We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
(pytorch2) E:\大创\video-bgm-generation-main>D:/Anaconda/envs/pytorch2/python.exe e:/大创/video-bgm-generation-main/src/train.py name: debug args Namespace(name='debug', lr=0.0001, batch_size=6, path=None, epochs=200, train_data='E:/大创/video-bgm-generation-main/dataset/lpd_5_prcem_mix_v8_10000.npz', gpus=None) DEBUG MODE checkpoints will not be saved num of encoder classes: [ 18 3 18 129 18 6 20 102 4865] [7, 1, 6] D_MODEL 512 N_LAYER 12 N_HEAD 8 DECODER ATTN causal-linear
: [ 18 3 18 129 18 6 20 102 4865] DEVICE COUNT: 1 VISIBLE: 0 n_parameters: 39,006,324 train_data: dataset batch_size: 6 num_batch: 506 train_x: (3039, 9999, 9) train_y: (3039, 9999, 9) train_mask: (3039, 9999) lr_init: 0.0001 DECAY_EPOCH: [] DECAY_RATIO: 0.1 Traceback (most recent call last): File "e:\大创\video-bgm-generation-main\src\train.py", line 226, in train_dp() File "e:\大创\video-bgm-generation-main\src\train.py", line 169, in train_dp losses = net(is_train=True, x=batch_x, target=batch_y, loss_mask=batch_mask, init_token=batch_init) File "D:\Anaconda\envs\pytorch2\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "D:\Anaconda\envs\pytorch2\lib\site-packages\torch\nn\parallel\data_parallel.py", line 169, in forward return self.module(*inputs[0], **kwargs[0]) File "D:\Anaconda\envs\pytorch2\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "e:\大创\video-bgm-generation-main\src\model.py", line 482, in forward return self.train_forward(**kwargs) File "e:\大创\video-bgm-generation-main\src\model.py", line 450, in train_forward h, y_type = self.forward_hidden(x, memory=None, is_training=True, init_token=init_token) File "e:\大创\video-bgm-generation-main\src\model.py", line 221, in forward_hidden encoder_hidden = self.transformer_encoder(encoder_pos_emb, attn_mask) File "D:\Anaconda\envs\pytorch2\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "D:\Anaconda\envs\pytorch2\lib\site-packages\pytorch_fast_transformers-0.4.0-py3.9-win-amd64.egg\fast_transformers\transformers.py", line 138, in forward x = layer(x, attn_mask=attn_mask, length_mask=length_mask) File "D:\Anaconda\envs\pytorch2\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "D:\Anaconda\envs\pytorch2\lib\site-packages\pytorch_fast_transformers-0.4.0-py3.9-win-amd64.egg\fast_transformers\transformers.py", line 77, in forward x = x + self.dropout(self.attention( File "D:\Anaconda\envs\pytorch2\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "D:\Anaconda\envs\pytorch2\lib\site-packages\pytorch_fast_transformers-0.4.0-py3.9-win-amd64.egg\fast_transformers\attention\attention_layer.py", line 103, in forward new_values = self.inner_attention( File "D:\Anaconda\envs\pytorch2\lib\site-packages\torch\nn\modules\module.py", line 1501, in call_impl return forward_call(*args, **kwargs) File "D:\Anaconda\envs\pytorch2\lib\site-packages\pytorch_fast_transformers-0.4.0-py3.9-win-amd64.egg\fast_transformers\attention\causal_linear_attention.py", line 98, in forward V = causal_linear( File "D:\Anaconda\envs\pytorch2\lib\site-packages\pytorch_fast_transformers-0.4.0-py3.9-win-amd64.egg\fast_transformers\attention\causal_linear_attention.py", line 23, in causal_linear V_new = causal_dot_product(Q, K, V) File "D:\Anaconda\envs\pytorch2\lib\site-packages\torch\autograd\function.py", line 506, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "D:\Anaconda\envs\pytorch2\lib\site-packages\pytorch_fast_transformers-0.4.0-py3.9-win-amd64.egg\fast_transformers\causal_product_init.py", line 44, in forward CausalDotProduct.dot[device.type]( TypeError: 'NoneType' object is not callable
The text was updated successfully, but these errors were encountered:
Please refer to #3.
Sorry, something went wrong.
No branches or pull requests
(pytorch2) E:\大创\video-bgm-generation-main>D:/Anaconda/envs/pytorch2/python.exe e:/大创/video-bgm-generation-main/src/train.py
name: debug
args Namespace(name='debug', lr=0.0001, batch_size=6, path=None, epochs=200, train_data='E:/大创/video-bgm-generation-main/dataset/lpd_5_prcem_mix_v8_10000.npz', gpus=None)
DEBUG MODE checkpoints will not be saved
num of encoder classes: [ 18 3 18 129 18 6 20 102 4865] [7, 1, 6]
D_MODEL 512 N_LAYER 12 N_HEAD 8 DECODER ATTN causal-linear
The text was updated successfully, but these errors were encountered: