You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm trying to train MADDPG algorithm with smac environment with the code below
python src/main.py --config=maddpg --env-config=sc2 with env_args.map_name="corridor"
but I got this error: RuntimeError: [enforce fail at alloc_cpu.cpp:75] err == 0. DefaultCPUAllocator: can't allocate memory: you tried to allocate 75067200000 bytes. Error code 12 (Cannot allocate memory)
my system:
ubuntu: 20.04
python: 3.7.12
torch: 1.13.1
I try use others algorithms it run fine. I only got this problem when I use MADDPG algorithms and I got this problem with the main epymarl code and the addtional_algo code too.
The full error script is below
[DEBUG 10:22:34] git.cmd Popen(['git', 'version'], cwd=/home/abdulghani/epymarl_addtional_algo, universal_newlines=False, shell=None, istream=None)
[DEBUG 10:22:34] git.cmd Popen(['git', 'version'], cwd=/home/abdulghani/epymarl_addtional_algo, universal_newlines=False, shell=None, istream=None)
src/main.py:81: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
config_dict = yaml.load(f)
src/main.py:50: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
config_dict = yaml.load(f)
src/main.py:58: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3,and in 3.9 it will stop working
if isinstance(v, collections.Mapping):
[INFO 10:22:34] root Saving to FileStorageObserver in results/sacred.
[DEBUG 10:22:34] pymarl Using capture mode "fd"
[INFO 10:22:34] pymarl Running command 'my_main'
[INFO 10:22:34] pymarl Started run with ID "4"
[DEBUG 10:22:34] pymarl Starting Heartbeat
[DEBUG 10:22:34] my_main Started
[INFO 10:22:34] my_main Experiment Parameters:
[INFO 10:22:34] my_main
2023-04-28 10:22:34.886446: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-28 10:22:34.972517: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.
2023-04-28 10:22:35.382670: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.7/lib64:
2023-04-28 10:22:35.382712: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.7/lib64:
2023-04-28 10:22:35.382715: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
[DEBUG 10:22:35] h5py._conv Creating converter from 7 to 5
[DEBUG 10:22:35] h5py._conv Creating converter from 5 to 7
[DEBUG 10:22:35] h5py._conv Creating converter from 7 to 5
[DEBUG 10:22:35] h5py._conv Creating converter from 5 to 7
[DEBUG 10:22:39] pymarl Stopping Heartbeat
[ERROR 10:22:39] pymarl Failed after 0:00:05!
Traceback (most recent calls WITHOUT Sacred internals):
File "src/main.py", line 36, in my_main
run(_run, config, _log)
File "/home/abdulghani/epymarl_addtional_algo/src/run.py", line 55, in run
run_sequential(args=args, logger=logger)
File "/home/abdulghani/epymarl_addtional_algo/src/run.py", line 117, in run_sequential
device="cpu" if args.buffer_cpu_only else args.device,
File "/home/abdulghani/epymarl_addtional_algo/src/components/episode_buffer.py", line 209, in init
super(ReplayBuffer, self).init(scheme, groups, buffer_size, max_seq_length, preprocess=preprocess, device=device)
File "/home/abdulghani/epymarl_addtional_algo/src/components/episode_buffer.py", line 28, in init
self._setup_data(self.scheme, self.groups, batch_size, max_seq_length, self.preprocess)
File "/home/abdulghani/epymarl_addtional_algo/src/components/episode_buffer.py", line 75, in _setup_data
self.data.transition_data[field_key] = th.zeros((batch_size, max_seq_length, *shape), dtype=dtype, device=self.device)
RuntimeError: [enforce fail at alloc_cpu.cpp:75] err == 0. DefaultCPUAllocator: can't allocate memory: you tried to allocate 75067200000 bytes. Error code 12 (Cannot allocate memory)
The text was updated successfully, but these errors were encountered:
I'm trying to train MADDPG algorithm with smac environment with the code below
python src/main.py --config=maddpg --env-config=sc2 with env_args.map_name="corridor"
but I got this error:
RuntimeError: [enforce fail at alloc_cpu.cpp:75] err == 0. DefaultCPUAllocator: can't allocate memory: you tried to allocate 75067200000 bytes. Error code 12 (Cannot allocate memory)
my system:
ubuntu: 20.04
python: 3.7.12
torch: 1.13.1
I try use others algorithms it run fine. I only got this problem when I use MADDPG algorithms and I got this problem with the main epymarl code and the addtional_algo code too.
The full error script is below
[DEBUG 10:22:34] git.cmd Popen(['git', 'version'], cwd=/home/abdulghani/epymarl_addtional_algo, universal_newlines=False, shell=None, istream=None)
[DEBUG 10:22:34] git.cmd Popen(['git', 'version'], cwd=/home/abdulghani/epymarl_addtional_algo, universal_newlines=False, shell=None, istream=None)
src/main.py:81: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
config_dict = yaml.load(f)
src/main.py:50: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
config_dict = yaml.load(f)
src/main.py:58: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3,and in 3.9 it will stop working
if isinstance(v, collections.Mapping):
[INFO 10:22:34] root Saving to FileStorageObserver in results/sacred.
