forked from sharathadavanne/seld-dcase2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seld.py
321 lines (267 loc) · 15.7 KB
/
seld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#
# A wrapper script that trains the SELDnet. The training stops when the SELD error (check paper) stops improving.
#
import os
import sys
import numpy as np
import matplotlib.pyplot as plot
import cls_feature_class
import cls_data_generator
from metrics import evaluation_metrics
import keras_model
from keras.models import load_model
import parameter
import time
plot.switch_backend('agg')
def collect_test_labels(_data_gen_test, _data_out, quick_test):
# Collecting ground truth for test data
nb_batch = 2 if quick_test else _data_gen_test.get_total_batches_in_data()
batch_size = _data_out[0][0]
gt_sed = np.zeros((nb_batch * batch_size, _data_out[0][1], _data_out[0][2]))
gt_doa = np.zeros((nb_batch * batch_size, _data_out[0][1], _data_out[1][2]))
print("nb_batch in test: {}".format(nb_batch))
cnt = 0
for tmp_feat, tmp_label in _data_gen_test.generate():
gt_sed[cnt * batch_size:(cnt + 1) * batch_size, :, :] = tmp_label[0]
gt_doa[cnt * batch_size:(cnt + 1) * batch_size, :, :] = tmp_label[1]
cnt = cnt + 1
if cnt == nb_batch:
break
return gt_sed.astype(int), gt_doa
def plot_functions(fig_name, _tr_loss, _val_loss, _sed_loss, _doa_loss, _epoch_metric_loss):
plot.figure()
nb_epoch = len(_tr_loss)
plot.subplot(311)
plot.plot(range(nb_epoch), _tr_loss, label='train loss')
plot.plot(range(nb_epoch), _val_loss, label='val loss')
plot.legend()
plot.grid(True)
plot.subplot(312)
plot.plot(range(nb_epoch), _sed_loss[:, 0], label='sed er')
plot.plot(range(nb_epoch), _sed_loss[:, 1], label='sed f1')
plot.plot(range(nb_epoch), _doa_loss[:, 0]/180., label='doa er / 180')
plot.plot(range(nb_epoch), _doa_loss[:, 1], label='doa fr')
plot.plot(range(nb_epoch), _epoch_metric_loss, label='seld')
plot.legend()
plot.grid(True)
plot.subplot(313)
plot.plot(range(nb_epoch), _doa_loss[:, 2], label='pred_pks')
plot.plot(range(nb_epoch), _doa_loss[:, 3], label='good_pks')
plot.legend()
plot.grid(True)
plot.savefig(fig_name)
plot.close()
def main(argv):
"""
Main wrapper for training sound event localization and detection network.
:param argv: expects two optional inputs.
first input: task_id - (optional) To chose the system configuration in parameters.py.
(default) 1 - uses default parameters
second input: job_id - (optional) all the output files will be uniquely represented with this.
(default) 1
"""
if len(argv) != 3:
print('\n\n')
print('-------------------------------------------------------------------------------------------------------')
print('The code expected two optional inputs')
print('\t>> python seld.py <task-id> <job-id>')
print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
print('Using default inputs for now')
print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
'You can use any number or string for this.')
print('-------------------------------------------------------------------------------------------------------')
print('\n\n')
# use parameter set defined by user
task_id = '1' if len(argv) < 2 else argv[1]
params = parameter.get_params(task_id)
job_id = 1 if len(argv) < 3 else argv[-1]
train_splits, val_splits, test_splits = None, None, None
if params['mode'] == 'dev':
test_splits = [1, 2, 3, 4]
val_splits = [2, 3, 4, 1]
train_splits = [[3, 4], [4, 1], [1, 2], [2, 3]]
