-
Notifications
You must be signed in to change notification settings - Fork 3
/
predict.py
221 lines (172 loc) · 10 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import random
import argparse
import pandas as pd
import numpy as np
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, EncoderDecoderModel
from rouge_score import rouge_scorer
from models import EncoderDecoderModelWithGates, EncoderModelWithGates
from scorers import WRR, bleu_score
pd.options.display.max_columns = 1000
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog="Denoise trainer", conflict_handler='resolve')
parser.add_argument('--data_file', type=str, help='Path to the data file', required=True)
parser.add_argument('--model_path', type=str, help='Path to save trained model', required=True)
parser.add_argument('--min_len_src', type=int, help='Minimum length of source texts', required=False, default=20)
parser.add_argument('--max_len_src', type=int, help='Maximum length of source texts', required=False, default=300)
parser.add_argument('--min_len_tgt', type=int, help='Minimum length of target texts', required=False, default=20)
parser.add_argument('--max_len_tgt', type=int, help='Maximum length of target texts', required=False, default=300)
parser.add_argument('--model_type', type=str, help='Type of models - seq2seq, BART, T5', required=True)
parser.add_argument('--pretrained_encoder_path', type=str, help='Pretrained encoder model name', required=True)
parser.add_argument('--pretrained_decoder_path', type=str, help='Pretrained decoder model name', required=False, default=None)
parser.add_argument('--mask_gate', help='Indicator for masking gate', default=False, action="store_true")
parser.add_argument('--copy_gate', help='Indicator for copy gate', default=False, action="store_true")
parser.add_argument('--generate_gate', help='Indicator for generate gate', default=False, action="store_true")
parser.add_argument('--skip_gate', help='Indicator for skip gate', default=False, action="store_true")
parser.add_argument('--seed', type=int, help='Random seed', required=False, default=66)
parser.add_argument('--teacher_forcing', type=int, help='Teacher Forcing', required=False, default=1)
args, _ = parser.parse_known_args()
try:
assert args.model_type in ['seq2seq','bart','t5']
except:
raise ValueError("Model type not in ['seq2seq','bart', 't5']")
#try:
# assert (args.model_type == 'seq2seq' and args.pretrained_encoder_path and args.pretrained_decoder_path) or (args.model_type != 'seq2seq' and args.pretrained_encoder_path)
#except:
# raise ValueError("Check the pretrained paths")
val = pd.read_csv(args.data_file)
val = val.dropna().reset_index(drop=True)
try:
assert ('source' in val.columns)
except:
raise ValueError("Source column not found in data")
encoder_tokenizer = AutoTokenizer.from_pretrained(args.pretrained_encoder_path)
if args.pretrained_decoder_path:
decoder_tokenizer = AutoTokenizer.from_pretrained(args.pretrained_decoder_path)
else:
decoder_tokenizer = encoder_tokenizer
valX = torch.Tensor(np.asarray([encoder_tokenizer.encode(i, max_length=args.max_len_src, truncation=True, padding='max_length', add_special_tokens=True) \
for i in tqdm(val.source.values)]))
if 'target' in val.columns:
valy = torch.Tensor(np.asarray([decoder_tokenizer.encode(i, max_length=args.max_len_tgt, truncation=True, padding='max_length', add_special_tokens=True) \
for i in tqdm(val.target.values)]))
valX = torch.tensor(valX, dtype=torch.long)
if 'target' in val.columns:
valy = torch.tensor(valy, dtype=torch.long)
gates = []
if args.mask_gate == True:
gates.append('mask')
if args.copy_gate == True:
gates.append('copy')
if args.generate_gate == True:
gates.append('generate')
if args.skip_gate == True:
gates.append('skip')
print ("Running model with {} gates".format(gates))
if args.model_type == 'seq2seq':
if args.pretrained_decoder_path:
model = EncoderDecoderModelWithGates.from_encoder_decoder_pretrained(args.pretrained_encoder_path, args.pretrained_decoder_path, gates=gates)
else:
model = EncoderDecoderModel.from_pretrained(args.pretrained_encoder_path)
model = EncoderDecoderModelWithGates(config=model.config,encoder=model.encoder, decoder=model.decoder, gates=gates)
model.config.encoder.max_length = args.max_len_src
model.config.decoder.max_length = args.max_len_tgt
model.config.encoder.min_length = args.min_len_src
model.config.decoder.min_length = args.min_len_tgt
model.encoder_tokenizer = encoder_tokenizer
model.decoder_tokenizer = decoder_tokenizer
else:
model = EncoderModelWithGates(args.model_type, args.pretrained_encoder_path, gates=gates)
model.encoder.config.max_length = args.max_len_src
model.decoder.config.max_length = args.max_len_tgt
model.encoder.config.min_length = args.min_len_src
model.decoder.config.min_length = args.min_len_tgt
model.encoder_tokenizer = encoder_tokenizer
model.decoder_tokenizer = decoder_tokenizer
if args.model_type == 't5':
encoder_mask_id = encoder_tokenizer.additional_special_tokens_ids[0]
decoder_mask_id = decoder_tokenizer.additional_special_tokens_ids[0]
else:
encoder_mask_id = encoder_tokenizer.mask_token_id
decoder_mask_id = decoder_tokenizer.mask_token_id
#print ("Total number of parameters {}".format(sum(p.numel() for p in model.parameters() if p.requires_grad == True)))
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.cuda.empty_cache()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
if 'target' in val.columns:
val_data_loader = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(valX,valy), batch_size=4)
else:
val_data_loader = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(valX), batch_size=4)
model.load_state_dict(torch.load(os.path.join(args.model_path,'model.pth')))
model.eval()
all_val_logits = []
all_generate_probs = []
all_copy_probs = []
all_masking_probs = []
all_skip_probs = []
# Evaluate data for one epoch
for batch in tqdm(val_data_loader):
input_ids = batch[0].to(device)
if 'target' in val.columns:
output_ids = batch[1].to(device)
with torch.no_grad():
