forked from carrenD/Medical-Cross-Modality-Domain-Adaptation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_segmenter.py
80 lines (62 loc) · 2.35 KB
/
train_segmenter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
This is the basic training script for the baseline MRI or CT Model
It is used to train the source segmenter
"""
import os
import sys
import logging
import datetime
import argparse
import tensorflow as tf
from tensorflow.python import debug as tf_debug
import source_segmenter as drn
import numpy as np
from lib import _read_lists
logging.basicConfig(filename = "general_log", level = logging.DEBUG)
currtime = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def main():
train_fid = "./lists/mr_train_list"
val_fid = "./lists/mr_val_list"
output_path = "./tmp_exps/mr_baseline"
restore = True # set True if resume training from stored model
restored_path = output_path
lr_update_flag = False # Set True if want to use a new learning rate for fine-tuning
num_cls = 5
batch_size = 10
training_iters = 10
epochs = 5000
checkpoint_space = 1500
image_summeris = True
optimizer = 'adam'
cost_kwargs = {
"cross_flag": True, # use cross entropy loss
"miu_cross": 1.0,
"dice_flag": True, # use dice loss
"miu_dice": 1.0,
"regularizer": 1e-4
}
opt_kwargs = {
"learning_rate": 1e-3
}
try:
os.makedirs(output_path)
except:
print("folder exist!")
net = drn.Full_DRN(channels = 3, batch_size = batch_size, n_class = num_cls, image_summeris = image_summeris, cost_kwargs = cost_kwargs)
print("Network has been built!")
train_list = _read_lists(train_fid)
val_list = _read_lists(val_fid)
trainer = drn.Trainer(net, train_list = train_list, val_list = val_list, num_cls = num_cls, \
batch_size = batch_size, opt_kwargs = opt_kwargs, checkpoint_space = checkpoint_space,\
optimizer = optimizer, lr_update_flag = lr_update_flag)
# start tensorboard before getting started
command1 = "tensorboard --logdir=" + output_path + " --port=6999 " + " &"
os.system(command1)
print("Now start training...")
if restore is True:
trainer.train(output_path = output_path, training_iters = training_iters, epochs = epochs, restore = True, restored_path = restored_path)
else:
trainer.train(output_path = output_path, training_iters = training_iters, epochs = epochs)
if __name__ == "__main__":
main()