forked from fmihpc/vlasiator
-
Notifications
You must be signed in to change notification settings - Fork 1
/
vlasiator.cpp
1400 lines (1221 loc) · 57.1 KB
/
vlasiator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This file is part of Vlasiator.
* Copyright 2010-2016 Finnish Meteorological Institute
*
* For details of usage, see the COPYING file and read the "Rules of the Road"
* at http://www.physics.helsinki.fi/vlasiator/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <vector>
#include <sstream>
#include <ctime>
#ifdef _OPENMP
#include <omp.h>
#endif
#include <fsgrid.hpp>
#include "vlasovmover.h"
#include "definitions.h"
#include "mpiconversion.h"
#include "logger.h"
#include "parameters.h"
#include "readparameters.h"
#include "spatial_cell_wrapper.hpp"
#include "datareduction/datareducer.h"
#include "sysboundary/sysboundary.h"
#include "fieldtracing/fieldtracing.h"
#include "fieldsolver/fs_common.h"
#include "projects/project.h"
#include "grid.h"
#include "iowrite.h"
#include "ioread.h"
#include "object_wrapper.h"
#include "fieldsolver/gridGlue.hpp"
#include "fieldsolver/derivatives.hpp"
#ifdef CATCH_FPE
#include <fenv.h>
#include <signal.h>
/*! Function used to abort the program upon detecting a floating point exception. Which exceptions are caught is defined using the function feenableexcept.
*/
void fpehandler(int sig_num)
{
signal(SIGFPE, fpehandler);
printf("SIGFPE: floating point exception occured, exiting.\n");
abort();
}
#endif
#include "phiprof.hpp"
Logger logFile, diagnostic;
static dccrg::Dccrg<SpatialCell,dccrg::Cartesian_Geometry> mpiGrid;
using namespace std;
int globalflags::bailingOut = 0;
bool globalflags::writeRestart = 0;
bool globalflags::balanceLoad = 0;
bool globalflags::doRefine=0;
bool globalflags::ionosphereJustSolved = false;
ObjectWrapper objectWrapper;
void addTimedBarrier(string name){
#ifdef NDEBUG
//let's not do a barrier
return;
#endif
phiprof::Timer btimer {name, {"Barriers", "MPI"}};
MPI_Barrier(MPI_COMM_WORLD);
}
/*! Report spatial cell counts per refinement level as well as velocity cell counts per population into logfile
*/
void report_cell_and_block_counts(dccrg::Dccrg<spatial_cell::SpatialCell,dccrg::Cartesian_Geometry>& mpiGrid){
cint maxRefLevel = mpiGrid.get_maximum_refinement_level();
const vector<CellID> localCells = getLocalCells();
cint popCount = getObjectWrapper().particleSpecies.size();
// popCount+1 as we store the spatial cell counts and then the populations' v_cell counts.
// maxRefLevel+1 as e.g. there's 2 levels at maxRefLevel == 1
std::vector<int64_t> localCounts((popCount+1)*(maxRefLevel+1), 0), globalCounts((popCount+1)*(maxRefLevel+1), 0);
for (const auto cellid : localCells) {
cint level = mpiGrid.get_refinement_level(cellid);
localCounts[level]++;
for(int pop=0; pop<popCount; pop++) {
localCounts[maxRefLevel+1 + level*popCount + pop] += mpiGrid[cellid]->get_number_of_velocity_blocks(pop);
}
}
MPI_Reduce(localCounts.data(), globalCounts.data(), (popCount+1)*(maxRefLevel+1), MPI_INT64_T, MPI_SUM, MASTER_RANK, MPI_COMM_WORLD);
logFile << "(CELLS) tstep = " << P::tstep << " time = " << P::t << " spatial cells [ ";
for(int level = 0; level <= maxRefLevel; level++) {
logFile << globalCounts[level] << " ";
}
logFile << "] blocks ";
for(int pop=0; pop<popCount; pop++) {
logFile << getObjectWrapper().particleSpecies[pop].name << " [ ";
for(int level = 0; level <= maxRefLevel; level++) {
logFile << globalCounts[maxRefLevel+1 + level*popCount + pop] << " ";
}
logFile << "] ";
}
logFile << endl << flush;
}
void computeNewTimeStep(dccrg::Dccrg<SpatialCell,dccrg::Cartesian_Geometry>& mpiGrid,
FsGrid< fsgrids::technical, FS_STENCIL_WIDTH> & technicalGrid, Real &newDt, bool &isChanged) {
phiprof::Timer computeTimestepTimer {"compute-timestep"};
// Compute maximum time step. This cannot be done at the first step as the solvers compute the limits for each cell.
