-
Notifications
You must be signed in to change notification settings - Fork 27
/
conversions.py
524 lines (389 loc) · 16.1 KB
/
conversions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import torch
import torch.nn as nn
import torchgeometry as tgm
__all__ = [
# functional api
"pi",
"rad2deg",
"deg2rad",
"convert_points_from_homogeneous",
"convert_points_to_homogeneous",
"angle_axis_to_rotation_matrix",
"rotation_matrix_to_angle_axis",
"rotation_matrix_to_quaternion",
"quaternion_to_angle_axis",
"angle_axis_to_quaternion",
"rtvec_to_pose",
# layer api
"RadToDeg",
"DegToRad",
"ConvertPointsFromHomogeneous",
"ConvertPointsToHomogeneous",
]
"""Constant with number pi
"""
pi = torch.Tensor([3.14159265358979323846])
def rad2deg(tensor):
r"""Function that converts angles from radians to degrees.
See :class:`~torchgeometry.RadToDeg` for details.
Args:
tensor (Tensor): Tensor of arbitrary shape.
Returns:
Tensor: Tensor with same shape as input.
Example:
>>> input = tgm.pi * torch.rand(1, 3, 3)
>>> output = tgm.rad2deg(input)
"""
if not torch.is_tensor(tensor):
raise TypeError("Input type is not a torch.Tensor. Got {}"
.format(type(tensor)))
return 180. * tensor / pi.to(tensor.device).type(tensor.dtype)
def deg2rad(tensor):
r"""Function that converts angles from degrees to radians.
See :class:`~torchgeometry.DegToRad` for details.
Args:
tensor (Tensor): Tensor of arbitrary shape.
Returns:
Tensor: Tensor with same shape as input.
Examples::
>>> input = 360. * torch.rand(1, 3, 3)
>>> output = tgm.deg2rad(input)
"""
if not torch.is_tensor(tensor):
raise TypeError("Input type is not a torch.Tensor. Got {}"
.format(type(tensor)))
return tensor * pi.to(tensor.device).type(tensor.dtype) / 180.
def convert_points_from_homogeneous(points):
r"""Function that converts points from homogeneous to Euclidean space.
See :class:`~torchgeometry.ConvertPointsFromHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_from_homogeneous(input) # BxNx2
"""
if not torch.is_tensor(points):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(points)))
if len(points.shape) < 2:
raise ValueError("Input must be at least a 2D tensor. Got {}".format(
points.shape))
return points[..., :-1] / points[..., -1:]
def convert_points_to_homogeneous(points):
r"""Function that converts points from Euclidean to homogeneous space.
See :class:`~torchgeometry.ConvertPointsToHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_to_homogeneous(input) # BxNx4
"""
if not torch.is_tensor(points):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(points)))
if len(points.shape) < 2:
raise ValueError("Input must be at least a 2D tensor. Got {}".format(
points.shape))
return nn.functional.pad(points, (0, 1), "constant", 1.0)
def angle_axis_to_rotation_matrix(angle_axis):
"""Convert 3d vector of axis-angle rotation to 4x4 rotation matrix
Args:
angle_axis (Tensor): tensor of 3d vector of axis-angle rotations.
Returns:
Tensor: tensor of 4x4 rotation matrices.
Shape:
- Input: :math:`(N, 3)`
- Output: :math:`(N, 4, 4)`
Example:
>>> input = torch.rand(1, 3) # Nx3
>>> output = tgm.angle_axis_to_rotation_matrix(input) # Nx4x4
"""
def _compute_rotation_matrix(angle_axis, theta2, eps=1e-6):
# We want to be careful to only evaluate the square root if the
# norm of the angle_axis vector is greater than zero. Otherwise
# we get a division by zero.
k_one = 1.0
theta = torch.sqrt(theta2)
wxyz = angle_axis / (theta + eps)
wx, wy, wz = torch.chunk(wxyz, 3, dim=1)
cos_theta = torch.cos(theta)
sin_theta = torch.sin(theta)
r00 = cos_theta + wx * wx * (k_one - cos_theta)
r10 = wz * sin_theta + wx * wy * (k_one - cos_theta)
r20 = -wy * sin_theta + wx * wz * (k_one - cos_theta)
r01 = wx * wy * (k_one - cos_theta) - wz * sin_theta
r11 = cos_theta + wy * wy * (k_one - cos_theta)
r21 = wx * sin_theta + wy * wz * (k_one - cos_theta)
r02 = wy * sin_theta + wx * wz * (k_one - cos_theta)
r12 = -wx * sin_theta + wy * wz * (k_one - cos_theta)
r22 = cos_theta + wz * wz * (k_one - cos_theta)
rotation_matrix = torch.cat(
[r00, r01, r02, r10, r11, r12, r20, r21, r22], dim=1)
return rotation_matrix.view(-1, 3, 3)
def _compute_rotation_matrix_taylor(angle_axis):
rx, ry, rz = torch.chunk(angle_axis, 3, dim=1)
k_one = torch.ones_like(rx)
rotation_matrix = torch.cat(
[k_one, -rz, ry, rz, k_one, -rx, -ry, rx, k_one], dim=1)
return rotation_matrix.view(-1, 3, 3)
# stolen from ceres/rotation.h
_angle_axis = torch.unsqueeze(angle_axis, dim=1)
theta2 = torch.matmul(_angle_axis, _angle_axis.transpose(1, 2))
theta2 = torch.squeeze(theta2, dim=1)
# compute rotation matrices
rotation_matrix_normal = _compute_rotation_matrix(angle_axis, theta2)
rotation_matrix_taylor = _compute_rotation_matrix_taylor(angle_axis)
# create mask to handle both cases
eps = 1e-6
mask = (theta2 > eps).view(-1, 1, 1).to(theta2.device)
mask_pos = (mask).type_as(theta2)
mask_neg = (mask == False).type_as(theta2) # noqa
# create output pose matrix
batch_size = angle_axis.shape[0]
rotation_matrix = torch.eye(4).to(angle_axis.device).type_as(angle_axis)
rotation_matrix = rotation_matrix.view(1, 4, 4).repeat(batch_size, 1, 1)
# fill output matrix with masked values
rotation_matrix[..., :3, :3] = \
mask_pos * rotation_matrix_normal + mask_neg * rotation_matrix_taylor
return rotation_matrix # Nx4x4
def rtvec_to_pose(rtvec):
"""
Convert axis-angle rotation and translation vector to 4x4 pose matrix
Args:
rtvec (Tensor): Rodrigues vector transformations
Returns:
Tensor: transformation matrices
Shape:
- Input: :math:`(N, 6)`
- Output: :math:`(N, 4, 4)`
Example:
>>> input = torch.rand(3, 6) # Nx6
>>> output = tgm.rtvec_to_pose(input) # Nx4x4
"""
assert rtvec.shape[-1] == 6, 'rtvec=[rx, ry, rz, tx, ty, tz]'
pose = angle_axis_to_rotation_matrix(rtvec[..., :3])
pose[..., :3, 3] = rtvec[..., 3:]
return pose
def rotation_matrix_to_angle_axis(rotation_matrix):
"""Convert 3x4 rotation matrix to Rodrigues vector
Args:
rotation_matrix (Tensor): rotation matrix.
Returns:
Tensor: Rodrigues vector transformation.
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 3)`
Example:
>>> input = torch.rand(2, 3, 4) # Nx4x4
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
"""
# todo add check that matrix is a valid rotation matrix
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
return quaternion_to_angle_axis(quaternion)
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(rotation_matrix)))
if len(rotation_matrix.shape) > 3:
raise ValueError(
"Input size must be a three dimensional tensor. Got {}".format(
rotation_matrix.shape))
if not rotation_matrix.shape[-2:] == (3, 4):
raise ValueError(
"Input size must be a N x 3 x 4 tensor. Got {}".format(
rotation_matrix.shape))
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1
mask_c1 = mask_d2 * (~ mask_d0_d1)
mask_c2 = (~ mask_d2) * mask_d0_nd1
mask_c3 = (~ mask_d2) * (~ mask_d0_nd1)
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa
q *= 0.5
return q
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
"""Convert quaternion vector to angle axis of rotation.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}"
.format(quaternion.shape))
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(
cos_theta < 0.0,
torch.atan2(-sin_theta, -cos_theta),
torch.atan2(sin_theta, cos_theta))
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
# based on:
# https://github.com/facebookresearch/QuaterNet/blob/master/common/quaternion.py#L138
def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor:
"""Convert an angle axis to a quaternion.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
angle_axis (torch.Tensor): tensor with angle axis.
Return:
torch.Tensor: tensor with quaternion.
Shape:
- Input: :math:`(*, 3)` where `*` means, any number of dimensions
- Output: :math:`(*, 4)`
Example:
>>> angle_axis = torch.rand(2, 4) # Nx4
>>> quaternion = tgm.angle_axis_to_quaternion(angle_axis) # Nx3
"""
if not torch.is_tensor(angle_axis):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(angle_axis)))
if not angle_axis.shape[-1] == 3:
raise ValueError("Input must be a tensor of shape Nx3 or 3. Got {}"
.format(angle_axis.shape))
# unpack input and compute conversion
a0: torch.Tensor = angle_axis[..., 0:1]
a1: torch.Tensor = angle_axis[..., 1:2]
a2: torch.Tensor = angle_axis[..., 2:3]
theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2
theta: torch.Tensor = torch.sqrt(theta_squared)
half_theta: torch.Tensor = theta * 0.5
mask: torch.Tensor = theta_squared > 0.0
ones: torch.Tensor = torch.ones_like(half_theta)
k_neg: torch.Tensor = 0.5 * ones
k_pos: torch.Tensor = torch.sin(half_theta) / theta
k: torch.Tensor = torch.where(mask, k_pos, k_neg)
w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones)
quaternion: torch.Tensor = torch.zeros_like(angle_axis)
quaternion[..., 0:1] += a0 * k
quaternion[..., 1:2] += a1 * k
quaternion[..., 2:3] += a2 * k
return torch.cat([w, quaternion], dim=-1)
# TODO: add below funtionalities
# - pose_to_rtvec
# layer api
class RadToDeg(nn.Module):
r"""Creates an object that converts angles from radians to degrees.
Args:
tensor (Tensor): Tensor of arbitrary shape.
Returns:
Tensor: Tensor with same shape as input.
Examples::
>>> input = tgm.pi * torch.rand(1, 3, 3)
>>> output = tgm.RadToDeg()(input)
"""
def __init__(self):
super(RadToDeg, self).__init__()
def forward(self, input):
return rad2deg(input)
class DegToRad(nn.Module):
r"""Function that converts angles from degrees to radians.
Args:
tensor (Tensor): Tensor of arbitrary shape.
Returns:
Tensor: Tensor with same shape as input.
Examples::
>>> input = 360. * torch.rand(1, 3, 3)
>>> output = tgm.DegToRad()(input)
"""
def __init__(self):
super(DegToRad, self).__init__()
def forward(self, input):
return deg2rad(input)
class ConvertPointsFromHomogeneous(nn.Module):
r"""Creates a transformation that converts points from homogeneous to
Euclidean space.
Args:
points (Tensor): tensor of N-dimensional points.
Returns:
Tensor: tensor of N-1-dimensional points.
Shape:
- Input: :math:`(B, D, N)` or :math:`(D, N)`
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)`
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> transform = tgm.ConvertPointsFromHomogeneous()
>>> output = transform(input) # BxNx2
"""
def __init__(self):
super(ConvertPointsFromHomogeneous, self).__init__()
def forward(self, input):
return convert_points_from_homogeneous(input)
class ConvertPointsToHomogeneous(nn.Module):
r"""Creates a transformation to convert points from Euclidean to
homogeneous space.
Args:
points (Tensor): tensor of N-dimensional points.
Returns:
Tensor: tensor of N+1-dimensional points.
Shape:
- Input: :math:`(B, D, N)` or :math:`(D, N)`
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)`
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> transform = tgm.ConvertPointsToHomogeneous()
>>> output = transform(input) # BxNx4
"""
def __init__(self):
super(ConvertPointsToHomogeneous, self).__init__()
def forward(self, input):
return convert_points_to_homogeneous(input)