-
Notifications
You must be signed in to change notification settings - Fork 654
/
solution.py
168 lines (127 loc) · 4.93 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from utils import *
row_units = [cross(r, cols) for r in rows]
column_units = [cross(rows, c) for c in cols]
square_units = [cross(rs, cs) for rs in ('ABC','DEF','GHI') for cs in ('123','456','789')]
unitlist = row_units + column_units + square_units
# TODO: Update the unit list to add the new diagonal units
unitlist = unitlist
# Must be called after all units (including diagonals) are added to the unitlist
units = extract_units(unitlist, boxes)
peers = extract_peers(units, boxes)
def naked_twins(values):
"""Eliminate values using the naked twins strategy.
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict
The values dictionary with the naked twins eliminated from peers
Notes
-----
Your solution can either process all pairs of naked twins from the input once,
or it can continue processing pairs of naked twins until there are no such
pairs remaining -- the project assistant test suite will accept either
convention. However, it will not accept code that does not process all pairs
of naked twins from the original input. (For example, if you start processing
pairs of twins and eliminate another pair of twins before the second pair
is processed then your code will fail the PA test suite.)
The first convention is preferred for consistency with the other strategies,
and because it is simpler (since the reduce_puzzle function already calls this
strategy repeatedly).
"""
# TODO: Implement this function!
raise NotImplementedError
def eliminate(values):
"""Apply the eliminate strategy to a Sudoku puzzle
The eliminate strategy says that if a box has a value assigned, then none
of the peers of that box can have the same value.
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict
The values dictionary with the assigned values eliminated from peers
"""
# TODO: Copy your code from the classroom to complete this function
raise NotImplementedError
def only_choice(values):
"""Apply the only choice strategy to a Sudoku puzzle
The only choice strategy says that if only one box in a unit allows a certain
digit, then that box must be assigned that digit.
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict
The values dictionary with all single-valued boxes assigned
Notes
-----
You should be able to complete this function by copying your code from the classroom
"""
# TODO: Copy your code from the classroom to complete this function
raise NotImplementedError
def reduce_puzzle(values):
"""Reduce a Sudoku puzzle by repeatedly applying all constraint strategies
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict or False
The values dictionary after continued application of the constraint strategies
no longer produces any changes, or False if the puzzle is unsolvable
"""
# TODO: Copy your code from the classroom and modify it to complete this function
raise NotImplementedError
def search(values):
"""Apply depth first search to solve Sudoku puzzles in order to solve puzzles
that cannot be solved by repeated reduction alone.
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict or False
The values dictionary with all boxes assigned or False
Notes
-----
You should be able to complete this function by copying your code from the classroom
and extending it to call the naked twins strategy.
"""
# TODO: Copy your code from the classroom to complete this function
raise NotImplementedError
def solve(grid):
"""Find the solution to a Sudoku puzzle using search and constraint propagation
Parameters
----------
grid(string)
a string representing a sudoku grid.
Ex. '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
Returns
-------
dict or False
The dictionary representation of the final sudoku grid or False if no solution exists.
"""
values = grid2values(grid)
values = search(values)
return values
if __name__ == "__main__":
diag_sudoku_grid = '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
display(grid2values(diag_sudoku_grid))
result = solve(diag_sudoku_grid)
display(result)
try:
import PySudoku
PySudoku.play(grid2values(diag_sudoku_grid), result, history)
except SystemExit:
pass
except:
print('We could not visualize your board due to a pygame issue. Not a problem! It is not a requirement.')