isChanged = false;
const vector<CellID>& cells = getLocalCells();
/* Arrays for storing local (per process) and global max dt
0th position stores ordinary space propagation dt
1st position stores velocity space propagation dt
2nd position stores field propagation dt
*/
Real dtMaxLocal[3];
Real dtMaxGlobal[3];
dtMaxLocal[0] = numeric_limits<Real>::max();
dtMaxLocal[1] = numeric_limits<Real>::max();
dtMaxLocal[2] = numeric_limits<Real>::max();
for (vector<CellID>::const_iterator cell_id = cells.begin(); cell_id != cells.end(); ++cell_id) {
SpatialCell* cell = mpiGrid[*cell_id];
const Real dx = cell->parameters[CellParams::DX];
const Real dy = cell->parameters[CellParams::DY];
const Real dz = cell->parameters[CellParams::DZ];
cell->parameters[CellParams::MAXRDT] = numeric_limits<Real>::max();
for (uint popID = 0; popID < getObjectWrapper().particleSpecies.size(); ++popID) {
cell->set_max_r_dt(popID, numeric_limits<Real>::max());
vmesh::VelocityBlockContainer<vmesh::LocalID>& blockContainer = cell->get_velocity_blocks(popID);
const Real* blockParams = blockContainer.getParameters();
const Real EPS = numeric_limits<Real>::min() * 1000;
for (vmesh::LocalID blockLID = 0; blockLID < blockContainer.size(); ++blockLID) {
for (unsigned int i = 0; i < WID; i += WID - 1) {
const Real Vx =
blockParams[blockLID * BlockParams::N_VELOCITY_BLOCK_PARAMS + BlockParams::VXCRD] +
(i + HALF) * blockParams[blockLID * BlockParams::N_VELOCITY_BLOCK_PARAMS + BlockParams::DVX] + EPS;
const Real Vy =
blockParams[blockLID * BlockParams::N_VELOCITY_BLOCK_PARAMS + BlockParams::VYCRD] +
(i + HALF) * blockParams[blockLID * BlockParams::N_VELOCITY_BLOCK_PARAMS + BlockParams::DVY] + EPS;
const Real Vz =
blockParams[blockLID * BlockParams::N_VELOCITY_BLOCK_PARAMS + BlockParams::VZCRD] +
(i + HALF) * blockParams[blockLID * BlockParams::N_VELOCITY_BLOCK_PARAMS + BlockParams::DVZ] + EPS;
const Real dt_max_cell = min({dx / fabs(Vx), dy / fabs(Vy), dz / fabs(Vz)});
cell->set_max_r_dt(popID, min(dt_max_cell, cell->get_max_r_dt(popID)));
}
}
cell->parameters[CellParams::MAXRDT] = min(cell->get_max_r_dt(popID), cell->parameters[CellParams::MAXRDT]);
}
if (cell->sysBoundaryFlag == sysboundarytype::NOT_SYSBOUNDARY ||
(cell->sysBoundaryLayer == 1 && cell->sysBoundaryFlag != sysboundarytype::NOT_SYSBOUNDARY)) {
// spatial fluxes computed also for boundary cells
dtMaxLocal[0] = min(dtMaxLocal[0], cell->parameters[CellParams::MAXRDT]);
}
if (cell->parameters[CellParams::MAXVDT] != 0 &&
(cell->sysBoundaryFlag == sysboundarytype::NOT_SYSBOUNDARY ||
(P::vlasovAccelerateMaxwellianBoundaries && cell->sysBoundaryFlag == sysboundarytype::MAXWELLIAN))) {
// acceleration only done on non-boundary cells
dtMaxLocal[1] = min(dtMaxLocal[1], cell->parameters[CellParams::MAXVDT]);
}
}
// compute max dt for fieldsolver
const std::array<FsGridTools::FsIndex_t, 3> gridDims(technicalGrid.getLocalSize());
for (FsGridTools::FsIndex_t k = 0; k < gridDims[2]; k++) {
for (FsGridTools::FsIndex_t j = 0; j < gridDims[1]; j++) {
for (FsGridTools::FsIndex_t i = 0; i < gridDims[0]; i++) {
fsgrids::technical* cell = technicalGrid.get(i, j, k);
if (cell->sysBoundaryFlag == sysboundarytype::NOT_SYSBOUNDARY ||
(cell->sysBoundaryLayer == 1 && cell->sysBoundaryFlag != sysboundarytype::NOT_SYSBOUNDARY)) {
dtMaxLocal[2] = min(dtMaxLocal[2], cell->maxFsDt);
}
}
}
}
MPI_Allreduce(&(dtMaxLocal[0]), &(dtMaxGlobal[0]), 3, MPI_Type<Real>(), MPI_MIN, MPI_COMM_WORLD);
// If any of the solvers are disabled there should be no limits in timespace from it
if (!P::propagateVlasovTranslation)
dtMaxGlobal[0] = numeric_limits<Real>::max();
if (!P::propagateVlasovAcceleration)
dtMaxGlobal[1] = numeric_limits<Real>::max();
if (!P::propagateField)
dtMaxGlobal[2] = numeric_limits<Real>::max();
creal meanVlasovCFL = 0.5 * (P::vlasovSolverMaxCFL + P::vlasovSolverMinCFL);
creal meanFieldsCFL = 0.5 * (P::fieldSolverMaxCFL + P::fieldSolverMinCFL);
Real subcycleDt;
// reduce/increase dt if it is too high for any of the three propagators or too low for all propagators
if ((P::dt > dtMaxGlobal[0] * P::vlasovSolverMaxCFL ||
P::dt > dtMaxGlobal[1] * P::vlasovSolverMaxCFL * P::maxSlAccelerationSubcycles ||
