-
Notifications
You must be signed in to change notification settings - Fork 0
/
RAMP_cifar10_aug.py
executable file
·500 lines (401 loc) · 23.2 KB
/
RAMP_cifar10_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import torch
import torch.nn as nn
import torch.nn.functional as F
#from torch.autograd import Variable
#from torchvision import datasets, transforms
import torch.optim as optim
from tqdm import tqdm
import copy
import sys
import os
import argparse
import time
#from datetime import datetime
import random
import math
import glob
import robustbench as rb
import data
from autopgd_train import apgd_train, train_clean, apgd_train_kl
from utils import gp, get_params_no_decay
import utils
from model_zoo.fast_models import PreActResNet18
import other_utils
import eval as utils_eval
eps_dict = {'cifar10': {'Linf': 8. / 255., 'L2': .5, 'L1': 12.},
'imagenet': {'Linf': 4. / 255., 'L2': 2., 'L1': 255.}}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='Wong2020Fast')
#parser.add_argument('--eps', type=float, default=8/255)
#parser.add_argument('--n_ex', type=int, default=100, help='number of examples to evaluate on')
parser.add_argument('--batch_size_eval', type=int, default=100, help='batch size for evaluation')
parser.add_argument('--batch_size', type=int, default=128, help='batch size for training')
parser.add_argument('--data_dir', type=str, default='../datasets/cifar10', help='where to store downloaded datasets')
parser.add_argument('--model_dir', type=str, default='./models', help='where to store downloaded models')
parser.add_argument('--save_dir', type=str, default='./trained_models')
#parser.add_argument('--norm', type=str, default='Linf')
#parser.add_argument('--save_imgs', action='store_true')
parser.add_argument('--lr-schedule', default='piecewise-ft')
parser.add_argument('--lr-max', default=.01, type=float)
parser.add_argument('--epochs', default=20, type=int)
#parser.add_argument('--log_freq', type=int, default=20)
parser.add_argument('--save_freq', type=int, default=100)
parser.add_argument('--eval_freq', type=int, default=3, help='if -1 no evaluation during training')
parser.add_argument('--act', type=str, default='softplus1')
parser.add_argument('--finetune_model', action='store_true')
parser.add_argument('--l_norms', type=str, default='Linf L1', help='norms to use in adversarial training')
parser.add_argument('--attack', type=str, default='apgd')
#parser.add_argument('--pgd_iter', type=int, default=1)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--l_eps', type=str, help='epsilon values for adversarial training wrt each norm')
parser.add_argument('--notes_run', type=str, help='appends a comment to the run name')
parser.add_argument('--loss', type=str, default='ce')
parser.add_argument('--l_iters', type=str, help='iterations for each norms in adversarial training (possibly different)')
#parser.add_argument('--epoch_switch', type=int)
#parser.add_argument('--save_min', type=int, default=0)
parser.add_argument('--save_optim', action='store_true')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--fname', type=str, help='store file name')
#parser.add_argument('--no_wd_bn', action='store_true')
parser.add_argument('--dataset', type=str, default='cifar10')
parser.add_argument('--at_iter', type=int, help='iteration in adversarial training (used for all norms)')
parser.add_argument('--n_ex_eval', type=int, default=2000)
parser.add_argument('--n_ex_final', type=int, default=10000)
parser.add_argument('--final_eval', action='store_true', help='run long evaluation after training')
# parameters related to GP or new techniques
parser.add_argument('--gp', action='store_true')
parser.add_argument('--batch_gp', action='store_true')
parser.add_argument('--kl', action='store_true')
parser.add_argument('--mse', action='store_true')
parser.add_argument('--lbd', type=float, default=1.5)
