-
Notifications
You must be signed in to change notification settings - Fork 0
/
core.py
executable file
·232 lines (201 loc) · 9.35 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
from scipy.signal import lfilter
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_probability import distributions as tfpd
from tensorflow_probability import bijectors as tfpb
EPS = 1e-8
def placeholder(dim=None):
return tf.placeholder(dtype=tf.float32, shape=(None,dim) if dim else (None,))
def placeholders(*args):
return [placeholder(dim) for dim in args]
def mlp(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None, use_bias=True):
for h in hidden_sizes[:-1]:
x = tf.layers.dense(x, units=h, activation=activation, use_bias=use_bias, kernel_initializer=tf.contrib.layers.xavier_initializer())
return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation, use_bias=use_bias, kernel_initializer=tf.contrib.layers.xavier_initializer())
def get_vars(scope):
return [x for x in tf.global_variables() if scope in x.name]
def count_vars(scope):
v = get_vars(scope)
return sum([np.prod(var.shape.as_list()) for var in v])
def get_sddpg_actor_critic(ac_type):
if ac_type == "mlp":
return sddpg_actor_critic
else:
raise Exception("wrong ac_type")
def get_ddpg_actor_critic(ac_type):
if ac_type == "mlp":
return ddpg_actor_critic
else:
raise Exception("wrong ac_type")
def get_td3_actor_critic(ac_type):
if ac_type == "mlp":
return td3_actor_critic
else:
raise Exception("wrong ac_type")
def get_iac_actor_critic(ac_type):
if ac_type == "mlp":
return iac_actor_critic
else:
raise Exception("wrong ac_type")
def get_ppo_actor_critic(ac_type):
if ac_type == "gaussian":
return gaussian_actor_critic
elif ac_type == "gaussian_mixture":
return gaussian_mixture_actor_critic
elif ac_type == "affine_flow":
return affine_flow_actor_critic
else:
raise Exception("wrong ac_type")
def ddpg_actor_critic(x, a, pi_s, layers=[20, 20]):
act_dim = a.shape.as_list()[-1]
with tf.variable_scope('pi'):
if pi_s:
pi = mlp(x, layers + [act_dim], tf.nn.leaky_relu, tf.nn.sigmoid)
else:
pi = mlp(tf.ones_like(x), layers + [act_dim], tf.nn.leaky_relu, tf.nn.sigmoid, use_bias=False)
with tf.variable_scope('q'):
q = tf.squeeze(mlp(tf.concat([x,a], axis=-1), layers + [1], tf.nn.leaky_relu, None), axis=1)
with tf.variable_scope('q', reuse=True):
q_pi = tf.squeeze(mlp(tf.concat([x,pi], axis=-1), layers + [1], tf.nn.leaky_relu, None), axis=1)
return pi, q, q_pi
def sddpg_actor_critic(s, a, z, pi_sz, layers=[20, 20]):
act_dim = a.shape.as_list()[-1]
with tf.variable_scope('pi'):
if pi_sz:
pi = mlp(tf.concat([s, z], axis=-1), layers+[act_dim], tf.nn.leaky_relu, tf.nn.sigmoid)
else:
pi = mlp(z, layers+[act_dim], tf.nn.leaky_relu, tf.nn.sigmoid, use_bias=False)
vf_mlp = lambda x: tf.squeeze(mlp(x, layers+[1], tf.nn.leaky_relu, None), axis=1)
with tf.variable_scope('q'):