P::dt > dtMaxGlobal[2] * P::fieldSolverMaxCFL * P::maxFieldSolverSubcycles) ||
(P::dt < dtMaxGlobal[0] * P::vlasovSolverMinCFL &&
P::dt < dtMaxGlobal[1] * P::vlasovSolverMinCFL * P::maxSlAccelerationSubcycles &&
P::dt < dtMaxGlobal[2] * P::fieldSolverMinCFL * P::maxFieldSolverSubcycles)) {
// new dt computed
isChanged = true;
// set new timestep to the lowest one of all interval-midpoints
newDt = meanVlasovCFL * dtMaxGlobal[0];
newDt = min(newDt, meanVlasovCFL * dtMaxGlobal[1] * P::maxSlAccelerationSubcycles);
newDt = min(newDt, meanFieldsCFL * dtMaxGlobal[2] * P::maxFieldSolverSubcycles);
logFile << "(TIMESTEP) New dt = " << newDt << " computed on step " << P::tstep << " at " << P::t
<< "s Maximum possible dt (not including vlasovsolver CFL " << P::vlasovSolverMinCFL << "-"
<< P::vlasovSolverMaxCFL << " or fieldsolver CFL " << P::fieldSolverMinCFL << "-" << P::fieldSolverMaxCFL
<< ") in {r, v, BE} was " << dtMaxGlobal[0] << " " << dtMaxGlobal[1] << " " << dtMaxGlobal[2] << " "
<< " Including subcycling { v, BE} was " << dtMaxGlobal[1] * P::maxSlAccelerationSubcycles << " "
<< dtMaxGlobal[2] * P::maxFieldSolverSubcycles << " " << endl
<< writeVerbose;
if (P::dynamicTimestep) {
subcycleDt = newDt;
} else {
logFile << "(TIMESTEP) However, fixed timestep in config overrides dt = " << P::dt << endl << writeVerbose;
subcycleDt = P::dt;
}
} else {
subcycleDt = P::dt;
}
// Subcycle if field solver dt < global dt (including CFL) (new or old dt hence the hassle with subcycleDt
if (meanFieldsCFL * dtMaxGlobal[2] < subcycleDt && P::propagateField) {
P::fieldSolverSubcycles =
min(convert<uint>(ceil(subcycleDt / (meanFieldsCFL * dtMaxGlobal[2]))), P::maxFieldSolverSubcycles);
} else {
P::fieldSolverSubcycles = 1;
}
}
ObjectWrapper& getObjectWrapper() {
return objectWrapper;
}
/** Get local cell IDs. This function creates a cached copy of the
* cell ID lists to significantly improve performance. The cell ID
* cache is recalculated every time the mesh partitioning changes.
* @return Local cell IDs.*/
const std::vector<CellID>& getLocalCells() {
return Parameters::localCells;
}
void recalculateLocalCellsCache() {
{
vector<CellID> dummy;
dummy.swap(Parameters::localCells);
}
Parameters::localCells = mpiGrid.get_cells();
}
int main(int argn,char* args[]) {
int myRank, doBailout=0;
const creal DT_EPSILON=1e-12;
typedef Parameters P;
Real newDt;
bool dtIsChanged {false};
// Before MPI_Init we hardwire some settings, if we are in OpenMPI
int required=MPI_THREAD_FUNNELED;
int provided, resultlen;
char mpiversion[MPI_MAX_LIBRARY_VERSION_STRING];
bool overrideMCAompio = false;
MPI_Get_library_version(mpiversion, &resultlen);
string versionstr = string(mpiversion);
stringstream mpiioMessage;
if(versionstr.find("Open MPI") != std::string::npos) {
#ifdef VLASIATOR_ALLOW_MCA_OMPIO
mpiioMessage << "We detected OpenMPI but the compilation flag VLASIATOR_ALLOW_MCA_OMPIO was set so we do not override the default MCA io flag." << endl;
#else
overrideMCAompio = true;
int index, count;
char io_value[64];
MPI_T_cvar_handle io_handle;
MPI_T_init_thread(required, &provided);
MPI_T_cvar_get_index("io", &index);
MPI_T_cvar_handle_alloc(index, NULL, &io_handle, &count);
MPI_T_cvar_write(io_handle, "^ompio");
MPI_T_cvar_read(io_handle, io_value);
MPI_T_cvar_handle_free(&io_handle);
mpiioMessage << "We detected OpenMPI so we set the cvars value to disable ompio, MCA io: " << io_value << endl;
#endif
}
// After the MPI_T settings we can init MPI all right.
MPI_Init_thread(&argn,&args,required,&provided);
MPI_Comm_rank(MPI_COMM_WORLD,&myRank);
if (required > provided){
if(myRank==MASTER_RANK) {
cerr << "(MAIN): MPI_Init_thread failed! Got " << provided << ", need "<<required <<endl;
}
exit(1);
}
if (myRank == MASTER_RANK) {
const char* mpiioenv = std::getenv("OMPI_MCA_io");
if(mpiioenv != nullptr) {
std::string mpiioenvstr(mpiioenv);
if(mpiioenvstr.find("^ompio") == std::string::npos) {
cout << mpiioMessage.str();
}
}
}
phiprof::initialize();
double initialWtime = MPI_Wtime();
SysBoundary& sysBoundaryContainer = getObjectWrapper().sysBoundaryContainer;
#ifdef CATCH_FPE
// WARNING FE_INEXACT is too sensitive to be used. See man fenv.