# SUGGESTION: Considering the long training time, major tuning of the method can be done on the first split.
# Once you finlaize the method you can evaluate its performance on the complete cross-validation splits
# test_splits = [1]
# val_splits = [2]
# train_splits = [[3, 4]]
elif params['mode'] == 'eval':
test_splits = [0]
val_splits = [1]
train_splits = [[2, 3, 4]]
avg_scores_val = []
avg_scores_test = []
for split_cnt, split in enumerate(test_splits):
print('\n\n---------------------------------------------------------------------------------------------------')
print('------------------------------------ SPLIT {} -----------------------------------------------'.format(split))
print('---------------------------------------------------------------------------------------------------')
# Unique name for the run
cls_feature_class.create_folder(params['model_dir'])
unique_name = '{}_{}_{}_{}_split{}'.format(
task_id, job_id, params['dataset'], params['mode'], split
)
unique_name = os.path.join(params['model_dir'], unique_name)
model_name = '{}_model.h5'.format(unique_name)
print("unique_name: {}\n".format(unique_name))
# Load train and validation data
print('Loading training dataset:')
data_gen_train = cls_data_generator.DataGenerator(
dataset=params['dataset'], split=train_splits[split_cnt], batch_size=params['batch_size'],
seq_len=params['sequence_length'], feat_label_dir=params['feat_label_dir']
)
print('Loading validation dataset:')
data_gen_val = cls_data_generator.DataGenerator(
dataset=params['dataset'], split=val_splits[split_cnt], batch_size=params['batch_size'],
seq_len=params['sequence_length'], feat_label_dir=params['feat_label_dir'], shuffle=False
)
# Collect the reference labels for validation data
data_in, data_out = data_gen_train.get_data_sizes()
print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(data_in, data_out))
gt = collect_test_labels(data_gen_val, data_out, params['quick_test'])
sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])
# rescaling the reference elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
nb_classes = data_gen_train.get_nb_classes()
def_elevation = data_gen_train.get_default_elevation()
doa_gt[:, nb_classes:] = doa_gt[:, nb_classes:] / (180. / def_elevation)
print('MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, pool_size{}\n\trnn_size: {}, fnn_size: {}\n'.format(
params['dropout_rate'], params['nb_cnn2d_filt'], params['pool_size'], params['rnn_size'],
params['fnn_size']))
model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
weights=params['loss_weights'])
best_seld_metric = 99999
best_epoch = -1
patience_cnt = 0
seld_metric = np.zeros(params['nb_epochs'])
tr_loss = np.zeros(params['nb_epochs'])
val_loss = np.zeros(params['nb_epochs'])
doa_metric = np.zeros((params['nb_epochs'], 6))
sed_metric = np.zeros((params['nb_epochs'], 2))
nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
# start training
for epoch_cnt in range(nb_epoch):
start = time.time()
# train once per epoch
hist = model.fit_generator(
generator=data_gen_train.generate(),
steps_per_epoch=2 if params['quick_test'] else data_gen_train.get_total_batches_in_data(),
validation_data=data_gen_val.generate(),
validation_steps=2 if params['quick_test'] else data_gen_val.get_total_batches_in_data(),
epochs=params['epochs_per_fit'],
verbose=2
)
tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]
# predict once per peoch
pred = model.predict_generator(
generator=data_gen_val.generate(),
steps=2 if params['quick_test'] else data_gen_val.get_total_batches_in_data(),
verbose=2
)
# Calculate the metrics
sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])
# rescaling the elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
doa_pred[:, nb_classes:] = doa_pred[:, nb_classes:] / (180. / def_elevation)
sed_metric[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt, data_gen_val.nb_frames_1s())
doa_metric[epoch_cnt, :] = evaluation_metrics.compute_doa_scores_regr(doa_pred, doa_gt, sed_pred, sed_gt)
seld_metric[epoch_cnt] = evaluation_metrics.compute_seld_metric(sed_metric[epoch_cnt, :], doa_metric[epoch_cnt, :])
# Visualize the metrics with respect to epochs
plot_functions(unique_name, tr_loss, val_loss, sed_metric, doa_metric, seld_metric)
patience_cnt += 1
if seld_metric[epoch_cnt] < best_seld_metric:
best_seld_metric = seld_metric[epoch_cnt]
best_epoch = epoch_cnt
model.save(model_name)
patience_cnt = 0
print(
'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
'ER_overall: %.2f, F1_overall: %.2f, '
'doa_error_pred: %.2f, good_pks_ratio:%.2f, '
'seld_score: %.2f, best_seld_score: %.2f, best_epoch : %d\n' %
(
epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
sed_metric[epoch_cnt, 0], sed_metric[epoch_cnt, 1],
doa_metric[epoch_cnt, 0], doa_metric[epoch_cnt, 1],