q = vf_mlp(tf.concat([s, a], axis=-1))
with tf.variable_scope('q', reuse=True):
q_pi = vf_mlp(tf.concat([s, pi], axis=-1))
with tf.variable_scope('v'):
v = vf_mlp(s)
return pi, q, q_pi, v
def td3_actor_critic(s, a, z, pi_sz, layers=[20, 20]):
act_dim = a.shape.as_list()[-1]
vf_mlp = lambda x: tf.squeeze(mlp(x, layers+[1], tf.nn.leaky_relu, None), axis=1)
with tf.variable_scope('pi'):
if pi_sz:
pi = mlp(tf.concat([s, z], axis=-1), layers+[act_dim], tf.nn.leaky_relu, tf.nn.sigmoid)
else:
pi = mlp(z, layers+[act_dim], tf.nn.leaky_relu, tf.nn.sigmoid, use_bias=False)
with tf.variable_scope('q1'):
q1 = vf_mlp(tf.concat([s, a], axis=-1))
with tf.variable_scope('q1', reuse=True):
q1_pi = vf_mlp(tf.concat([s, pi], axis=-1))
with tf.variable_scope('q2'):
q2 = vf_mlp(tf.concat([s, a], axis=-1))
with tf.variable_scope('q2', reuse=True):
q2_pi = vf_mlp(tf.concat([s, pi], axis=-1))
q = tf.minimum(q1, q2)
with tf.variable_scope('v1'):
v1 = vf_mlp(s)
with tf.variable_scope('v2'):
v2 = vf_mlp(s)
v = tf.minimum(v1, v2)
return pi, q1, q2, q, q1_pi, q2_pi, v1, v2, v,
def iac_actor_critic(s, a, z, pi_sz, pi_separate, use_bias, layers=[20, 20]):
act_dim = a.shape.as_list()[-1]
z_dim = z.shape.as_list()[-1]
vf_mlp = lambda x: tf.squeeze(mlp(x, layers+[1], tf.nn.leaky_relu, None), axis=1)
with tf.variable_scope('pi'):
if pi_sz:
if pi_separate:
with tf.variable_scope('emb'):
emb = mlp(s, layers+[z_dim], tf.nn.leaky_relu, tf.nn.leaky_relu)
with tf.variable_scope('d'):
pi = mlp(tf.concat([emb, z], axis=-1), layers+[act_dim], tf.nn.leaky_relu, tf.nn.sigmoid, use_bias=use_bias)
#pi = mlp(emb*z, layers+[act_dim], tf.nn.leaky_relu, tf.nn.sigmoid)
else:
pi = mlp(tf.concat([s, z], axis=-1), layers+[act_dim], tf.nn.leaky_relu, tf.nn.sigmoid)
#pi = mlp(s*z, layers+[act_dim], tf.nn.leaky_relu, tf.nn.sigmoid)
else:
pi = mlp(z, layers+[act_dim], tf.nn.leaky_relu, tf.nn.sigmoid, use_bias=use_bias)
with tf.variable_scope('q1'):
q1 = vf_mlp(tf.concat([s, a], axis=-1))
with tf.variable_scope('q1', reuse=True):
q1_pi = vf_mlp(tf.concat([s, pi], axis=-1))
with tf.variable_scope('q2'):
q2 = vf_mlp(tf.concat([s, a], axis=-1))
with tf.variable_scope('q2', reuse=True):
q2_pi = vf_mlp(tf.concat([s, pi], axis=-1))
with tf.variable_scope('v'):
v = vf_mlp(s)
return pi, q1, q2, q1_pi, q2_pi, v
def gaussian_likelihood(x, mu, log_std):
pre_sum = -0.5 * (((x-mu)/(tf.exp(log_std)+EPS))**2 + 2*log_std + np.log(2*np.pi))
return tf.reduce_sum(pre_sum, axis=1)
def gaussian_mixture_likelihood(x, k, act_dim, p, mu, std):
mu = tf.tile(mu, [tf.shape(x)[0], 1])
std = tf.tile(std, [tf.shape(x)[0], 1])
p = tf.tile(p, [tf.shape(x)[0]])
x = tf.reshape(tf.tile(x, [1, k]), [-1, act_dim])
probs = tf.reciprocal((std+EPS)*np.sqrt(2*np.pi)) * tf.exp(-0.5*((x-mu)/(std+EPS))**2)
probs = tf.reduce_prod(probs, axis=1) * tf.exp(p)