//feenableexcept(FE_DIVBYZERO|FE_INVALID|FE_OVERFLOW|FE_UNDERFLOW);
feenableexcept(FE_DIVBYZERO|FE_INVALID|FE_OVERFLOW);
//feenableexcept(FE_DIVBYZERO|FE_INVALID);
signal(SIGFPE, fpehandler);
#endif
phiprof::Timer mainTimer {"main"};
phiprof::Timer initTimer {"Initialization"};
phiprof::Timer readParamsTimer {"Read parameters"};
//init parameter file reader
Readparameters readparameters(argn,args);
P::addParameters();
getObjectWrapper().addParameters();
readparameters.parse();
P::getParameters();
getObjectWrapper().addPopulationParameters();
sysBoundaryContainer.addParameters();
projects::Project::addParameters();
Project* project = projects::createProject();
getObjectWrapper().project = project;
readparameters.parse(true, false); // 2nd parsing for specific population parameters
readparameters.helpMessage(); // Call after last parse, exits after printing help if help requested
getObjectWrapper().getParameters();
sysBoundaryContainer.getParameters();
project->getParameters();
readParamsTimer.stop();
//Get version and config info here
std::string version;
std::string config;
//Only master needs the info
if (myRank==MASTER_RANK){
version=readparameters.versionInfo();
config=readparameters.configInfo();
}
// Init parallel logger:
phiprof::Timer openLoggerTimer {"open logFile & diagnostic"};
//if restarting we will append to logfiles
if(!P::writeFullBGB) {
if (logFile.open(MPI_COMM_WORLD,MASTER_RANK,"logfile.txt",P::isRestart) == false) {
if(myRank == MASTER_RANK) cerr << "(MAIN) ERROR: Logger failed to open logfile!" << endl;
exit(1);
}
} else {
// If we are out to write the full background field and derivatives, we don't want to overwrite the existing run's logfile.
if (logFile.open(MPI_COMM_WORLD,MASTER_RANK,"logfile_fullbgbio.txt",false) == false) {
if(myRank == MASTER_RANK) cerr << "(MAIN) ERROR: Logger failed to open logfile_fullbgbio!" << endl;
exit(1);
}
}
if (P::diagnosticInterval != 0) {
if (diagnostic.open(MPI_COMM_WORLD,MASTER_RANK,"diagnostic.txt",P::isRestart) == false) {
if(myRank == MASTER_RANK) cerr << "(MAIN) ERROR: Logger failed to open diagnostic file!" << endl;
exit(1);
}
}
{
int mpiProcs;
MPI_Comm_size(MPI_COMM_WORLD,&mpiProcs);
logFile << "(MAIN) Starting simulation with " << mpiProcs << " MPI processes ";
#ifdef _OPENMP
logFile << "and " << omp_get_max_threads();
#else
logFile << "and 0";
#endif
logFile << " OpenMP threads per process" << endl << writeVerbose;
}
openLoggerTimer.stop();
// Init project
phiprof::Timer initProjectimer {"Init project"};
if (project->initialize() == false) {
if(myRank == MASTER_RANK) cerr << "(MAIN): Project did not initialize correctly!" << endl;
exit(1);
}
if (project->initialized() == false) {
if (myRank == MASTER_RANK) {
cerr << "(MAIN): Project base class was not initialized!" << endl;
cerr << "\t Call Project::initialize() in your project's initialize()-function." << endl;
exit(1);
}
}
initProjectimer.stop();
// Add VAMR refinement criterias:
vamr_ref_criteria::addRefinementCriteria();
// Initialize simplified Fieldsolver grids.
// Needs to be done here already ad the background field will be set right away, before going to initializeGrid even
phiprof::Timer initFsTimer {"Init fieldsolver grids"};
std::array<FsGridTools::FsSize_t, 3> fsGridDimensions = {convert<FsGridTools::FsSize_t>(P::xcells_ini * pow(2,P::amrMaxSpatialRefLevel)),
convert<FsGridTools::FsSize_t>(P::ycells_ini * pow(2,P::amrMaxSpatialRefLevel)),
convert<FsGridTools::FsSize_t>(P::zcells_ini * pow(2,P::amrMaxSpatialRefLevel))};
std::array<bool,3> periodicity{sysBoundaryContainer.isPeriodic(0),
sysBoundaryContainer.isPeriodic(1),
sysBoundaryContainer.isPeriodic(2)};
FsGridCouplingInformation gridCoupling;
FsGrid< std::array<Real, fsgrids::bfield::N_BFIELD>, FS_STENCIL_WIDTH> perBGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::bfield::N_BFIELD>, FS_STENCIL_WIDTH> perBDt2Grid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::efield::N_EFIELD>, FS_STENCIL_WIDTH> EGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::efield::N_EFIELD>, FS_STENCIL_WIDTH> EDt2Grid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::ehall::N_EHALL>, FS_STENCIL_WIDTH> EHallGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::egradpe::N_EGRADPE>, FS_STENCIL_WIDTH> EGradPeGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::moments::N_MOMENTS>, FS_STENCIL_WIDTH> momentsGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::moments::N_MOMENTS>, FS_STENCIL_WIDTH> momentsDt2Grid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::dperb::N_DPERB>, FS_STENCIL_WIDTH> dPerBGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::dmoments::N_DMOMENTS>, FS_STENCIL_WIDTH> dMomentsGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::bgbfield::N_BGB>, FS_STENCIL_WIDTH> BgBGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< std::array<Real, fsgrids::volfields::N_VOL>, FS_STENCIL_WIDTH> volGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
FsGrid< fsgrids::technical, FS_STENCIL_WIDTH> technicalGrid(fsGridDimensions, MPI_COMM_WORLD, periodicity,gridCoupling, P::manualFsGridDecomposition);
// Set DX, DY and DZ
// TODO: This is currently just taking the values from cell 1, and assuming them to be
// constant throughout the simulation.
