-
-
Notifications
You must be signed in to change notification settings - Fork 3.5k
123 lines (119 loc) · 5.45 KB
/
ci-testing.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Ultralytics YOLOv3 🚀, AGPL-3.0 license
# YOLOv3 Continuous Integration (CI) GitHub Actions tests
name: YOLOv3 CI
on:
push:
branches: [master]
pull_request:
branches: [master]
schedule:
- cron: "0 0 * * *" # runs at 00:00 UTC every day
workflow_dispatch:
jobs:
Tests:
timeout-minutes: 60
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-latest] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
python-version: ["3.11"]
model: [yolov5n]
include:
# - os: ubuntu-latest
# python-version: "3.8" # '3.6.8' min (warning, this test is failing)
# model: yolov5n
- os: ubuntu-latest
python-version: "3.9"
model: yolov5n
- os: ubuntu-latest
python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8
model: yolov5n
torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: "pip" # caching pip dependencies
- name: Install requirements
run: |
python -m pip install --upgrade pip wheel
torch=""
if [ "${{ matrix.torch }}" == "1.8.0" ]; then
torch="torch==1.8.0 torchvision==0.9.0"
fi
pip install -r requirements.txt $torch --extra-index-url https://download.pytorch.org/whl/cpu
shell: bash # for Windows compatibility
- name: Check environment
run: |
yolo checks
pip list
- name: Test detection
shell: bash # for Windows compatibility
run: |
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
m=${{ matrix.model }} # official weights
b=runs/train/exp/weights/best # best.pt checkpoint
python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
for d in cpu; do # devices
for w in $m $b; do # weights
python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
python detect.py --imgsz 64 --weights $w.pt --device $d # detect
done
done
python hubconf.py --model $m # hub
# python models/tf.py --weights $m.pt # build TF model
python models/yolo.py --cfg $m.yaml # build PyTorch model
python export.py --weights $m.pt --img 64 --include torchscript # export
python - <<EOF
import torch
im = torch.zeros([1, 3, 64, 64])
for path in '$m', '$b':
model = torch.hub.load('.', 'custom', path=path, source='local')
print(model('data/images/bus.jpg'))
model(im) # warmup, build grids for trace
torch.jit.trace(model, [im])
EOF
- name: Test segmentation
shell: bash # for Windows compatibility
run: |
m=${{ matrix.model }}-seg # official weights
b=runs/train-seg/exp/weights/best # best.pt checkpoint
python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train
for d in cpu; do # devices
for w in $m $b; do # weights
python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict
python export.py --weights $w.pt --img 64 --include torchscript --device $d # export
done
done
- name: Test classification
shell: bash # for Windows compatibility
run: |
m=${{ matrix.model }}-cls.pt # official weights
b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint
python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train
python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val
python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict
python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict
python export.py --weights $b --img 64 --include torchscript # export
python - <<EOF
import torch
for path in '$m', '$b':
model = torch.hub.load('.', 'custom', path=path, source='local')
EOF
Summary:
runs-on: ubuntu-latest
needs: [Tests]
if: always()
steps:
- name: Check for failure and notify
if: (needs.Tests.result == 'failure' || needs.Tests.result == 'cancelled') && github.repository == 'ultralytics/yolov3' && (github.event_name == 'schedule' || github.event_name == 'push')
uses: slackapi/[email protected]
with:
webhook-type: incoming-webhook
webhook: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
payload: |
text: "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"