# Forward pass, calculate logit predictions.
# token_type_ids is the same as the "segment ids", which
# differentiates sentence 1 and 2 in 2-sentence tasks.
# Get the "logits" output by the model. The "logits" are the output
# values prior to applying an activation function like the softmax.
if 'target' in val.columns and args.teacher_forcing == 1:
outputs, generate_prob, copy_prob,masking_prob, skip_prob = model(input_ids=input_ids, encoder_mask_token_id = torch.tensor([[encoder_mask_id]]).to(device),\
decoder_mask_token_id = decoder_mask_id, labels=output_ids, return_dict=True)
else:
outputs, generate_prob, copy_prob,masking_prob, skip_prob = model(input_ids=input_ids, encoder_mask_token_id = torch.tensor([[encoder_mask_id]]).to(device),\
decoder_mask_token_id = decoder_mask_id, return_dict=True)
logits = outputs.logits
logits = logits.detach().cpu().numpy()
all_val_logits.extend(logits.argmax(-1))
all_generate_probs.extend(generate_prob.detach().cpu().numpy())
all_copy_probs.extend(copy_prob.detach().cpu().numpy())
all_masking_probs.extend(masking_prob.detach().cpu().numpy())
all_skip_probs.extend(skip_prob.detach().cpu().numpy())
predicted_texts = []
if len(all_val_logits) != val.shape[0]:
all_val_logits = np.concatenate(all_val_logits, axis=0)
#all_generate_probs = np.concatenate(all_generate_probs, axis=0)
#all_copy_probs = np.concatenate(all_copy_probs, axis=0)
#all_masking_probs = np.concatenate(all_masking_probs, axis=0)
#all_skip_probs = np.concatenate(all_skip_probs, axis=0)
#print (all_generate_probs.shape, all_copy_probs.shape, np.asarray(all_masking_probs).shape, all_skip_probs.shape)
#print (all_val_logits.shape)
for i in all_val_logits:
text = decoder_tokenizer.decode(i)
text = text.replace('<s>','')
text = text.replace('</s>','')
text = text.replace('<pad>','')
#text = [k for k in text if k not in ['<s>','</s>','<pad>']]
predicted_texts.append(text.strip())
#predicted_texts.append(" ".join(text).strip())
val['predicted_target'] = predicted_texts
val['text_len'] = val.source.apply(lambda x: len(encoder_tokenizer.encode(x, max_length=512, add_special_tokens=True)))
val = val[val.text_len < args.max_len_src].reset_index(drop=True)
scorer = rouge_scorer.RougeScorer(['rouge1','rougeL'], use_stemmer=True)
if 'target' in val.columns:
val['WRR'] = val.apply(lambda x: WRR(x.target, x.predicted_target), axis=1)
val['BLEU'] = val.apply(lambda x: bleu_score(x.target, x.predicted_target), axis=1)
val['Rogue'] = val.apply(lambda x: scorer.score(x.target.lower(),x.predicted_target.lower())['rougeL'].fmeasure,axis=1)
print (val[['WRR','BLEU','Rogue']].describe())
val.to_csv(os.path.join(args.model_path,'validation_output.csv'),index=False)
try:
np.save(os.path.join(args.model_path,'generate_probs.npy'), np.asarray(all_generate_probs)[:,:,0])
np.save(os.path.join(args.model_path,'copy_probs.npy'), np.asarray(all_copy_probs)[:,:,0])
np.save(os.path.join(args.model_path,'mask_probs.npy'), np.asarray(all_masking_probs)[:,:,0])
np.save(os.path.join(args.model_path,'skip_probs.npy'), np.asarray(all_skip_probs)[:,:,0])
except:
pass