perBGrid.DX = perBDt2Grid.DX = EGrid.DX = EDt2Grid.DX = EHallGrid.DX = EGradPeGrid.DX = momentsGrid.DX
= momentsDt2Grid.DX = dPerBGrid.DX = dMomentsGrid.DX = BgBGrid.DX = volGrid.DX = technicalGrid.DX
= P::dx_ini / pow(2, P::amrMaxSpatialRefLevel);
perBGrid.DY = perBDt2Grid.DY = EGrid.DY = EDt2Grid.DY = EHallGrid.DY = EGradPeGrid.DY = momentsGrid.DY
= momentsDt2Grid.DY = dPerBGrid.DY = dMomentsGrid.DY = BgBGrid.DY = volGrid.DY = technicalGrid.DY
= P::dy_ini / pow(2, P::amrMaxSpatialRefLevel);
perBGrid.DZ = perBDt2Grid.DZ = EGrid.DZ = EDt2Grid.DZ = EHallGrid.DZ = EGradPeGrid.DZ = momentsGrid.DZ
= momentsDt2Grid.DZ = dPerBGrid.DZ = dMomentsGrid.DZ = BgBGrid.DZ = volGrid.DZ = technicalGrid.DZ
= P::dz_ini / pow(2, P::amrMaxSpatialRefLevel);
// Set the physical start (lower left corner) X, Y, Z
perBGrid.physicalGlobalStart = perBDt2Grid.physicalGlobalStart = EGrid.physicalGlobalStart = EDt2Grid.physicalGlobalStart
= EHallGrid.physicalGlobalStart = EGradPeGrid.physicalGlobalStart = momentsGrid.physicalGlobalStart
= momentsDt2Grid.physicalGlobalStart = dPerBGrid.physicalGlobalStart = dMomentsGrid.physicalGlobalStart
= BgBGrid.physicalGlobalStart = volGrid.physicalGlobalStart = technicalGrid.physicalGlobalStart
= {P::xmin, P::ymin, P::zmin};
// Checking that spatial cells are cubic, otherwise field solver is incorrect (cf. derivatives in E, Hall term)
constexpr Real uniformTolerance=1e-3;
if ((abs((technicalGrid.DX - technicalGrid.DY) / technicalGrid.DX) >uniformTolerance) ||
(abs((technicalGrid.DX - technicalGrid.DZ) / technicalGrid.DX) >uniformTolerance) ||
(abs((technicalGrid.DY - technicalGrid.DZ) / technicalGrid.DY) >uniformTolerance)) {
if (myRank == MASTER_RANK) {
std::cerr << "WARNING: Your spatial cells seem not to be cubic. The simulation will now abort!" << std::endl;
}
//just abort sending SIGTERM to all tasks
MPI_Abort(MPI_COMM_WORLD, -1);
}
initFsTimer.stop();
// Initialize grid. After initializeGrid local cells have dist
// functions, and B fields set. Cells have also been classified for
// the various sys boundary conditions. All remote cells have been
// created. All spatial date computed this far is up to date for
// FULL_NEIGHBORHOOD. Block lists up to date for
// VLASOV_SOLVER_NEIGHBORHOOD (but dist function has not been communicated)
phiprof::Timer initGridsTimer {"Init grids"};
initializeGrids(
argn,
args,
mpiGrid,
perBGrid,
BgBGrid,
momentsGrid,
momentsDt2Grid,
EGrid,
EGradPeGrid,
volGrid,
technicalGrid,
sysBoundaryContainer,
*project
);
// There are projects that have non-uniform and non-zero perturbed B, e.g. Magnetosphere with dipole type 4.
// For inflow cells (e.g. maxwellian), we cannot take a FSgrid perturbed B value from the templateCell,
// because we need a copy of the value from initialization in both perBGrid and perBDt2Grid and it isn't
// touched as we are in boundary cells for components that aren't solved. We do a straight full copy instead
// of looping and detecting boundary types here.
perBDt2Grid.copyData(perBGrid);
const std::vector<CellID>& cells = getLocalCells();
initGridsTimer.stop();
// Initialize data reduction operators. This should be done elsewhere in order to initialize
// user-defined operators:
phiprof::Timer initDROsTimer {"Init DROs"};
DataReducer outputReducer, diagnosticReducer;
if(P::writeFullBGB) {
// We need the following variables for this, let's just erase and replace the entries in the list
P::outputVariableList.clear();
P::outputVariableList= {"fg_b_background", "fg_b_background_vol", "fg_derivs_b_background"};
}
initializeDataReducers(&outputReducer, &diagnosticReducer);
initDROsTimer.stop();
// Free up memory:
readparameters.~Readparameters();
if(P::writeFullBGB) {
logFile << "Writing out full BGB components and derivatives and exiting." << endl << writeVerbose;
// initialize the communicators so we can write out ionosphere grid metadata.