parser.add_argument('--beta', type=float, default=0.5)
parser.add_argument('--pretraining', action='store_true')
parser.add_argument('--max', action='store_true') # whether to use max strategy for L1 Linf perturb
args = parser.parse_args()
return args
def main():
args = parse_args()
# logging and saving tools
# utils.get_runname(args)
print(args.fname)
other_utils.makedir('{}/{}'.format(args.save_dir, args.fname)) #args.save_dir
files = glob.glob('{}/{}/*'.format(args.save_dir, args.fname))
for f in files:
os.remove(f)
args.all_norms = ['Linf', 'L2', 'L1']
args.all_epss = [eps_dict[args.dataset][c] for c in args.all_norms]
stats = utils.stats_dict(args)
logger = other_utils.Logger('{}/{}/log_train.txt'.format(args.save_dir,
args.fname))
log_eval_path = '{}/{}/log_eval_final.txt'.format(args.save_dir, args.fname)
# fix seed
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
# load data
if args.dataset == 'cifar10':
train_loader, _ = data.load_cifar10_train_aug(args, only_train=True)
# non augmented images for statistics
x_train_eval, y_train_eval = data.load_cifar10(args.n_ex_eval,
args.data_dir, training_set=True, device='cuda')
x_test_eval, y_test_eval = data.load_cifar10(args.n_ex_eval,
args.data_dir, device='cuda') #training_set=True
args.n_cls = 10
elif args.dataset == 'imagenet':
train_loader, _ = data.load_imagenet_train(args)
# non augmented images for statistics
x_train_eval, y_train_eval = data.load_imagenet(args.n_ex_eval)
x_test_eval, y_test_eval = data.load_imagenet(args.n_ex_eval) #training_set=True
args.n_cls = 1000
else:
raise NotImplemented
print('data loaded on {}'.format(x_test_eval.device))
# load model
if not args.finetune_model:
assert args.dataset == 'cifar10'
#from model_zoo.fast_models import PreActResNet18
model = PreActResNet18(10, activation=args.act).cuda()
model.eval()
elif args.model_name.startswith('RB'):
#raise NotImplemented
model = rb.utils.load_model('_'.join(args.model_name.split('_')[1:]), model_dir=args.model_dir,
dataset=args.dataset, threat_model='Linf')#args.model_name.split('_')[2])
model.cuda()
model.eval()
print('{} ({}) loaded'.format(*args.model_name)) #.split('_')[1:]))
elif args.model_name.startswith('pretr'):
model = utils.load_pretrained_models(args.model_name)
model.cuda()
model.eval()
print('pretrained model loaded')
else:
model = PreActResNet18(10, activation=args.act)
ckpt = torch.load(args.model_name)
model.load_state_dict(ckpt)
model.cuda()
model.eval()
# clean_acc = rb.utils.clean_accuracy(model, x_test_eval, y_test_eval)
# print('initial clean accuracy: {:.2%}'.format(clean_acc))
# set loss
if args.loss == 'ce':
criterion = nn.CrossEntropyLoss()
# set optimizer
optimizer = optim.SGD(get_params_no_decay(args, model), lr=1., momentum=0.9,
weight_decay=args.weight_decay)
# initialize models for D_nat and D_inf
model_nat = copy.deepcopy(model)
model_inf = copy.deepcopy(model)
optimizer_nat = optim.SGD(get_params_no_decay(args, model_nat), lr=1., momentum=0.9,
weight_decay=args.weight_decay)
optimizer_inf = optim.SGD(get_params_no_decay(args, model_inf), lr=1., momentum=0.9,
weight_decay=args.weight_decay)
# get lr scheduler
lr_schedule = utils.get_lr_schedule(args)
# set norms, eps and iters for training
args.l_norms = args.l_norms.split(' ')
if args.l_eps is None:
args.l_eps = [eps_dict[args.dataset][c] for c in args.l_norms]
else:
args.l_eps = [float(c) for c in args.l_eps.split(' ')]
if not args.l_iters is None:
args.l_iters = [int(c) for c in args.l_iters.split(' ')]
else:
args.l_iters = [args.at_iter + 0 for _ in args.l_norms]
print('[train] ' + ', '.join(['{} eps={:.5f} iters={}'.format(
args.l_norms[c], args.l_eps[c], args.l_iters[c]) for c in range(len(
args.l_norms))]))
# set eps for evaluation
for i, norm in enumerate(args.l_norms):
idx = args.all_norms.index(norm)
args.all_epss[idx] = args.l_eps[i] + 0.