return tf.log(tf.reduce_sum(tf.reshape(probs, [-1, k]), axis=1))
def cum_weighted_sum(x, weight):
return lfilter(weight, [1.], x[::-1])[::-1]
def gaussian_actor_critic(s, a):
act_dim = a.shape.as_list()[-1]
mu = mlp(s, [act_dim], None, None, use_bias=False)
log_std = tf.get_variable(name="log_std", initializer=-2*np.ones(act_dim, dtype=np.float32))
std = tf.exp(log_std)
pi = mu + tf.random_normal(tf.shape(mu)) * std
logp = gaussian_likelihood(a, mu, log_std)
logp_pi = gaussian_likelihood(pi, mu, log_std)
return pi, logp, logp_pi
def gaussian_mixture_actor_critic(a, k):
act_dim = a.shape.as_list()[-1]
p = tf.get_variable(name="p", initializer=np.ones(k, dtype=np.float32) / k)
mu = tf.get_variable(name="mu", shape=(k, act_dim), initializer=tf.truncated_normal_initializer(0.5, 0.2))
#mu = tf.get_variable(name="mu", initializer=np.array([[0.433,0.433],[0.6,0.6]], dtype=np.float32))
log_std = tf.get_variable(name="log_std", initializer=-2*np.ones((k, act_dim), dtype=np.float32))
std = tf.exp(log_std)
select = tf.squeeze(tf.multinomial(tf.expand_dims(p, 0), 1))
pi = tf.gather(mu, select) + tf.random_normal((act_dim,)) * tf.gather(std, select)
pi = tf.expand_dims(pi, 0)
logp = gaussian_mixture_likelihood(a, k, act_dim, p, mu, std)
logp_pi = gaussian_mixture_likelihood(pi, k, act_dim, p, mu, std)
return pi, logp, logp_pi
class PReLU(tfpb.Bijector):
def __init__(self, alpha=0.5, validate_args=False, name="prelu"):
super(PReLU, self).__init__(
forward_min_event_ndims=0, validate_args=validate_args, name=name)
self.alpha = alpha
def _forward(self, x):
return tf.where(tf.greater_equal(x, 0), x, self.alpha * x)
def _inverse(self, y):
return tf.where(tf.greater_equal(y, 0), y, 1. / self.alpha * y)
def _inverse_log_det_jacobian(self, y):
ones = tf.ones_like(y)
return tf.log(tf.where(tf.greater_equal(y, 0), ones, ones / self.alpha))
def affine_flow_actor_critic(a, k):
d = r = act_dim = a.shape.as_list()[-1]
DTYPE = tf.float32
bijectors = []
initializer = tf.initializers.truncated_normal(0, 0.1)
for i in range(k):
with tf.variable_scope('bijector_%d' % i):
V = tf.get_variable('V', [d, r], dtype=DTYPE, initializer=initializer)
shift = tf.get_variable('shift', [d], dtype=DTYPE, initializer=initializer)
L = tf.get_variable('L', [d * (d + 1) / 2], dtype=DTYPE, initializer=initializer)
bijectors.append(tfpb.Affine(
scale_tril=tfpd.fill_triangular(L),
scale_perturb_factor=V,
shift=shift,
))
alpha = tf.abs(tf.get_variable('alpha', [], dtype=DTYPE)) + .01
bijectors.append(PReLU(alpha=alpha))
mlp_bijector = tfpb.Chain(
list(reversed(bijectors[:-1])), name='mlp_bijector')
dist = tfpd.TransformedDistribution(
distribution=tfpd.MultivariateNormalDiag(loc=tf.zeros(act_dim), scale_diag=0.1*tf.ones(act_dim)),
bijector=mlp_bijector
)
pi = dist.sample(1)
logp_pi = tf.squeeze(dist.log_prob(pi))
logp = dist.log_prob(a)
return pi, logp, logp_pi