-
Notifications
You must be signed in to change notification settings - Fork 242
/
main.py
127 lines (100 loc) · 3.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Traffic Flow Prediction with Neural Networks(SAEs、LSTM、GRU).
"""
import math
import warnings
import numpy as np
import pandas as pd
from data.data import process_data
from keras.models import load_model
from keras.utils.vis_utils import plot_model
import sklearn.metrics as metrics
import matplotlib as mpl
import matplotlib.pyplot as plt
warnings.filterwarnings("ignore")
def MAPE(y_true, y_pred):
"""Mean Absolute Percentage Error
Calculate the mape.
# Arguments
y_true: List/ndarray, ture data.
y_pred: List/ndarray, predicted data.
# Returns
mape: Double, result data for train.
"""
y = [x for x in y_true if x > 0]
y_pred = [y_pred[i] for i in range(len(y_true)) if y_true[i] > 0]
num = len(y_pred)
sums = 0
for i in range(num):
tmp = abs(y[i] - y_pred[i]) / y[i]
sums += tmp
mape = sums * (100 / num)
return mape
def eva_regress(y_true, y_pred):
"""Evaluation
evaluate the predicted resul.
# Arguments
y_true: List/ndarray, ture data.
y_pred: List/ndarray, predicted data.
"""
mape = MAPE(y_true, y_pred)
vs = metrics.explained_variance_score(y_true, y_pred)
mae = metrics.mean_absolute_error(y_true, y_pred)
mse = metrics.mean_squared_error(y_true, y_pred)
r2 = metrics.r2_score(y_true, y_pred)
print('explained_variance_score:%f' % vs)
print('mape:%f%%' % mape)
print('mae:%f' % mae)
print('mse:%f' % mse)
print('rmse:%f' % math.sqrt(mse))
print('r2:%f' % r2)
def plot_results(y_true, y_preds, names):
"""Plot
Plot the true data and predicted data.
# Arguments
y_true: List/ndarray, ture data.
y_pred: List/ndarray, predicted data.
names: List, Method names.
"""
d = '2016-3-4 00:00'
x = pd.date_range(d, periods=288, freq='5min')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y_true, label='True Data')
for name, y_pred in zip(names, y_preds):
ax.plot(x, y_pred, label=name)
plt.legend()
plt.grid(True)
plt.xlabel('Time of Day')
plt.ylabel('Flow')
date_format = mpl.dates.DateFormatter("%H:%M")
ax.xaxis.set_major_formatter(date_format)
fig.autofmt_xdate()
plt.show()
def main():
lstm = load_model('model/lstm.h5')
gru = load_model('model/gru.h5')
saes = load_model('model/saes.h5')
models = [lstm, gru, saes]
names = ['LSTM', 'GRU', 'SAEs']
lag = 12
file1 = 'data/train.csv'
file2 = 'data/test.csv'
_, _, X_test, y_test, scaler = process_data(file1, file2, lag)
y_test = scaler.inverse_transform(y_test.reshape(-1, 1)).reshape(1, -1)[0]
y_preds = []
for name, model in zip(names, models):
if name == 'SAEs':
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1]))
else:
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
file = 'images/' + name + '.png'
plot_model(model, to_file=file, show_shapes=True)
predicted = model.predict(X_test)
predicted = scaler.inverse_transform(predicted.reshape(-1, 1)).reshape(1, -1)[0]
y_preds.append(predicted[:288])
print(name)
eva_regress(y_test, predicted)
plot_results(y_test[: 288], y_preds, names)
if __name__ == '__main__':
main()