print('[eval] ' + ', '.join(['{} eps={:.5f}'.format(args.all_norms[c],
args.all_epss[c]) for c in range(len(args.all_norms))]))
cur_norm_source = 0 # initial source - Linf
cur_norm_target = 1 # initial target - L1
# iterative finetuning
iteration = 0
# pretraining on D_nat
if args.pretraining:
for i in range(40):
model_nat, _ = train_clean(args, i, model_nat, train_loader, optimizer_nat, lr_schedule)
model.load_state_dict(model_nat.state_dict())
for epoch in range(0, args.epochs): # loop over the dataset multiple times
model_old = copy.deepcopy(model)
startt = time.time()
if True:
# training the target domain
model.train()
model_inf.load_state_dict(model.state_dict())
model_nat.load_state_dict(model.state_dict())
# train the natural domain
if args.gp:
model_nat, _ = train_clean(args, epoch, model_nat, train_loader, optimizer_nat, lr_schedule)
# train the Lp domain (source domain)
# with tqdm(train_loader, unit="batch") as tepoch:
# running_loss_s = 0.0
# # running_acc = 0.
# running_acc_ep_s = 0.
# for i, (x_loader, y_loader) in enumerate(tepoch):
# x, y = x_loader.cuda(), y_loader.cuda()
# # update lr
# lr = lr_schedule(epoch + (i + 1) / len(train_loader))
# optimizer_inf.param_groups[0].update(lr=lr)
# model_inf.eval()
# # compute training points
# # print(args.l_norms[0], args.l_eps[0], args.l_iters[0])
# _, _, _, _, x_tr = apgd_train(model_inf, x, y, norm=args.l_norms[cur_norm_source],
# eps=args.l_eps[cur_norm_source], n_iter=args.l_iters[cur_norm_source], is_train=True)
# y_tr = y.clone()
# model_inf.train()
# # zero the parameter gradients
# optimizer_inf.zero_grad()
# # forward + backward + optimize
# if args.loss in ['ce']:
# outputs = model_inf(x_tr)
# loss = criterion(outputs, y_tr)
# loss.backward()
# optimizer_inf.step()
# # collect stats
# running_loss_s += loss.item() #w_tr
# #running_acc += (outputs.max(dim=-1)[1] == y_tr).cpu().float().sum().item()
# running_acc_ep_s += (outputs.max(dim=-1)[1] == y_tr).cpu().float().sum().item()
# tepoch.set_postfix({'loss': running_loss_s / (i + 1), 'acc': running_acc_ep_s / (i + 1) / args.batch_size})
# train the Lp domain (target domain)
with tqdm(train_loader, unit="batch") as tepoch:
running_loss_t = 0.0
# running_acc = 0.
running_acc_ep_s = 0.
running_acc_ep_t = 0.
for i, (x_loader, y_loader) in enumerate(tepoch):
x, y = x_loader.cuda(), y_loader.cuda()
# update lr
lr = lr_schedule(epoch + (i + 1) / len(train_loader))
optimizer.param_groups[0].update(lr=lr)
model.eval()
# compute training points
# print(args.l_norms[0], args.l_eps[0], args.l_iters[0])
x_tr_s, _, _, loss_best_s, _ = apgd_train(model, x, y, norm=args.l_norms[cur_norm_source],
eps=args.l_eps[cur_norm_source], n_iter=args.l_iters[cur_norm_source], is_train=True)
# x_tr_t, _, _, loss_best_t, _ = apgd_train_kl(model, x, x_tr_s, y, norm=args.l_norms[cur_norm_target],
# eps=args.l_eps[cur_norm_target], n_iter=args.l_iters[cur_norm_target], is_train=True)
x_tr_t, _, _, loss_best_t, _ = apgd_train(model, x, y, norm=args.l_norms[cur_norm_target],
eps=args.l_eps[cur_norm_target], n_iter=args.l_iters[cur_norm_target], is_train=True)
y_tr = y.long().clone()
if args.max:
tensor_list = [loss_best_t, loss_best_s]
delta_list = [x_tr_t.view(len(y),1,-1), x_tr_s.view(len(y),1,-1)]
loss_arr = torch.stack(tuple(tensor_list))
delta_arr = torch.stack(tuple(delta_list))
max_loss = loss_arr.max(dim = 0)
x_tr_best = delta_arr[max_loss[1], torch.arange(len(y)), 0]
x_tr_best = x_tr_best.view(len(y), x_tr_s.shape[1], x_tr_s.shape[2], x_tr_s.shape[3])
model.train()
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
if args.loss in ['ce']:
outputs_t = model(x_tr_t)
loss1 = criterion(outputs_t, y_tr)
outputs_s = model(x_tr_s)
loss2 = criterion(outputs_s, y_tr)
#running_acc += (outputs.max(dim=-1)[1] == y_tr).cpu().float().sum().item()
acc_ep_t = (outputs_t.max(dim=-1)[1] == y_tr).cpu().float().sum().item()
running_acc_ep_t += acc_ep_t
acc_ep_s = (outputs_s.max(dim=-1)[1] == y_tr).cpu().float().sum().item()
running_acc_ep_s += acc_ep_s
loss_best = 0
loss_kl = 0
# loss_s = 0
loss_kl_rev = 0
if args.kl or args.mse:
if args.kl:
criterion_kl = nn.KLDivLoss(reduction='sum').cuda()
else:
criterion_kl = nn.MSELoss()
source_correct_indices = (outputs_s.max(dim=-1)[1] == y_tr).detach()
target_correct_indices = (outputs_t.max(dim=-1)[1] == y_tr).detach()
# kl
selected_kl = source_correct_indices #& (~target_correct_indices)
source_sel_kl, target_sel_kl = outputs_s[selected_kl], outputs_t[selected_kl]
# selected_kl_rev = target_correct_indices & (~source_correct_indices)
# source_sel_kl_rev, target_sel_kl_rev = outputs_s[selected_kl_rev], outputs_t[selected_kl_rev]
if len(source_sel_kl) > 0:
if args.kl:
loss_kl = criterion_kl(F.log_softmax(target_sel_kl+1e-12, dim=1), F.softmax(source_sel_kl, dim=1)) / selected_kl.sum() # (selected_kl.sum() / len(y))
else:
loss_kl = criterion_kl(target_sel_kl, source_sel_kl)
# if len(source_sel_kl_rev) > 0:
# if args.kl:
# loss_kl_rev = criterion_kl(F.log_softmax(source_sel_kl_rev+1e-12, dim=1), F.softmax(target_sel_kl_rev, dim=1)) * (selected_kl_rev.sum() / len(y))
# else:
# loss_kl_rev = criterion_kl(source_sel_kl_rev, target_sel_kl_rev)
# best
if args.max:
outputs_best = model(x_tr_best)
loss_best = criterion(outputs_best, y_tr)
loss = loss_best + loss_kl * args.lbd
loss.backward()
optimizer.step()
# collect stats
running_loss_t += loss.item() #w_tr
tepoch.set_postfix({'loss': running_loss_t / (i+1), 'acc_s': running_acc_ep_s / (i + 1) / args.batch_size, 'acc_t': running_acc_ep_t / (i + 1) / args.batch_size})
# print(f'source - {cur_norm_source}, loss - {running_loss_s / len(train_loader)}, acc - {running_acc_ep_s / len(train_loader) / args.batch_size}')
# print(f'target - {cur_norm_target}, loss - {running_loss_t / len(train_loader)}, acc - {running_acc_ep_t / len(train_loader) / args.batch_size}')
if args.gp:
# model fusion using GP
# whether to swap source and target using the running loss
# if running_loss_t < running_loss_s:
# print('swapping now:')
# cur_norm_source, cur_norm_target = cur_norm_target, cur_norm_source
# model_dict = gp(0.5, [model_nat.state_dict(), model.state_dict()], model_old.state_dict(), model_inf.state_dict(), [0.5, 0.5])