SBC::ionosphereGrid.updateIonosphereCommunicator(mpiGrid, technicalGrid);
P::systemWriteDistributionWriteStride.push_back(0);
P::systemWriteName.push_back("bgb");
P::systemWriteDistributionWriteXlineStride.push_back(0);
P::systemWriteDistributionWriteYlineStride.push_back(0);
P::systemWriteDistributionWriteZlineStride.push_back(0);
P::systemWritePath.push_back("./");
P::systemWriteFsGrid.push_back(true);
for(uint si=0; si<P::systemWriteName.size(); si++) {
P::systemWrites.push_back(0);
}
const bool writeGhosts = true;
if( writeGrid(mpiGrid,
perBGrid,
EGrid,
EHallGrid,
EGradPeGrid,
momentsGrid,
dPerBGrid,
dMomentsGrid,
BgBGrid,
volGrid,
technicalGrid,
version,
config,
&outputReducer,
P::systemWriteName.size()-1,
P::restartStripeFactor,
writeGhosts
) == false
) {
cerr << "FAILED TO WRITE GRID AT " << __FILE__ << " " << __LINE__ << endl;
}
initTimer.stop();
mainTimer.stop();
phiprof::print(MPI_COMM_WORLD,"phiprof");
if (myRank == MASTER_RANK) logFile << "(MAIN): Exiting." << endl << writeVerbose;
logFile.close();
if (P::diagnosticInterval != 0) diagnostic.close();
perBGrid.finalize();
perBDt2Grid.finalize();
EGrid.finalize();
EDt2Grid.finalize();
EHallGrid.finalize();
EGradPeGrid.finalize();
momentsGrid.finalize();
momentsDt2Grid.finalize();
dPerBGrid.finalize();
dMomentsGrid.finalize();
BgBGrid.finalize();
volGrid.finalize();
technicalGrid.finalize();
MPI_Finalize();
return 0;
}
// Run the field solver once with zero dt. This will initialize
// Fieldsolver dt limits, and also calculate volumetric B-fields.
// At restart, all we need at this stage has been read from the restart, the rest will be recomputed in due time.
if(P::isRestart == false) {
propagateFields(
perBGrid,
perBDt2Grid,
EGrid,
EDt2Grid,
EHallGrid,
EGradPeGrid,
momentsGrid,
momentsDt2Grid,
dPerBGrid,
dMomentsGrid,
BgBGrid,
volGrid,
technicalGrid,
sysBoundaryContainer, 0.0, 1.0
);
}
phiprof::Timer getFieldsTimer {"getFieldsFromFsGrid"};
volGrid.updateGhostCells();
getFieldsFromFsGrid(volGrid, BgBGrid, EGradPeGrid, technicalGrid, mpiGrid, cells);
getFieldsTimer.stop();
// Build communicator for ionosphere solving
SBC::ionosphereGrid.updateIonosphereCommunicator(mpiGrid, technicalGrid);
// If not a restart, perBGrid and dPerBGrid are up to date after propagateFields just above. Otherwise, we should compute them.
if(P::isRestart) {
calculateDerivativesSimple(
perBGrid,
perBDt2Grid,
momentsGrid,
momentsDt2Grid,
dPerBGrid,
dMomentsGrid,
technicalGrid,
sysBoundaryContainer,
RK_ORDER1, // Update and compute on non-dt2 grids.
false // Don't communicate moments, they are not needed here.
);
dPerBGrid.updateGhostCells();
}
FieldTracing::calculateIonosphereFsgridCoupling(technicalGrid, perBGrid, dPerBGrid, SBC::ionosphereGrid.nodes, SBC::Ionosphere::radius);
SBC::ionosphereGrid.initSolver(!P::isRestart); // If it is a restart we do not want to zero out everything
if(SBC::Ionosphere::couplingInterval > 0 && P::isRestart) {
SBC::Ionosphere::solveCount = floor(P::t / SBC::Ionosphere::couplingInterval)+1;
} else {
SBC::Ionosphere::solveCount = 1;
}
if(P::isRestart) {
// If it is a restart, we want to regenerate proper ig_inplanecurrent as well in case there's IO before the next solver step.
SBC::ionosphereGrid.calculateConductivityTensor(SBC::Ionosphere::F10_7, SBC::Ionosphere::recombAlpha, SBC::Ionosphere::backgroundIonisation, true);
}
if (P::isRestart == false) {
phiprof::Timer timer {"compute-dt"};
// Run Vlasov solver once with zero dt to initialize
// per-cell dt limits. In restarts, we read the dt from file.
calculateSpatialTranslation(mpiGrid,0.0);
calculateAcceleration(mpiGrid,0.0);
}
// Save restart data
if (P::writeInitialState) {
// Calculate these so refinement parameters can be tuned based on the vlsv
calculateScaledDeltasSimple(mpiGrid);
FieldTracing::reduceData(technicalGrid, perBGrid, dPerBGrid, mpiGrid, SBC::ionosphereGrid.nodes); /*!< Call the reductions (e.g. field tracing) */
phiprof::Timer timer {"write-initial-state"};
if (myRank == MASTER_RANK)
logFile << "(IO): Writing initial state to disk, tstep = " << endl << writeVerbose;
P::systemWriteDistributionWriteStride.push_back(1);
P::systemWriteName.push_back("initial-grid");
P::systemWriteDistributionWriteXlineStride.push_back(0);
P::systemWriteDistributionWriteYlineStride.push_back(0);
P::systemWriteDistributionWriteZlineStride.push_back(0);
P::systemWritePath.push_back("./");
P::systemWriteFsGrid.push_back(true);
for(uint si=0; si<P::systemWriteName.size(); si++) {
P::systemWrites.push_back(0);
}
const bool writeGhosts = true;
if( writeGrid(mpiGrid,
perBGrid, // TODO: Merge all the fsgrids passed here into one meta-object
EGrid,
EHallGrid,
EGradPeGrid,
momentsGrid,
