-
Notifications
You must be signed in to change notification settings - Fork 360
/
generate_for_mt_bench.py
250 lines (203 loc) · 6.7 KB
/
generate_for_mt_bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""Generate answers with local models.
Usage:
python3 gen_model_answer.py --model-path lmsys/fastchat-t5-3b-v1.0 --model-id fastchat-t5-3b-v1.0
"""
import argparse
import json
import os
import random
import time
import shortuuid
import torch
from tqdm import tqdm
from fastchat.llm_judge.common import load_questions, temperature_config
from fastchat.model import load_model, get_conversation_template
from fastchat.utils import str_to_torch_dtype
# import openai
import requests
from loguru import logger
"""Generate answers with GPT-4
Usage:
python3 gen_api_answer.py --model gpt-3.5-turbo
"""
import argparse
import json
import os
import time
import concurrent.futures
import openai
import shortuuid
import tqdm
from fastchat.llm_judge.common import (
load_questions,
temperature_config,
chat_completion_openai,
chat_completion_anthropic,
chat_completion_palm,
)
from fastchat.llm_judge.gen_model_answer import reorg_answer_file
from fastchat.model.model_adapter import get_conversation_template
from typing import List
from loguru import logger
import openai
from utils import (
generate_together,
generate_openai,
generate_with_references,
DEBUG,
)
def get_answer(
question: dict,
model: str,
reference_models: List[str],
num_choices: int,
max_tokens: int,
answer_file: str,
rounds: int,
provider: str,
):
assert (
args.force_temperature is not None and "required_temperature" in question.keys()
) == False
if args.force_temperature is not None:
temperature = args.force_temperature
elif "required_temperature" in question.keys():
temperature = question["required_temperature"]
elif question["category"] in temperature_config:
temperature = temperature_config[question["category"]]
else:
temperature = 0.7
choices = []
if provider == "together":
generate_fn = generate_together
elif provider == "openai":
generate_fn = generate_openai
else:
assert False
for i in range(num_choices):
turns = []
messages = []
for j in range(len(question["turns"])):
qs = question["turns"][j]
messages.append({"role": "user", "content": qs})
references = []
if len(reference_models) > 0:
prev_references = []
for i_round in range(rounds):
if DEBUG:
logger.info(
f"Round {i_round+1}/{rounds} to collecting reference responses."
)
references = []
for reference_model in reference_models:
reference = generate_with_references(
model=reference_model,
messages=messages,
references=prev_references,
temperature=temperature,
max_tokens=max_tokens,
generate_fn=generate_fn,
)
if reference is not None:
references.append(reference)
if i_round < rounds - 1:
prev_references = references
references = []
output = generate_with_references(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
generate_fn=generate_fn,
references=references,
).strip()
messages.append(
{
"role": "assistant",
"content": output,
}
)
turns.append(output)
choices.append({"index": i, "turns": turns})
# Dump answers
ans = {
"question_id": question["question_id"],
"answer_id": shortuuid.uuid(),
"model_id": model,
"choices": choices,
"tstamp": time.time(),
}
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
with open(answer_file, "a") as fout:
fout.write(json.dumps(ans) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--bench-name",
type=str,
default="mt_bench",
help="The name of the benchmark question set.",
)
parser.add_argument("--answer-file", type=str, help="The output answer file.")
parser.add_argument("--model", type=str, default="gpt-3.5-turbo")
parser.add_argument("--reference-models", type=str, default=None)
parser.add_argument("--rounds", type=int, default=1)
parser.add_argument("--provider", type=str, default="together")
parser.add_argument(
"--num-choices",
type=int,
default=1,
help="How many completion choices to generate.",
)
parser.add_argument(
"--force-temperature", type=float, help="Forcibly set a sampling temperature."
)
parser.add_argument(
"--max-tokens",
type=int,
default=1024,
help="The maximum number of new generated tokens.",
)
parser.add_argument(
"--question-begin",
type=int,
help="A debug option. The begin index of questions.",
)
parser.add_argument(
"--question-end", type=int, help="A debug option. The end index of questions."
)
parser.add_argument(
"--parallel", type=int, default=1, help="The number of concurrent API calls."
)
args = parser.parse_args()
question_file = f"FastChat/fastchat/llm_judge/data/{args.bench_name}/question.jsonl"
questions = load_questions(question_file, args.question_begin, args.question_end)
if args.answer_file:
answer_file = args.answer_file
else:
answer_file = f"outputs/{args.bench_name}/model_answer/{args.model}.jsonl"
print(f"Output to {answer_file}")
if args.reference_models is None:
reference_models = []
else:
reference_models = args.reference_models.split(",")
with concurrent.futures.ThreadPoolExecutor(max_workers=args.parallel) as executor:
futures = []
for question in questions:
future = executor.submit(
get_answer,
question,
args.model,
reference_models,
args.num_choices,
args.max_tokens,
answer_file,
args.rounds,
args.provider,
)
futures.append(future)
for future in tqdm.tqdm(
concurrent.futures.as_completed(futures), total=len(futures)
):
future.result()
reorg_answer_file(answer_file)