# # args.lr_max /= 2.
# else:
if args.finetune_model:
model_dict = gp(0.2, [model_nat.state_dict()], model_old.state_dict(), model.state_dict(), [1.0])
else:
model_dict = gp(args.beta, [model_nat.state_dict()], model_old.state_dict(), model.state_dict(), [1.0])
# model_inf.load_state_dict(model_dict)
model_nat.load_state_dict(model_dict)
# model_t = copy.deepcopy(model)
model.load_state_dict(model_dict)
# if running_loss_t < running_loss_s:
# print('swapping now:')
# cur_norm_source, cur_norm_target = cur_norm_target, cur_norm_source
model.eval()
# training stats
stats['loss_train_dets']['clean'][epoch] = running_loss_t / len(train_loader) #running_loss / len(train_loader)
str_to_log = '[epoch] {} [time] {:.1f} s [train] loss {:.5f}'.format(
epoch + 1, time.time() - startt, stats['loss_train_dets']['clean'][epoch]) #stats['rob_acc_train_dets']['clean'][epoch]
# compute robustness stats (apgd with 100 iterations)
if (epoch + 1) % args.eval_freq == 0 and args.eval_freq > -1:
model.eval()
# model_inf.eval()
# model_t.eval()
# print('for model after gp:')
# training points
acc_train = utils_eval.eval_norms_fast(model, x_train_eval, y_train_eval,
args.all_norms, args.all_epss, n_iter=100, n_cls=args.n_cls)
# test points
acc_test = utils_eval.eval_norms_fast(model, x_test_eval, y_test_eval,
args.all_norms, args.all_epss, n_iter=100, n_cls=args.n_cls)
str_test, str_train = '', ''
for norm in args.all_norms + ['clean', 'union']:
stats['rob_acc_test_dets'][norm][epoch] = acc_test[norm]
stats['rob_acc_train_dets'][norm][epoch] = acc_train[norm]
str_test += ' {} {:.1%}'.format(norm, acc_test[norm])
str_train += ' {} {:.1%}'.format(norm, acc_train[norm])
str_to_log += '[eval train]{} [eval test]{}'.format(str_train, str_test)
# print('for model for the source domain')
# # training points
# acc_train = utils_eval.eval_norms_fast(model_inf, x_train_eval, y_train_eval,
# args.all_norms, args.all_epss, n_iter=100, n_cls=args.n_cls)
# # test points
# acc_test = utils_eval.eval_norms_fast(model_inf, x_test_eval, y_test_eval,
# args.all_norms, args.all_epss, n_iter=100, n_cls=args.n_cls)
# str_test, str_train = '', ''
# for norm in args.all_norms + ['clean', 'union']:
# stats['rob_acc_test_dets'][norm][epoch] = acc_test[norm]
# stats['rob_acc_train_dets'][norm][epoch] = acc_train[norm]
# str_test += ' {} {:.1%}'.format(norm, acc_test[norm])
# str_train += ' {} {:.1%}'.format(norm, acc_train[norm])
# # str_to_log += '\n'
# # str_to_log += '[eval train]{} [eval test]{}'.format(str_train, str_test)
# print('[eval train]{} [eval test]{}'.format(str_train, str_test))
# print('for model for the target domain')
# # training points
# acc_train = utils_eval.eval_norms_fast(model_t, x_train_eval, y_train_eval,
# args.all_norms, args.all_epss, n_iter=100, n_cls=args.n_cls)
# # test points
# acc_test = utils_eval.eval_norms_fast(model_t, x_test_eval, y_test_eval,
# args.all_norms, args.all_epss, n_iter=100, n_cls=args.n_cls)
# str_test, str_train = '', ''
# for norm in args.all_norms + ['clean', 'union']:
# stats['rob_acc_test_dets'][norm][epoch] = acc_test[norm]
# stats['rob_acc_train_dets'][norm][epoch] = acc_train[norm]
# str_test += ' {} {:.1%}'.format(norm, acc_test[norm])
# str_train += ' {} {:.1%}'.format(norm, acc_train[norm])
# # str_to_log += '\n'
# # str_to_log += '[eval train]{} [eval test]{}'.format(str_train, str_test)
# print('[eval train]{} [eval test]{}'.format(str_train, str_test))
# saving
if (epoch + 1) % args.save_freq == 0 or (epoch + 1) == args.epochs:
curr_dict = model.state_dict()
if args.save_optim:
curr_dict = {'state_dict': model.state_dict(), 'optim': optimizer.state_dict()}
torch.save(curr_dict, '{}/{}/ep_{}_{}.pth'.format(
args.save_dir, args.fname, epoch + 1, iteration))
torch.save(stats, '{}/{}/metrics.pth'.format(args.save_dir, args.fname))
logger.log(str_to_log)
# run long eval
if args.final_eval:
x, y = data.load_cifar10(args.n_ex_final, data_dir=args.data_dir, device='cpu')
l_x_adv, stats['final_acc_dets'] = utils_eval.eval_norms(model, x, y,
l_norms=args.all_norms, l_epss=args.all_epss,
bs=args.batch_size_eval, log_path=log_eval_path) #model, args=args
torch.save(stats, '{}/{}/metrics_{}.pth'.format(args.save_dir, args.fname, iteration))
for norm, eps, v in zip(args.l_norms, args.l_eps, l_x_adv):
torch.save(v, '{}/{}/eval_{}_{}_1_{}_eps_{:.5f}_{}.pth'.format(
args.save_dir, args.fname, 'final', norm, args.n_ex_final, eps, iteration))
if __name__ == '__main__':
main()