forked from midasklr/FireSmokeDetectionByEfficientNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_vusal.py
64 lines (52 loc) · 2.21 KB
/
model_vusal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/python3
# -*- coding: utf-8 -*-
'''
@File: model_vusal.py
@Author:kong
@Time: 2020年01月07日19时17分
@Description:
'''
import matplotlib.pyplot as plt
import torch
from torchvision import models, transforms
from torch.utils.data import DataLoader, Dataset
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import os
import numpy as np
from torchvision.datasets import ImageFolder
torch.cuda.set_device(0) # 设置GPU ID
is_cuda = True
simple_transform = transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor(), # H, W, C -> C, W, H 归一化到(0,1),简单直接除以255
transforms.Normalize([0.485, 0.456, 0.406], # std
[0.229, 0.224, 0.225])])
# mean 先将输入归一化到(0,1),再使用公式”(x-mean)/std”,将每个元素分布到(-1,1)
# 使用 ImageFolder 必须有对应的目录结构
train = ImageFolder("/home/kong/Documents/EfficientNet-PyTorch/cropdata/train", simple_transform)
valid = ImageFolder("/home/kong/Documents/EfficientNet-PyTorch/cropdata/val", simple_transform)
train_loader = DataLoader(train, batch_size=1, shuffle=False, num_workers=5)
val_loader = DataLoader(valid, batch_size=1, shuffle=False, num_workers=5)
vgg = models.mobilenet_v2(pretrained=True).cuda()
# 提取不同层输出的 主要代码
class LayerActivations:
features = None
def __init__(self, model, layer_num):
self.hook = model[layer_num].register_forward_hook(self.hook_fn)
def hook_fn(self, module, input, output):
self.features = output.cpu()
def remove(self):
self.hook.remove()
conv_out = LayerActivations(vgg.features, 18) # 提出第 一个卷积层的输出
img = next(iter(train_loader))[0]
o = vgg(Variable(img.cuda()))
conv_out.remove() #
act = conv_out.features # act 即 第0层输出的特征
# 可视化 输出
fig = plt.figure(figsize=(20, 50))
fig.subplots_adjust(left=0, right=1, bottom=0, top=0.8, hspace=0, wspace=0.2)
for i in range(30):
ax = fig.add_subplot(12, 5, i + 1, xticks=[], yticks=[])
ax.imshow(act[0][i].detach().numpy(), cmap="gray")
plt.show()