forked from geek-ai/MAgent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
api_demo.py
71 lines (55 loc) · 1.97 KB
/
api_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""
First demo, show the usage of API
"""
import magent
# try:
# from magent.builtin.mx_model import DeepQNetwork
# except ImportError as e:
from magent.builtin.tf_model import DeepQNetwork
if __name__ == "__main__":
map_size = 100
# init the game "pursuit" (config file are stored in python/magent/builtin/config/)
env = magent.GridWorld("pursuit", map_size=map_size)
env.set_render_dir("build/render")
# get group handles
predator, prey = env.get_handles()
# init env and agents
env.reset()
env.add_walls(method="random", n=map_size * map_size * 0.01)
env.add_agents(predator, method="random", n=map_size * map_size * 0.02)
env.add_agents(prey, method="random", n=map_size * map_size * 0.02)
# init two models
model1 = DeepQNetwork(env, predator, "predator")
model2 = DeepQNetwork(env, prey, "prey")
# load trained model
model1.load("data/pursuit_model")
model2.load("data/pursuit_model")
done = False
step_ct = 0
print("nums: %d vs %d" % (env.get_num(predator), env.get_num(prey)))
while not done:
# take actions for deers
obs_1 = env.get_observation(predator)
ids_1 = env.get_agent_id(predator)
acts_1 = model1.infer_action(obs_1, ids_1)
env.set_action(predator, acts_1)
# take actions for tigers
obs_2 = env.get_observation(prey)
ids_2 = env.get_agent_id(prey)
acts_2 = model2.infer_action(obs_2, ids_1)
env.set_action(prey, acts_2)
# simulate one step
done = env.step()
# render
env.render()
# get reward
reward = [sum(env.get_reward(predator)), sum(env.get_reward(prey))]
# clear dead agents
env.clear_dead()
# print info
if step_ct % 10 == 0:
print("step: %d\t predators' reward: %d\t preys' reward: %d" %
(step_ct, reward[0], reward[1]))
step_ct += 1
if step_ct > 250:
break