-
Notifications
You must be signed in to change notification settings - Fork 146
/
UWB_model_ct.m
62 lines (60 loc) · 3.17 KB
/
UWB_model_ct.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
function [h,t,t0,np] = UWB_model_ct(Lam,lam,Gam,gam,num_ch,nlos,sdi,sdc,sdr)
% IEEE 802.15.3a UWB channel model for PHY proposal evaluation
% continuous-time realization of modified S-V channel model
% Inputs
% Lam : Cluster arrival rate in GHz (avg # of clusters per nsec)
% lam : Ray arrival rate in GHz (avg # of rays per nsec)
% Gam : Cluster decay factor (time constant, nsec)
% gam : Ray decay factor (time constant, nsec)
% num_ch: number of random realizations to generate
% nlos : Flag to specify generation of Non Line Of Sight channels
% sdi : Standard deviation of log-normal shadowing of entire impulse response
% sdc : Standard deviation of log-normal variable for cluster fading
% sdr : Standard deviation of log-normal variable for ray fading
% Outputs
% h : a matrix with num_ch columns, each column
% having a random realization of the channel model (impulse response)
% t : organized as h, but holds the time instances (in nsec) of the paths
% whose signed amplitudes are stored in h
% t0 : the arrival time of the first cluster for each realization
% np : the number of paths for each realization.
% Thus, the k'th realization of the channel impulse response is the sequence
% of (time,value) pairs given by (t(1:np(k),k), h(1:np(k),k))
%MIMO-OFDM Wireless Communications with MATLAB¢ç Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd
% Initialize and precompute some things
sd_L = 1/sqrt(2*Lam); % std dev (nsec) of cluster arrival spacing
sd_l = 1/sqrt(2*lam); % std dev (nsec) of ray arrival spacing
mu_const = (sdc^2+sdr^2)*log(10)/20; % pre-compute for later
h_len = 1000; % there must be a better estimate of # of paths than this
for k = 1:num_ch % loop over number of channels
tmp_h = zeros(h_len,1); tmp_t = zeros(h_len,1);
if nlos, Tc = (sd_L*randn)^2+(sd_L*randn)^2; % First cluster random arrival
else Tc = 0; % First cluster arrival occurs at time 0
end
t0(k) = Tc;
path_ix = 0;
while (Tc<10*Gam)
% Determine Ray arrivals for each cluster
Tr = 0; % first ray arrival defined to be time 0 relative to cluster
ln_xi = sdc*randn; % set cluster fading (new line added in rev. 1)
while (Tr<10*gam)
t_val = Tc+Tr; % time of arrival of this ray
mu = (-10*Tc/Gam-10*Tr/gam)/log(10) - mu_const; % (2.25) ???
ln_beta = mu + sdr*randn;
pk = 2*round(rand)-1;
h_val = pk*10^((ln_xi+ln_beta)/20); % (2.23) signed amplitude of this ray
path_ix = path_ix + 1; % row index of this ray
tmp_h(path_ix) = h_val; tmp_t(path_ix) = t_val;
Tr = Tr + (sd_l*randn)^2 + (sd_l*randn)^2;
end
Tc = Tc + (sd_L*randn)^2 + (sd_L*randn)^2;
end
np(k) = path_ix; % number of rays (or paths) for this realization
[sort_tmp_t,sort_ix] = sort(tmp_t(1:np(k))); % sort in ascending time order
t(1:np(k),k) = sort_tmp_t;
h(1:np(k),k) = tmp_h(sort_ix(1:np(k)));
% now impose a log-normal shadowing on this realization
fac = 10^(sdi*randn/20)/sqrt(h(1:np(k),k)'*h(1:np(k),k));
h(1:np(k),k) = h(1:np(k),k)*fac; % (2.24) ???
end