-
Notifications
You must be signed in to change notification settings - Fork 4
/
DistributedSgd.py
194 lines (167 loc) · 7.29 KB
/
DistributedSgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
from torch.optim.optimizer import Optimizer, required
import torch.distributed as dist
def _flatten_tensors(tensors):
"""
Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of
same dense type.
Since inputs are dense, the resulting tensor will be a concatenated 1D
buffer. Element-wise operation on this buffer will be equivalent to
operating individually.
Arguments:
tensors (Iterable[Tensor]): dense tensors to flatten.
Returns:
A 1D buffer containing input tensors.
"""
if len(tensors) == 1:
return tensors[0].view(-1).clone()
flat = torch.cat([t.view(-1) for t in tensors], dim=0)
return flat
def _unflatten_tensors(flat, tensors):
"""
View a flat buffer using the sizes of tensors. Assume that tensors are of
same dense type, and that flat is given by _flatten_dense_tensors.
Arguments:
flat (Tensor): flattened dense tensors to unflatten.
tensors (Iterable[Tensor]): dense tensors whose sizes will be used to
unflatten flat.
Returns:
Unflattened dense tensors with sizes same as tensors and values from
flat.
"""
outputs = []
offset = 0
for tensor in tensors:
numel = tensor.numel()
outputs.append(flat.narrow(0, offset, numel).view_as(tensor))
offset += numel
return tuple(outputs)
class DSGD(Optimizer):
r"""Implements stochastic gradient descent (optionally with momentum).
Nesterov momentum is based on the formula from
`On the importance of initialization and momentum in deep learning`__.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float): learning rate
momentum (float, optional): momentum factor (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
dampening (float, optional): dampening for momentum (default: 0)
nesterov (bool, optional): enables Nesterov momentum (default: False)
Example:
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
.. note::
The implementation of SGD with Momentum/Nesterov subtly differs from
Sutskever et. al. and implementations in some other frameworks.
Considering the specific case of Momentum, the update can be written as
.. math::
v = \rho * v + g \\
p = p - lr * v
where p, g, v and :math:`\rho` denote the parameters, gradient,
velocity, and momentum respectively.
This is in contrast to Sutskever et. al. and
other frameworks which employ an update of the form
.. math::
v = \rho * v + lr * g \\
p = p - v
The Nesterov version is analogously modified.
"""
def __init__(self, params, model, update_period = 10, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False, vrl=False, local=None):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(DSGD, self).__init__(params, defaults)
self.model = model
self.vrl = vrl
self.iter_cnt = 0
if not local:
update_period = 1
self.update_period = update_period
print("vrl:{}".format(self.vrl))
def __setstate__(self, state):
super(DSGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
def _update_params(self):
with torch.no_grad():
for group in self.param_groups:
momentum = group['momentum']
for p in group['params']:
if p.grad is None:
continue
param_state = self.state[p]
if self.vrl:
param_state["last_param_buff"] = p.clone().detach_()
if momentum != 0:
#sync momentum
if 'momentum_buffer' not in param_state:
continue
else:
param_state['momentum_buffer'] = param_state['momentum_buffer']/dist.get_world_size()
# out_msg_list = _flatten_tensors(buf).clone().detach()
dist.all_reduce(param_state['momentum_buffer'], async_op=True)
# sync model params
self.model._sync_period()
dist.barrier()
# update delta grad
for group in self.param_groups:
lr = group["lr"]
for p in group['params']:
if p.grad is None:
continue
param_state = self.state[p]
if self.vrl:
param_state["vrl_buff"] = param_state["vrl_buff"]+ 1.0/(lr*self.update_period)*(p - param_state["last_param_buff"])
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
# return 0
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
param_state = self.state[p]
if momentum != 0:
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
if self.vrl:
if 'vrl_buff' not in param_state:
param_state['vrl_buff'] = torch.zeros_like(d_p).detach()
d_p = d_p - param_state['vrl_buff']
p.data.add_(-group['lr'], d_p)
self.iter_cnt += 1
if self.iter_cnt % self.update_period ==0:
self._update_params()
return loss