dPerBGrid,
dMomentsGrid,
BgBGrid,
volGrid,
technicalGrid,
version,
config,
&outputReducer,
P::systemWriteName.size()-1,
P::restartStripeFactor,
writeGhosts
) == false
) {
cerr << "FAILED TO WRITE GRID AT " << __FILE__ << " " << __LINE__ << endl;
}
P::systemWriteDistributionWriteStride.pop_back();
P::systemWriteName.pop_back();
P::systemWriteDistributionWriteXlineStride.pop_back();
P::systemWriteDistributionWriteYlineStride.pop_back();
P::systemWriteDistributionWriteZlineStride.pop_back();
P::systemWritePath.pop_back();
P::systemWriteFsGrid.pop_back();
}
if (P::isRestart == false) {
//compute new dt
phiprof::Timer computeDtimer {"compute-dt"};
computeNewTimeStep(mpiGrid, technicalGrid, newDt, dtIsChanged);
if (P::dynamicTimestep == true && dtIsChanged == true) {
// Only actually update the timestep if dynamicTimestep is on
P::dt=newDt;
} else {
dtIsChanged = false;
}
computeDtimer.stop();
//go forward by dt/2 in V, initializes leapfrog split. In restarts the
//the distribution function is already propagated forward in time by dt/2
phiprof::Timer propagateHalfTimer {"propagate-velocity-space-dt/2"};
if (P::propagateVlasovAcceleration) {
calculateAcceleration(mpiGrid, 0.5*P::dt);
} else {
//zero step to set up moments _v
calculateAcceleration(mpiGrid, 0.0);
}
propagateHalfTimer.stop();
// Apply boundary conditions
if (P::propagateVlasovTranslation || P::propagateVlasovAcceleration ) {
phiprof::Timer updateBoundariesTimer {("update system boundaries (Vlasov post-acceleration)")};
sysBoundaryContainer.applySysBoundaryVlasovConditions(mpiGrid, 0.5*P::dt, true);
updateBoundariesTimer.stop();
addTimedBarrier("barrier-boundary-conditions");
}
// Also update all moments. They won't be transmitted to FSgrid until the field solver is called, though.
phiprof::Timer computeMomentsTimer {"Compute interp moments"};
calculateInterpolatedVelocityMoments(
mpiGrid,
CellParams::RHOM,
CellParams::VX,
CellParams::VY,
CellParams::VZ,
CellParams::RHOQ,
CellParams::P_11,
CellParams::P_22,
CellParams::P_33
);
computeMomentsTimer.stop();
}
initTimer.stop();
// ***********************************
// ***** INITIALIZATION COMPLETE *****
// ***********************************
// Main simulation loop:
if (myRank == MASTER_RANK){
logFile << "(MAIN): Starting main simulation loop." << endl << writeVerbose;
//report filtering if we are in an AMR run
if (P::amrMaxSpatialRefLevel>0){
logFile<<"Filtering Report: "<<endl;
for (int refLevel=0 ; refLevel<= P::amrMaxSpatialRefLevel; refLevel++){
logFile<<"\tRefinement Level " <<refLevel<<"==> Passes "<<P::numPasses.at(refLevel)<<endl;
}
logFile<<endl;
}
}
phiprof::Timer reportMemTimer {"report-memory-consumption"};
report_process_memory_consumption();
reportMemTimer.stop();
unsigned int computedCells=0;
unsigned int computedTotalCells=0;
//Compute here based on time what the file intervals are
P::systemWrites.clear();
for(uint i=0;i< P::systemWriteTimeInterval.size();i++){
int index=(int)(P::t_min/P::systemWriteTimeInterval[i]);
//if we are already over 1% further than the time interval time that
//is requested for writing, then jump to next writing index. This is to
//make sure that at restart we do not write in the middle of
//the interval.
if(P::t_min>(index+0.01)*P::systemWriteTimeInterval[i]) {
index++;
// Special case for large timesteps
int index2=(int)((P::t_min+P::dt)/P::systemWriteTimeInterval[i]);
if (index2>index) index=index2;
}
P::systemWrites.push_back(index);
}
// Invalidate cached cell lists just to be sure (might not be needed)
P::meshRepartitioned = true;
unsigned int wallTimeRestartCounter=1;
int doNow[3] = {0}; // 0: writeRestartNow, 1: balanceLoadNow, 2: refineNow ; declared outside main loop
int writeRestartNow; // declared outside main loop
bool overrideRebalanceNow = false; // declared outside main loop
bool refineNow = false; // declared outside main loop
addTimedBarrier("barrier-end-initialization");
phiprof::Timer simulationTimer {"Simulation"};
double startTime= MPI_Wtime();
double beforeTime = MPI_Wtime();
double beforeSimulationTime=P::t_min;
double beforeStep=P::tstep_min;
while(P::tstep <= P::tstep_max &&
P::t-P::dt <= P::t_max+DT_EPSILON &&
wallTimeRestartCounter <= P::exitAfterRestarts) {
addTimedBarrier("barrier-loop-start");
phiprof::Timer ioTimer {"IO"};
phiprof::Timer externalsTimer {"checkExternalCommands"};
if(myRank == MASTER_RANK) {
// check whether STOP or KILL or SAVE has been passed, should be done by MASTER_RANK only as it can reset P::bailout_write_restart
checkExternalCommands();
}
externalsTimer.stop();
//write out phiprof profiles and logs with a lower interval than normal
//diagnostic (every 10 diagnostic intervals).