[DEBUG 10:22:34] pymarl Using capture mode "fd"
[INFO 10:22:34] pymarl Running command 'my_main'
[INFO 10:22:34] pymarl Started run with ID "4"
[DEBUG 10:22:34] pymarl Starting Heartbeat
[DEBUG 10:22:34] my_main Started
[INFO 10:22:34] my_main Experiment Parameters:
[INFO 10:22:34] my_main
{ 'add_value_last_step': True,
'agent': 'rnn',
'agent_output_type': 'pi_logits',
'batch_size': 32,
'batch_size_run': 1,
'buffer_cpu_only': True,
'buffer_size': 50000,
'checkpoint_path': '',
'critic_type': 'maddpg_critic',
'env': 'sc2',
'env_args': { 'continuing_episode': False,
'debug': False,
'difficulty': '7',
'game_version': None,
'heuristic_ai': False,
'heuristic_rest': False,
'map_name': 'corridor',
'move_amount': 2,
'obs_all_health': True,
'obs_instead_of_state': False,
'obs_last_action': False,
'obs_own_health': True,
'obs_pathing_grid': False,
'obs_terrain_height': False,
'obs_timestep_number': False,
'replay_dir': '',
'replay_prefix': '',
'reward_death_value': 10,
'reward_defeat': 0,
'reward_negative_scale': 0.5,
'reward_only_positive': True,
'reward_scale': True,
'reward_scale_rate': 20,
'reward_sparse': False,
'reward_win': 200,
'seed': 36613826,
'state_last_action': True,
'state_timestep_number': False,
'step_mul': 8},
'evaluate': False,
'gamma': 0.99,
'grad_norm_clip': 10,
'hidden_dim': 128,
'hypergroup': None,
'label': 'default_label',
'learner': 'maddpg_learner',
'learner_log_interval': 10000,
'load_step': 0,
'local_results_path': 'results',
'log_interval': 50000,
'lr': 0.0005,
'mac': 'maddpg_mac',
'name': 'maddpg',
'obs_agent_id': True,
'obs_individual_obs': False,
'obs_last_action': False,
'optim_alpha': 0.99,
'optim_eps': 1e-05,
'reg': 0.001,
'repeat_id': 1,
'runner': 'episode',
'runner_log_interval': 10000,
'save_model': True,
'save_model_interval': 50000,
'save_replay': True,
'seed': 36613826,
'standardise_returns': False,
'standardise_rewards': True,
't_max': 2050000,
'target_update_interval_or_tau': 200,
'test_greedy': True,
'test_interval': 50000,
'test_nepisode': 100,
'use_cuda': True,
'use_rnn': True,
'use_tensorboard': True}
2023-04-28 10:22:34.886446: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-28 10:22:34.972517: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable
TF_ENABLE_ONEDNN_OPTS=0
.2023-04-28 10:22:35.382670: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.7/lib64:
2023-04-28 10:22:35.382712: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.7/lib64:
2023-04-28 10:22:35.382715: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
[DEBUG 10:22:35] h5py._conv Creating converter from 7 to 5
[DEBUG 10:22:35] h5py._conv Creating converter from 5 to 7
[DEBUG 10:22:35] h5py._conv Creating converter from 7 to 5
[DEBUG 10:22:35] h5py._conv Creating converter from 5 to 7
[DEBUG 10:22:39] pymarl Stopping Heartbeat
[ERROR 10:22:39] pymarl Failed after 0:00:05!
Traceback (most recent calls WITHOUT Sacred internals):
File "src/main.py", line 36, in my_main
run(_run, config, _log)
File "/home/abdulghani/epymarl_addtional_algo/src/run.py", line 55, in run
run_sequential(args=args, logger=logger)
File "/home/abdulghani/epymarl_addtional_algo/src/run.py", line 117, in run_sequential
device="cpu" if args.buffer_cpu_only else args.device,
File "/home/abdulghani/epymarl_addtional_algo/src/components/episode_buffer.py", line 209, in init
super(ReplayBuffer, self).init(scheme, groups, buffer_size, max_seq_length, preprocess=preprocess, device=device)
File "/home/abdulghani/epymarl_addtional_algo/src/components/episode_buffer.py", line 28, in init
self._setup_data(self.scheme, self.groups, batch_size, max_seq_length, self.preprocess)
File "/home/abdulghani/epymarl_addtional_algo/src/components/episode_buffer.py", line 75, in _setup_data
self.data.transition_data[field_key] = th.zeros((batch_size, max_seq_length, *shape), dtype=dtype, device=self.device)
RuntimeError: [enforce fail at alloc_cpu.cpp:75] err == 0. DefaultCPUAllocator: can't allocate memory: you tried to allocate 75067200000 bytes. Error code 12 (Cannot allocate memory)
The text was updated successfully, but these errors were encountered: