-
Notifications
You must be signed in to change notification settings - Fork 0
/
sparsedepthguide.py
426 lines (387 loc) · 22.4 KB
/
sparsedepthguide.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import argparse
from genericpath import exists
import cv2
from isort import file
import numpy as np
import os
import sys
import time
import torch.backends.cudnn
import torch.nn as nn
import torch.nn.parallel
from plyfile import PlyData, PlyElement
from typing import Tuple
from torch.utils.data import DataLoader
from datasets.data_io import read_cam_file, read_image, read_map, read_pair_file, save_image, save_map
from datasets.mvs import MVSDataset,R3liveDataset
from models.net import PatchmatchNet,patchmatchnet_loss
from utils import print_args, tensor2numpy, to_cuda
import torch.optim as optim
import matplotlib.pyplot as plt
from typing import List
import torch.nn.functional as F
from utils import plot
# from tsdf_fusion.sparse_volume import SparseVolume
from tsdf_fusion.fusion import tsdf_fusion
# volume = SparseVolume(n_feats=3, voxel_size=0.01, dimensions=np.asarray([40.0,40.0,40.0]))
# datapath = '/home/zhujun/catkin_ws/src/r3live-master/r3live_output/data_for_mesh_front'
# tsdf_fusion(datapath)
# import pdb;pdb.set_trace()
def test_fusion():
datapath = '/home/zhujun/catkin_ws/src/r3live-master/r3live_output/data_for_mesh_front'
tsdf_fusion(datapath)
def create_stage_images(image: torch.Tensor) -> List[torch.Tensor]:
return [
image,
F.interpolate(image, scale_factor=0.5, mode="nearest"),
F.interpolate(image, scale_factor=0.25, mode="nearest"),
F.interpolate(image, scale_factor=0.125, mode="nearest")
]
def save_depth(args):
"""Run MVS model to save depth maps"""
if args.input_type == "params":
print("Evaluating model with params from {}".format(args.checkpoint_path))
model = PatchmatchNet(
patchmatch_interval_scale=args.patchmatch_interval_scale,
propagation_range=args.patchmatch_range,
patchmatch_iteration=args.patchmatch_iteration,
patchmatch_num_sample=args.patchmatch_num_sample,
propagate_neighbors=args.propagate_neighbors,
evaluate_neighbors=args.evaluate_neighbors
)
# import pdb;pdb.set_trace()
for para in model.feature.parameters():
para.requires_grad = False
model.cuda()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.01, betas=(0.9, 0.999), weight_decay=args.wd) #* 0.001
# model = nn.DataParallel(model) #* 有这个话就需要参数前面有""module" !!!
state_dict = torch.load(args.checkpoint_path)
model.load_state_dict(state_dict["model"])
# import pdb;pdb.set_trace()
# optimizer.load_state_dict(state_dict["optimizer"])
start_epoch = state_dict["epoch"] + 1
else:
print("Using scripted module from {}".format(args.checkpoint_path))
model = torch.jit.load(args.checkpoint_path)
model = nn.DataParallel(model)
model.cuda()
model_loss = patchmatchnet_loss
# dataset = MVSDataset(
# data_path=args.input_folder,
# num_views=args.num_views,
# max_dim=args.image_max_dim,
# scan_list=args.scan_list,
# num_light_idx=args.num_light_idx)
dataset = R3liveDataset(
data_path=args.input_folder,
num_views=args.num_views,
max_dim=args.image_max_dim,
scan_list=args.scan_list,
num_light_idx=args.num_light_idx)
image_loader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=False)
model.eval()
with torch.no_grad():
for batch_idx, sample in enumerate(image_loader):
start_time = time.time()
sample_cuda = to_cuda(sample)
# import pdb;pdb.set_trace()
# plot(sample['images'][0])
depth, confidence, _ = model.forward(
sample_cuda["images"],
sample_cuda["intrinsics"],
sample_cuda["extrinsics"],
sample_cuda["depth_min"],
sample_cuda["depth_max"],
sample_cuda["sparse_depth"],
sample['sparse_depth_filename'])
# continue
depth = tensor2numpy(depth)
# depth_gt = tensor2numpy(sample['depth_gt']).squeeze()
# depth_pred = depth.squeeze()
# if True:
# import matplotlib.pyplot as plt
# plt.figure()
# plt.imshow(depth_gt)
# plt.figure()
# plt.imshow(depth_pred)
# plt.show()
confidence = tensor2numpy(confidence)
# import pdb;pdb.set_trace()
del sample_cuda
print("Iter {}/{}, time = {:.3f}".format(batch_idx + 1, len(image_loader), time.time() - start_time))
filenames = sample["filename"]
# save depth maps and confidence maps
for filename, depth_est, photometric_confidence in zip(filenames, depth, confidence):
depth_filename = os.path.join(args.output_folder, filename.format("depth_est", args.file_format))
confidence_filename = os.path.join(args.output_folder, filename.format("confidence", args.file_format))
os.makedirs(os.path.dirname(depth_filename), exist_ok=True)
os.makedirs(os.path.dirname(confidence_filename), exist_ok=True)
# save depth maps
# import pdb;pdb.set_trace()
save_map(depth_filename, depth_est.squeeze(0))
# save confidence maps
save_map(confidence_filename, photometric_confidence)
# project the reference point cloud into the source view, then project back
def reproject_with_depth(
depth_ref: np.ndarray,
intrinsics_ref: np.ndarray,
extrinsics_ref: np.ndarray,
depth_src: np.ndarray,
intrinsics_src: np.ndarray,
extrinsics_src: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Project the reference points to the source view, then project back to calculate the reprojection error
Args:
depth_ref: depths of points in the reference view, of shape (H, W)
intrinsics_ref: camera intrinsic of the reference view, of shape (3, 3)
extrinsics_ref: camera extrinsic of the reference view, of shape (4, 4)
depth_src: depths of points in the source view, of shape (H, W)
intrinsics_src: camera intrinsic of the source view, of shape (3, 3)
extrinsics_src: camera extrinsic of the source view, of shape (4, 4)
Returns:
Tuple[np.ndarray, np.ndarray, np.ndarray]:
depth_reprojected: reprojected depths of points in the reference view, of shape (H, W)
x_reprojected: reprojected x coordinates of points in the reference view, of shape (H, W)
y_reprojected: reprojected y coordinates of points in the reference view, of shape (H, W)
"""
width, height = depth_ref.shape[1], depth_ref.shape[0]
# step1. project reference pixels to the source view
# reference view x, y
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
x_ref, y_ref = x_ref.reshape([-1]), y_ref.reshape([-1])
# reference 3D space
xyz_ref = np.matmul(np.linalg.inv(intrinsics_ref),
np.vstack((x_ref, y_ref, np.ones_like(x_ref))) * depth_ref.reshape([-1]))
# source 3D space
xyz_src = np.matmul(np.matmul(extrinsics_src, np.linalg.inv(extrinsics_ref)),
np.vstack((xyz_ref, np.ones_like(x_ref))))[:3]
# source view x, y
k_xyz_src = np.matmul(intrinsics_src, xyz_src)
xy_src = k_xyz_src[:2] / k_xyz_src[2:3]
# step2. reproject the source view points with source view depth estimation
# find the depth estimation of the source view
x_src = xy_src[0].reshape([height, width]).astype(np.float32)
y_src = xy_src[1].reshape([height, width]).astype(np.float32)
sampled_depth_src = cv2.remap(depth_src, x_src, y_src, interpolation=cv2.INTER_LINEAR)
# source 3D space
# NOTE that we should use sampled source-view depth_here to project back
xyz_src = np.matmul(np.linalg.inv(intrinsics_src),
np.vstack((xy_src, np.ones_like(x_ref))) * sampled_depth_src.reshape([-1]))
# reference 3D space
xyz_reprojected = np.matmul(np.matmul(extrinsics_ref, np.linalg.inv(extrinsics_src)),
np.vstack((xyz_src, np.ones_like(x_ref))))[:3]
# source view x, y, depth
depth_reprojected = xyz_reprojected[2].reshape([height, width]).astype(np.float32)
k_xyz_reprojected = np.matmul(intrinsics_ref, xyz_reprojected)
xy_reprojected = k_xyz_reprojected[:2] / k_xyz_reprojected[2:3]
x_reprojected = xy_reprojected[0].reshape([height, width]).astype(np.float32)
y_reprojected = xy_reprojected[1].reshape([height, width]).astype(np.float32)
return depth_reprojected, x_reprojected, y_reprojected
def check_geometric_consistency(
depth_ref: np.ndarray,
intrinsics_ref: np.ndarray,
extrinsics_ref: np.ndarray,
depth_src: np.ndarray,
intrinsics_src: np.ndarray,
extrinsics_src: np.ndarray,
geo_pixel_thres: float,
geo_depth_thres: float,
) -> Tuple[np.ndarray, np.ndarray]:
"""Check geometric consistency and return valid points
Args:
depth_ref: depths of points in the reference view, of shape (H, W)
intrinsics_ref: camera intrinsic of the reference view, of shape (3, 3)
extrinsics_ref: camera extrinsic of the reference view, of shape (4, 4)
depth_src: depths of points in the source view, of shape (H, W)
intrinsics_src: camera intrinsic of the source view, of shape (3, 3)
extrinsics_src: camera extrinsic of the source view, of shape (4, 4)
geo_pixel_thres: geometric pixel threshold
geo_depth_thres: geometric depth threshold
Returns:
Tuple[np.ndarray, np.ndarray]:
mask: mask for points with geometric consistency, of shape (H, W)
depth_reprojected: reprojected depths of points in the reference view, of shape (H, W)
"""
width, height = depth_ref.shape[1], depth_ref.shape[0]
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
depth_reprojected, x2d_reprojected, y2d_reprojected = reproject_with_depth(
depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src)
# check |p_reproject - p_1| < 1
dist = np.sqrt((x2d_reprojected - x_ref) ** 2 + (y2d_reprojected - y_ref) ** 2)
# check |d_reproject - d_1| / d_1 < 0.01
depth_diff = np.abs(depth_reprojected - depth_ref)
relative_depth_diff = depth_diff / depth_ref
mask = np.logical_and(dist < geo_pixel_thres, relative_depth_diff < geo_depth_thres)
depth_reprojected[~mask] = 0
return mask, depth_reprojected
def filter_depth(args, scan: str = ""):
# the pair file
pair_file = os.path.join(args.input_folder, scan, "pair.txt")
# for the final point cloud
vertices = []
vertex_colors = []
pair_data = read_pair_file(pair_file)
# for each reference view and the corresponding source views
for ref_view, src_views in pair_data:
# load the reference image
images_path = os.path.join(args.input_folder, scan, "images/{:0>8}.jpg".format(ref_view))
if os.path.isfile(images_path):
ref_img, original_h, original_w = read_image(images_path, args.image_max_dim)
else:
images_path = os.path.join(args.input_folder, "images/{}.png".format(ref_view))
ref_img, original_h, original_w = read_image(images_path, args.image_max_dim)
# load the camera parameters
cam_path = os.path.join(args.input_folder, scan, "cams_1/{:0>8}_cam.txt".format(ref_view))
if os.path.isfile(cam_path):
ref_intrinsics, ref_extrinsics = read_cam_file(cam_path)[0:2]
else:
ref_intrinsics = np.loadtxt(os.path.join(args.input_folder,"intrinsic/intrinsic.txt"))
ref_extrinsics = np.loadtxt(os.path.join(args.input_folder,"extrinsic/{}.txt".format(ref_view)))
ref_intrinsics[0] *= ref_img.shape[1] / original_w
ref_intrinsics[1] *= ref_img.shape[0] / original_h
# load the estimated depth of the reference view
ref_depth_est = read_map(os.path.join(args.output_folder, scan, "depth_est/{:0>8}{}".format(ref_view, args.file_format))).squeeze(2)
# load the photometric mask of the reference view
confidence = read_map(os.path.join(args.output_folder, scan, "confidence/{:0>8}{}".format(ref_view, args.file_format)))
photo_mask = (confidence > args.photo_thres).squeeze(2)
all_src_view_depth_estimates = []
# compute the geometric mask
geo_mask_sum = 0
for src_view in src_views:
# camera parameters of the source view
# src_image, original_h, original_w = read_image(os.path.join(args.input_folder, scan, "images/{:0>8}.jpg".format(src_view)), args.image_max_dim)
# src_intrinsics, src_extrinsics = read_cam_file(os.path.join(args.input_folder, scan, "cams_1/{:0>8}_cam.txt".format(src_view)))[0:2]
images_path = os.path.join(args.input_folder, scan, "images/{:0>8}.jpg".format(src_view))
if os.path.isfile(images_path):
src_image, original_h, original_w = read_image(images_path, args.image_max_dim)
else:
images_path = os.path.join(args.input_folder, "images/{}.png".format(src_view))
src_image, original_h, original_w = read_image(images_path, args.image_max_dim)
# load the camera parameters
cam_path = os.path.join(args.input_folder, scan, "cams_1/{:0>8}_cam.txt".format(src_view))
if os.path.isfile(cam_path):
src_intrinsics, src_extrinsics = read_cam_file(cam_path)[0:2]
else:
src_intrinsics = np.loadtxt(os.path.join(args.input_folder,"intrinsic/intrinsic.txt"))
src_extrinsics = np.loadtxt(os.path.join(args.input_folder,"extrinsic/{}.txt".format(src_view)))
src_intrinsics[0] *= src_image.shape[1] / original_w
src_intrinsics[1] *= src_image.shape[0] / original_h
# the estimated depth of the source view
src_depth_est = read_map(os.path.join(args.output_folder, scan, "depth_est/{:0>8}{}".format(src_view, args.file_format)))
geo_mask, depth_reprojected = check_geometric_consistency(
ref_depth_est,
ref_intrinsics,
ref_extrinsics,
src_depth_est,
src_intrinsics,
src_extrinsics,
args.geo_pixel_thres,
args.geo_depth_thres)
geo_mask_sum += geo_mask.astype(np.int32)
all_src_view_depth_estimates.append(depth_reprojected)
depth_est_averaged = (sum(all_src_view_depth_estimates) + ref_depth_est) / (geo_mask_sum + 1)
geo_mask = geo_mask_sum >= args.geo_mask_thres
final_mask = np.logical_and(photo_mask, geo_mask)
os.makedirs(os.path.join(args.output_folder, scan, "mask"), exist_ok=True)
save_image(os.path.join(args.output_folder, scan, "mask/{:0>8}_photo.png".format(ref_view)), photo_mask)
save_image(os.path.join(args.output_folder, scan, "mask/{:0>8}_geo.png".format(ref_view)), geo_mask)
save_image(os.path.join(args.output_folder, scan, "mask/{:0>8}_final.png".format(ref_view)), final_mask)
print("processing {}, ref-view{:0>3}, geo_mask:{:3f}, photo_mask:{:3f}, final_mask: {:3f}".format(
os.path.join(args.input_folder, scan), ref_view, geo_mask.mean(), photo_mask.mean(), final_mask.mean()))
if args.display:
cv2.imshow("ref_img", ref_img[:, :, ::-1])
cv2.imshow("ref_depth", ref_depth_est)
cv2.imshow("ref_depth * photo_mask", ref_depth_est * photo_mask.astype(np.float32))
cv2.imshow("ref_depth * geo_mask", ref_depth_est * geo_mask.astype(np.float32))
cv2.imshow("ref_depth * mask", ref_depth_est * final_mask.astype(np.float32))
cv2.waitKey(1)
height, width = depth_est_averaged.shape[:2]
x, y = np.meshgrid(np.arange(0, width), np.arange(0, height))
x, y, depth = x[final_mask], y[final_mask], depth_est_averaged[final_mask]
color = ref_img[final_mask]
xyz_ref = np.matmul(np.linalg.inv(ref_intrinsics), np.vstack((x, y, np.ones_like(x))) * depth)
xyz_world = np.matmul(np.linalg.inv(ref_extrinsics), np.vstack((xyz_ref, np.ones_like(x))))[:3]
vertices.append(xyz_world.transpose((1, 0)))
vertex_colors.append((color * 255).astype(np.uint8))
vertices = np.concatenate(vertices, axis=0)
vertex_colors = np.concatenate(vertex_colors, axis=0)
vertices = np.array([tuple(v) for v in vertices], dtype=[("x", "f4"), ("y", "f4"), ("z", "f4")])
vertex_colors = np.array([tuple(v) for v in vertex_colors], dtype=[("red", "u1"), ("green", "u1"), ("blue", "u1")])
vertex_all = np.empty(len(vertices), vertices.dtype.descr + vertex_colors.dtype.descr)
for prop in vertices.dtype.names:
vertex_all[prop] = vertices[prop]
for prop in vertex_colors.dtype.names:
vertex_all[prop] = vertex_colors[prop]
el = PlyElement.describe(vertex_all, "vertex")
ply_filename = os.path.join(args.output_folder, scan, "fused.ply")
PlyData([el]).write(ply_filename)
print("saving the final model to", ply_filename)
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description="Predict depth, filter, and fuse")
# High level input/output options
parser.add_argument("--input_folder", type=str, help="input data path")
parser.add_argument("--output_folder", type=str, default="", help="output path")
parser.add_argument("--checkpoint_path", type=str, help="load a specific checkpoint for parameters of model")
parser.add_argument("--file_format", type=str, default=".pfm", help="File format for depth maps", choices=[".bin", ".pfm"])
parser.add_argument("--input_type", type=str, default="params", help="Input type of checkpoint", choices=["params", "module"])
parser.add_argument("--output_type", type=str, default="both", help="Type of outputs to produce", choices=["depth", "fusion", "both"])
# Dataset loading options
parser.add_argument("--num_views", type=int, default=20, help="number of source views for each patch-match problem")
parser.add_argument("--image_max_dim", type=int, default=-1, help="max image dimension")
parser.add_argument("--scan_list", type=str, default="", help="Optional scan list text file to identify input folders")
parser.add_argument("--num_light_idx", type=int, default=-1, help="Number of light indexes in source images")
parser.add_argument("--batch_size", type=int, default=1, help="evaluation batch size")
# PatchMatchNet module options (only used when not loading from file)
parser.add_argument("--patchmatch_interval_scale", nargs="+", type=float, default=[0.005, 0.0125, 0.025],
help="normalized interval in inverse depth range to generate samples in local perturbation")
parser.add_argument("--patchmatch_range", nargs="+", type=int, default=[6, 4, 2],
help="fixed offset of sampling points for propagation of patch match on stages 1,2,3")
parser.add_argument("--patchmatch_iteration", nargs="+", type=int, default=[1, 2, 2],
help="num of iteration of patch match on stages 1,2,3")
parser.add_argument("--patchmatch_num_sample", nargs="+", type=int, default=[8, 8, 16],
help="num of generated samples in local perturbation on stages 1,2,3")
parser.add_argument("--propagate_neighbors", nargs="+", type=int, default=[0, 8, 16],
help="num of neighbors for adaptive propagation on stages 1,2,3")
parser.add_argument("--evaluate_neighbors", nargs="+", type=int, default=[9, 9, 9],
help="num of neighbors for adaptive matching cost aggregation of adaptive evaluation on stages 1,2,3")
# Stereo fusion options
parser.add_argument("--display", action="store_true", default=False, help="display depth images and masks")
parser.add_argument("--geo_pixel_thres", type=float, default=1.0, help="pixel threshold for geometric consistency filtering")
parser.add_argument("--geo_depth_thres", type=float, default=0.01, help="depth threshold for geometric consistency filtering")
parser.add_argument("--geo_mask_thres", type=int, default=5, help="threshold for geometric consistency filtering")
parser.add_argument("--photo_thres", type=float, default=0.5, help="threshold for photometric consistency filtering")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed") # done
parser.add_argument("--lr", type=float, default=0.001, help="learning rate") # done
parser.add_argument("--lrepochs", type=str, default="10,12,14:2",help="epoch ids to downscale lr and the downscale rate") # done
parser.add_argument("--wd", type=float, default=0.0, help="weight decay") # done
# parse arguments and check
input_args = parser.parse_args()
print("argv: ", sys.argv[1:])
print_args(input_args)
torch.manual_seed(input_args.seed)
torch.cuda.manual_seed(input_args.seed)
if input_args.input_folder is None or not os.path.isdir(input_args.input_folder):
raise Exception("Invalid input folder: {}".format(input_args.input_folder))
if input_args.checkpoint_path is None or not os.path.isfile(input_args.checkpoint_path):
raise Exception("Invalid checkpoint file: {}".format(input_args.checkpoint_path))
if not input_args.output_folder:
input_args.output_folder = input_args.input_folder
# Create output folder if it does not exist
os.makedirs(input_args.output_folder, exist_ok=True)
# step1. save all the depth maps and the masks in outputs directory
if input_args.output_type == "depth" or input_args.output_type == "both":
save_depth(input_args)
# We can free all the GPU memory here since we don't need it for the fusion part
torch.cuda.empty_cache()
# step2. filter saved depth maps and reconstruct point cloud
if input_args.output_type == "fusion" or input_args.output_type == "both":
if input_args.scan_list:
if not os.path.isfile(input_args.scan_list):
raise Exception("Invalid scan list file: {}".format(input_args.scan_list))
with open(input_args.scan_list) as f:
scans = [line.rstrip() for line in f.readlines()]
else:
scans = [""]
for input_scan in scans:
filter_depth(input_args, input_scan)