataframe - df['longitude'] = lons.map(maplon) - df['latitude'] = df.index.get_level_values('lat_0') - # Get the area's bounding box - extent = AREA.GetExtent() - minlon = extent[0] - maxlon = extent[1] - minlat = extent[2] - maxlat = extent[3] # Perform an initial coarse filter on the global dataframe # by limiting the data to the area's bounding box, - # thereby reducing the total processing time of the `area_filter` - latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) - lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) - # Apply filters to the dataframe - df = df.loc[latfilter & lonfilter] - # Create tuple column of latitude and longitude points - df['point'] = list(zip(df['latitude'], df['longitude'])) - # Create boolean column for whether the shpfile area contains the point - df['inArea'] = df['point'].map(area_filter) - # Crop point locations that are not within the shpfile area - df = df.loc[(df['inArea'] == True)] + # thereby reducing the total processing time of the `precise_geo_filter` + df = coarse_geo_filter(df, AREA) + # Perform the precise filter to remove data outside of the shapefile area + df = precise_geo_filter(df, AREA) # Compute the wind speed - df['wind-speed'] = df.apply (lambda row: wind_speed_from_u_v(row), axis=1) + ws_func = lambda row: wind_speed_from_u_v(row['eastward-wind'], row['northward-wind']) + df['wind-speed'] = df.apply(ws_func, axis=1) # Compute the wind direction - df['wind-dir'] = df.apply (lambda row: wind_direction_from_u_v(row), axis=1) - # Trim the data to just the lat, lon, and wind speed columns + wd_func = lambda row: wind_direction_from_u_v(row['eastward-wind'], row['northward-wind']) + df['wind-dir'] = df.apply(wd_func, axis=1) + # Trim the data to just the lat, lon, and wind speed, and wind direction columns df_viz = df.loc[:, ['latitude','longitude','wind-speed', 'wind-dir']] return df_viz @@ -188,7 +108,6 @@ def plot_data(data): c=color, s=10, cmap='Spectral_r', - # edgecolors='gray', linewidths=0.1 ) plt.title('Wind Speed at FL360') diff --git a/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py b/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py index 750b620..69dc262 100644 --- a/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_wind_speed_in_area.py @@ -8,12 +8,18 @@ import xarray as xr import pandas as pd import matplotlib.pyplot as plt -from osgeo import ogr -from math import atan2, pi, sqrt - +from osgeo.ogr import GetDriverByName +import os +import sys +dir_path = os.path.dirname(os.path.realpath(__file__)) +parent = os.path.join(dir_path, os.pardir) +sys.path.append(os.path.join(parent,'..')) +from conversions import wind_speed_from_u_v, wind_direction_from_u_v +from utils_grib import coarse_geo_filter, precise_geo_filter # Load the shapefile area -driver = ogr.GetDriverByName('ESRI Shapefile') -shpfile = driver.Open('shpfile/italy.shp') +filename = os.path.join(dir_path, 'shpfile/italy.shp') +driver = GetDriverByName('ESRI Shapefile') +shpfile = driver.Open(filename) AREA = shpfile.GetLayer() # DEF_VARIABLES = ( @@ -31,50 +37,6 @@ # 'lon_0', # longitude # ) -# Compute the wind speed -def wind_speed_from_u_v(row): - u = row['eastward-wind'] - v = row['northward-wind'] - return sqrt(pow(u, 2) + pow(v, 2)) - -# Compute the wind direction -def wind_direction_from_u_v(row): - """ - Meteorological wind direction - 90° corresponds to wind from east, - 180° from south - 270° from west - 360° wind from north. - 0° is used for no wind. - """ - u = row['eastward-wind'] - v = row['northward-wind'] - if (u, v) == (0.0, 0.0): - return 0.0 - else: - return (180.0 / pi) * atan2(u, v) + 180.0 - -# Check if point is inside of shapefile area -def area_filter(latlon): - # Initialize flag - point_in_area = False - # Parse coordinates and convert to floats - lat = float(latlon[0]) - lon = float(latlon[1]) - # Create a point geometry - point = ogr.Geometry(ogr.wkbPoint) - point.AddPoint(lon, lat) - # Check if the point is in any of the shpfile's features - for i in range(AREA.GetFeatureCount()): - feature = AREA.GetFeature(i) - if feature.geometry().Contains(point): - # This point is within a feature - point_in_area = True - # Break out of the loop - break - # Return flag indicating whether point is in the area - return point_in_area - # Load, filter, and process grib data # to get wind speed within a region def parse_data(filepath): @@ -91,36 +53,18 @@ def parse_data(filepath): ds = ds.get(['eastward-wind','northward-wind']) # Convert the xarray dataset to a dataframe df = ds.to_dataframe() - # Get longitude values from index - lons = df.index.get_level_values('lon_0') - # Map longitude range from (0 to 360) into (-180 to 180) - maplon = lambda lon: (lon - 360) if (lon > 180) else lon - # Create new longitude and latitude columns in the dataframe - df['longitude'] = lons.map(maplon) - df['latitude'] = df.index.get_level_values('lat_0') - # Get the area's bounding box - extent = AREA.GetExtent() - minlon = extent[0] - maxlon = extent[1] - minlat = extent[2] - maxlat = extent[3] # Perform an initial coarse filter on the global dataframe # by limiting the data to the area's bounding box, - # thereby reducing the total processing time of the `area_filter` - latfilter = ((df['latitude'] >= minlat) & (df['latitude'] <= maxlat)) - lonfilter = ((df['longitude'] >= minlon) & (df['longitude'] <= maxlon)) - # Apply filters to the dataframe - df = df.loc[latfilter & lonfilter] - # Create tuple column of latitude and longitude points - df['point'] = list(zip(df['latitude'], df['longitude'])) - # Create boolean column for whether the shpfile area contains the point - df['inArea'] = df['point'].map(area_filter) - # Crop point locations that are not within the shpfile area - df = df.loc[(df['inArea'] == True)] + # thereby reducing the total processing time of the `precise_geo_filter` + df = coarse_geo_filter(df, AREA) + # Perform the precise filter to remove data outside of the shapefile area + df = precise_geo_filter(df, AREA) # Compute the wind speed - df['wind-speed'] = df.apply (lambda row: wind_speed_from_u_v(row), axis=1) + ws_func = lambda row: wind_speed_from_u_v(row['eastward-wind'], row['northward-wind']) + df['wind-speed'] = df.apply(ws_func, axis=1) # Compute the wind direction - df['wind-dir'] = df.apply (lambda row: wind_direction_from_u_v(row), axis=1) + wd_func = lambda row: wind_direction_from_u_v(row['eastward-wind'], row['northward-wind']) + df['wind-dir'] = df.apply(wd_func, axis=1) # Trim the data to just the lat, lon, and wind speed columns df_viz = df.loc[:, ['latitude','longitude','wind-speed','wind-dir']] return df_viz @@ -136,7 +80,6 @@ def plot_data(data): c=color, s=10, cmap='Spectral_r', - # edgecolors='gray', linewidths=0.1 ) plt.title('Wind Speed (m/s)') From cd7a2b2914dcf90282ad05235c0d3219f7dfd2e6 Mon Sep 17 00:00:00 2001 From: Elliott Wobler Date: Thu, 25 Jun 2020 15:31:17 +0200 Subject: [PATCH 09/10] Fix alignment for code clarity --- .../cropped_area/get_aviation_data_in_area.py | 16 ++++++++-------- .../get_vertical_wind_speed_in_area.py | 16 ++++++++-------- 2 files changed, 16 insertions(+), 16 deletions(-) diff --git a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py index 6e66d93..b0f018e 100644 --- a/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_aviation_data_in_area.py @@ -45,14 +45,14 @@ # Create a dictionary for flight levels # and corresponding values in meters flight_levels = { - 'FL100': 3048, 'FL110': 3352, 'FL120': 3657, - 'FL130': 3962, 'FL140': 4267, 'FL150': 4572, - 'FL160': 4876, 'FL170': 5181, 'FL180': 5486, - 'FL190': 5791, 'FL200': 6096, 'FL210': 6400, - 'FL220': 6705, 'FL230': 7010, 'FL240': 7315, - 'FL250': 7620, 'FL260': 7924, 'FL270': 8229, - 'FL280': 8534, 'FL290': 8839, 'FL300': 9144, - 'FL310': 9448, 'FL320': 9753, 'FL330': 10058, + 'FL100': 3048, 'FL110': 3352, 'FL120': 3657, + 'FL130': 3962, 'FL140': 4267, 'FL150': 4572, + 'FL160': 4876, 'FL170': 5181, 'FL180': 5486, + 'FL190': 5791, 'FL200': 6096, 'FL210': 6400, + 'FL220': 6705, 'FL230': 7010, 'FL240': 7315, + 'FL250': 7620, 'FL260': 7924, 'FL270': 8229, + 'FL280': 8534, 'FL290': 8839, 'FL300': 9144, + 'FL310': 9448, 'FL320': 9753, 'FL330': 10058, 'FL340': 10363, 'FL350': 10668, 'FL360': 10972, 'FL370': 11277, 'FL380': 11582, 'FL390': 11887, 'FL400': 12192, 'FL410': 12496, 'FL420': 12801, diff --git a/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py b/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py index 7b82c09..f035f8e 100644 --- a/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_vertical_wind_speed_in_area.py @@ -45,14 +45,14 @@ # Create a dictionary for flight levels # and corresponding values in meters flight_levels = { - 'FL100': 3048, 'FL110': 3352, 'FL120': 3657, - 'FL130': 3962, 'FL140': 4267, 'FL150': 4572, - 'FL160': 4876, 'FL170': 5181, 'FL180': 5486, - 'FL190': 5791, 'FL200': 6096, 'FL210': 6400, - 'FL220': 6705, 'FL230': 7010, 'FL240': 7315, - 'FL250': 7620, 'FL260': 7924, 'FL270': 8229, - 'FL280': 8534, 'FL290': 8839, 'FL300': 9144, - 'FL310': 9448, 'FL320': 9753, 'FL330': 10058, + 'FL100': 3048, 'FL110': 3352, 'FL120': 3657, + 'FL130': 3962, 'FL140': 4267, 'FL150': 4572, + 'FL160': 4876, 'FL170': 5181, 'FL180': 5486, + 'FL190': 5791, 'FL200': 6096, 'FL210': 6400, + 'FL220': 6705, 'FL230': 7010, 'FL240': 7315, + 'FL250': 7620, 'FL260': 7924, 'FL270': 8229, + 'FL280': 8534, 'FL290': 8839, 'FL300': 9144, + 'FL310': 9448, 'FL320': 9753, 'FL330': 10058, 'FL340': 10363, 'FL350': 10668, 'FL360': 10972, 'FL370': 11277, 'FL380': 11582, 'FL390': 11887, 'FL400': 12192, 'FL410': 12496, 'FL420': 12801, From 6d9c899b08deece85ea7a9cbf9d0034f8d3cf02f Mon Sep 17 00:00:00 2001 From: Elliott Wobler Date: Mon, 6 Jul 2020 21:05:34 +0200 Subject: [PATCH 10/10] Change example from 20 hPa to 500 hPa --- .../cropped_area/get_upper_air_data_in_area.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py index cd9a3c1..5831f65 100644 --- a/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py +++ b/examples/working_with_grib_data/cropped_area/get_upper_air_data_in_area.py @@ -68,8 +68,8 @@ def parse_data(filepath): # Retrieve isobaric level values isblevels = df.index.get_level_values('lv_ISBL0') # Filter to a specific isobaric level: - # 20 hPa (2000 pascal) - df = df.loc[(isblevels == isobaric_levels['20hPa'])] + # 500 hPa (50000 pascal) + df = df.loc[(isblevels == isobaric_levels['500hPa'])] # Perform an initial coarse filter on the global dataframe # by limiting the data to the area's bounding box, # thereby reducing the total processing time of the `precise_geo_filter` @@ -95,7 +95,7 @@ def plot_data(data): cmap='coolwarm', linewidths=0.1 ) - plt.title('Temperature (C) at 20 hPa') + plt.title('Temperature (C) at 500 hPa') plt.colorbar() plt.show()