seld_metric[epoch_cnt], best_seld_metric, best_epoch
)
)
if patience_cnt > params['patience']:
break
avg_scores_val.append([sed_metric[best_epoch, 0], sed_metric[best_epoch, 1], doa_metric[best_epoch, 0],
doa_metric[best_epoch, 1], best_seld_metric])
print('\nResults on validation split:')
print('\tUnique_name: {} '.format(unique_name))
print('\tSaved model for the best_epoch: {}'.format(best_epoch))
print('\tSELD_score: {}'.format(best_seld_metric))
print('\tDOA Metrics: DOA_error: {}, frame_recall: {}'.format(doa_metric[best_epoch, 0],
doa_metric[best_epoch, 1]))
print('\tSED Metrics: ER_overall: {}, F1_overall: {}\n'.format(sed_metric[best_epoch, 0],
sed_metric[best_epoch, 1]))
# ------------------ Calculate metric scores for unseen test split ---------------------------------
print('Loading testing dataset:')
data_gen_test = cls_data_generator.DataGenerator(
dataset=params['dataset'], split=split, batch_size=params['batch_size'], seq_len=params['sequence_length'],
feat_label_dir=params['feat_label_dir'], shuffle=False, per_file=params['dcase_output'],
is_eval=True if params['mode'] is 'eval' else False
)
print('\nLoading the best model and predicting results on the testing split')
model = load_model('{}_model.h5'.format(unique_name))
pred_test = model.predict_generator(
generator=data_gen_test.generate(),
steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
verbose=2
)
test_sed_pred = evaluation_metrics.reshape_3Dto2D(pred_test[0]) > 0.5
test_doa_pred = evaluation_metrics.reshape_3Dto2D(pred_test[1])
# rescaling the elevation data from [-180 180] to [-def_elevation def_elevation] for scoring purpose
test_doa_pred[:, nb_classes:] = test_doa_pred[:, nb_classes:] / (180. / def_elevation)
if params['dcase_output']:
# Dump results in DCASE output format for calculating final scores
dcase_dump_folder = os.path.join(params['dcase_dir'], '{}_{}_{}'.format(task_id, params['dataset'], params['mode']))
cls_feature_class.create_folder(dcase_dump_folder)
print('Dumping recording-wise results in: {}'.format(dcase_dump_folder))
test_filelist = data_gen_test.get_filelist()
# Number of frames for a 60 second audio with 20ms hop length = 3000 frames
max_frames_with_content = data_gen_test.get_nb_frames()
# Number of frames in one batch (batch_size* sequence_length) consists of all the 3000 frames above with
# zero padding in the remaining frames
frames_per_file = data_gen_test.get_frame_per_file()
for file_cnt in range(test_sed_pred.shape[0]//frames_per_file):
output_file = os.path.join(dcase_dump_folder, test_filelist[file_cnt].replace('.npy', '.csv'))
dc = file_cnt * frames_per_file
output_dict = evaluation_metrics.regression_label_format_to_output_format(
data_gen_test,
test_sed_pred[dc:dc + max_frames_with_content, :],
test_doa_pred[dc:dc + max_frames_with_content, :] * 180 / np.pi
)
evaluation_metrics.write_output_format_file(output_file, output_dict)
if params['mode'] is 'dev':
test_data_in, test_data_out = data_gen_test.get_data_sizes()
test_gt = collect_test_labels(data_gen_test, test_data_out, params['quick_test'])
test_sed_gt = evaluation_metrics.reshape_3Dto2D(test_gt[0])
test_doa_gt = evaluation_metrics.reshape_3Dto2D(test_gt[1])
# rescaling the reference elevation from [-180 180] to [-def_elevation def_elevation] for scoring purpose
test_doa_gt[:, nb_classes:] = test_doa_gt[:, nb_classes:] / (180. / def_elevation)
test_sed_loss = evaluation_metrics.compute_sed_scores(test_sed_pred, test_sed_gt, data_gen_test.nb_frames_1s())
test_doa_loss = evaluation_metrics.compute_doa_scores_regr(test_doa_pred, test_doa_gt, test_sed_pred, test_sed_gt)
test_metric_loss = evaluation_metrics.compute_seld_metric(test_sed_loss, test_doa_loss)
avg_scores_test.append([test_sed_loss[0], test_sed_loss[1], test_doa_loss[0], test_doa_loss[1], test_metric_loss])
print('Results on test split:')
print('\tSELD_score: {}, '.format(test_metric_loss))
print('\tDOA Metrics: DOA_error: {}, frame_recall: {}'.format(test_doa_loss[0], test_doa_loss[1]))
print('\tSED Metrics: ER_overall: {}, F1_overall: {}\n'.format(test_sed_loss[0], test_sed_loss[1]))
print('\n\nValidation split scores per fold:\n')
for cnt in range(len(val_splits)):
print('\tSplit {} - SED ER: {} F1: {}; DOA error: {} frame recall: {}; SELD score: {}'.format(cnt, avg_scores_val[cnt][0], avg_scores_val[cnt][1], avg_scores_val[cnt][2], avg_scores_val[cnt][3], avg_scores_val[cnt][4]))
if params['mode'] is 'dev':
print('\n\nTesting split scores per fold:\n')
for cnt in range(len(val_splits)):
print('\tSplit {} - SED ER: {} F1: {}; DOA error: {} frame recall: {}; SELD score: {}'.format(cnt, avg_scores_test[cnt][0], avg_scores_test[cnt][1], avg_scores_test[cnt][2], avg_scores_test[cnt][3], avg_scores_test[cnt][4]))
if __name__ == "__main__":
try:
sys.exit(main(sys.argv))
except (ValueError, IOError) as e:
sys.exit(e)