phiprof::Timer loggingTimer {"logfile-io"};
logFile << "---------- tstep = " << P::tstep << " t = " << P::t <<" dt = " << P::dt << " FS cycles = " << P::fieldSolverSubcycles << " ----------" << endl;
if (P::diagnosticInterval != 0 &&
P::tstep % (P::diagnosticInterval*10) == 0 &&
P::tstep-P::tstep_min >0) {
phiprof::print(MPI_COMM_WORLD,"phiprof");
double currentTime=MPI_Wtime();
double timePerStep=double(currentTime - beforeTime) / (P::tstep-beforeStep);
double timePerSecond=double(currentTime - beforeTime) / (P::t-beforeSimulationTime + DT_EPSILON);
double remainingTime=min(timePerStep*(P::tstep_max-P::tstep),timePerSecond*(P::t_max-P::t));
time_t finalWallTime=time(NULL)+(time_t)remainingTime; //assume time_t is in seconds, as it is almost always
struct tm *finalWallTimeInfo=localtime(&finalWallTime);
logFile << "(TIME) current walltime/step " << timePerStep<< " s" <<endl;
logFile << "(TIME) current walltime/simusecond " << timePerSecond<<" s" <<endl;
logFile << "(TIME) Estimated completion time is " <<asctime(finalWallTimeInfo)<<endl;
//reset before values, we want to report speed since last report of speed.
beforeTime = MPI_Wtime();
beforeSimulationTime=P::t;
beforeStep=P::tstep;
}
logFile << writeVerbose;
loggingTimer.stop();
// Check whether diagnostic output has to be produced
if (P::diagnosticInterval != 0 && P::tstep % P::diagnosticInterval == 0) {
phiprof::Timer memTimer {"memory-report"};
memTimer.start();
report_process_memory_consumption();
memTimer.stop();
phiprof::Timer cellTimer {"cell-count-report"};
cellTimer.start();
report_cell_and_block_counts(mpiGrid);
cellTimer.stop();
phiprof::Timer diagnosticTimer {"diagnostic-io"};
if (writeDiagnostic(mpiGrid, diagnosticReducer) == false) {
if(myRank == MASTER_RANK) cerr << "ERROR with diagnostic computation" << endl;
}
}
// write system, loop through write classes
for (uint i = 0; i < P::systemWriteTimeInterval.size(); i++) {
if (P::systemWriteTimeInterval[i] >= 0.0 &&
P::t >= P::systemWrites[i] * P::systemWriteTimeInterval[i] - DT_EPSILON) {
// If we have only just restarted, the bulk file should already exist from the previous slot.
if ((P::tstep == P::tstep_min) && (P::tstep>0)) {
P::systemWrites[i]++;
// Special case for large timesteps
int index2=(int)((P::t+P::dt)/P::systemWriteTimeInterval[i]);
if (index2>P::systemWrites[i]) P::systemWrites[i]=index2;
continue;
}
// Calculate these so refinement parameters can be tuned based on the vlsv
calculateScaledDeltasSimple(mpiGrid);
FieldTracing::reduceData(technicalGrid, perBGrid, dPerBGrid, mpiGrid, SBC::ionosphereGrid.nodes); /*!< Call the reductions (e.g. field tracing) */
phiprof::Timer writeSysTimer {"write-system"};
logFile << "(IO): Writing spatial cell and reduced system data to disk, tstep = " << P::tstep << " t = " << P::t << endl << writeVerbose;
const bool writeGhosts = true;
if(writeGrid(mpiGrid,
perBGrid, // TODO: Merge all the fsgrids passed here into one meta-object
EGrid,
EHallGrid,
EGradPeGrid,
momentsGrid,
dPerBGrid,
dMomentsGrid,
BgBGrid,
volGrid,
technicalGrid,
version,
config,
&outputReducer,
i,
P::systemStripeFactor,
writeGhosts
) == false
) {
cerr << "FAILED TO WRITE GRID AT" << __FILE__ << " " << __LINE__ << endl;
}
P::systemWrites[i]++;
// Special case for large timesteps
int index2=(int)((P::t+P::dt)/P::systemWriteTimeInterval[i]);
if (index2>P::systemWrites[i]) P::systemWrites[i]=index2;
logFile << "(IO): .... done!" << endl << writeVerbose;
}
}
// Reduce globalflags::bailingOut from all processes
phiprof::Timer bailoutReduceTimer {"Bailout-allreduce"};
MPI_Allreduce(&(globalflags::bailingOut), &(doBailout), 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
bailoutReduceTimer.stop();
// Write restart data if needed
// Combined with checking of additional load balancing to have only one collective call.
phiprof::Timer restartCheckTimer {"compute-is-restart-written-and-extra-LB"};
if (myRank == MASTER_RANK) {
if ( (P::saveRestartWalltimeInterval >= 0.0
&& (P::saveRestartWalltimeInterval*wallTimeRestartCounter <= MPI_Wtime()-initialWtime
|| P::tstep == P::tstep_max
|| P::t >= P::t_max))
|| (doBailout > 0 && P::bailout_write_restart)
|| globalflags::writeRestart
) {
doNow[0] = 1;
if (globalflags::writeRestart == true) {
doNow[0] = 2; // Setting to 2 so as to not increment the restart count below.
globalflags::writeRestart = false; // This flag is only used by MASTER_RANK here and it needs to be reset after a restart write has been issued.
}
}
else {
doNow[0] = 0;
}
if (globalflags::balanceLoad || globalflags::doRefine) {
doNow[1] = 1;
globalflags::balanceLoad = false;
if (globalflags::doRefine) {
doNow[2] = 1;
globalflags::doRefine = false;
}
}
}
MPI_Bcast( &doNow, 3 , MPI_INT , MASTER_RANK ,MPI_COMM_WORLD);