-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.xml
614 lines (591 loc) · 32.3 KB
/
index.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title>zqzneptune</title>
<link>https://zqzneptune.github.io/</link>
<atom:link href="https://zqzneptune.github.io/index.xml" rel="self" type="application/rss+xml" />
<description>zqzneptune</description>
<generator>Source Themes Academic (https://sourcethemes.com/academic/)</generator><language>en-us</language><copyright>©2014-2024 Qingzhou Zhang (CC) BY-NC-SA 4.0. All thoughts and opinions here are my own.</copyright><lastBuildDate>Sat, 01 Jun 2030 13:00:00 +0000</lastBuildDate>
<image>
<url>https://zqzneptune.github.io/images/icon_huf504e8a2f7c5cf9e43cec507892894a0_49847_512x512_fill_lanczos_center_2.png</url>
<title>zqzneptune</title>
<link>https://zqzneptune.github.io/</link>
</image>
<item>
<title>Example Talk</title>
<link>https://zqzneptune.github.io/talk/example/</link>
<pubDate>Sat, 01 Jun 2030 13:00:00 +0000</pubDate>
<guid>https://zqzneptune.github.io/talk/example/</guid>
<description><div class="alert alert-note">
<div>
Click on the <strong>Slides</strong> button above to view the built-in slides feature.
</div>
</div>
<p>Slides can be added in a few ways:</p>
<ul>
<li><strong>Create</strong> slides using Academic&rsquo;s <a href="https://sourcethemes.com/academic/docs/managing-content/#create-slides"><em>Slides</em></a> feature and link using <code>slides</code> parameter in the front matter of the talk file</li>
<li><strong>Upload</strong> an existing slide deck to <code>static/</code> and link using <code>url_slides</code> parameter in the front matter of the talk file</li>
<li><strong>Embed</strong> your slides (e.g. Google Slides) or presentation video on this page using <a href="https://sourcethemes.com/academic/docs/writing-markdown-latex/">shortcodes</a>.</li>
</ul>
<p>Further talk details can easily be added to this page using <em>Markdown</em> and $\rm \LaTeX$ math code.</p>
</description>
</item>
<item>
<title>Dropout or not?</title>
<link>https://zqzneptune.github.io/post/2020-01-20-zerodrop/</link>
<pubDate>Mon, 20 Jan 2020 11:26:14 -0600</pubDate>
<guid>https://zqzneptune.github.io/post/2020-01-20-zerodrop/</guid>
<description><p>The &ldquo;dropout event&rdquo; was termed from the observations of an abundance of zero expression values from the scRNA-seq data. The recent publishsed study demonstrated that genes with zero counts may not have to be dropout anymore, due to their potential biological variations.</p>
<p><a href="https://doi.org/10.1038/s41587-019-0379-5"><strong>Droplet scRNA-seq is not zero-inflated</strong></a> Nature Biotechnology (2020), by Valentine Svensson</p>
</description>
</item>
<item>
<title>Run EPIC</title>
<link>https://zqzneptune.github.io/post/2019-12-12-runepic/</link>
<pubDate>Thu, 12 Dec 2019 18:13:14 -0600</pubDate>
<guid>https://zqzneptune.github.io/post/2019-12-12-runepic/</guid>
<description><p>The <strong>EPIC</strong> toolkit was initially published here: Hu, L. Z., et al. &ldquo;EPIC: software toolkit for elution profile-based inference of protein complexes.&rdquo; Nature methods 16.8 (2019): 737-742. <a href="https://www.nature.com/articles/s41592-019-0461-4">Link to the publication</a></p>
<p>Forked from the orignial <a href="https://github.com/BaderLab/EPIC">repository</a>, I have created <strong>RunEPIC</strong> to provide the code to run <strong>EPIC</strong> locally.</p>
<h2 id="1-environment">1. Environment</h2>
<p>The main function in <strong>EPIC</strong> was implemented in Python, given the headache caused by various libraries, the Anaconda enrionment was used. Simply install Anaconda Python 2.7 version for your convience, and we will start from there.</p>
<h2 id="2-prerequisite">2. Prerequisite</h2>
<p>Let&rsquo;s create the virtual enrionment:</p>
<pre><code>path to the anaconda directory/bin/conda create -n EPIC python=2.7 anaconda
</code></pre>
<p>then we need step up some chanels:</p>
<pre><code>(EPIC)conda config --add channels defaults
(EPIC)conda config --add channels bioconda
(EPIC)conda config --add channels conda-forge
</code></pre>
<p>get R installed:</p>
<pre><code>(EPIC)conda install r
</code></pre>
<p>start R:</p>
<pre><code>(EPIC)R
</code></pre>
<p>install wccsom for computing WCC scores:</p>
<pre><code>&gt; install.packages(&quot;kohonen&quot;)
&gt; install.packages(&quot;https://cran.r-project.org/src/contrib/Archive/wccsom/wccsom_1.2.11.tar.gz&quot;,
type = &quot;source&quot;)
&gt; q()
</code></pre>
<p>install conda packages:</p>
<pre><code>conda install requests scikit-learn beautifulsoup4 mock numpy rpy2
python -mpip install -U matplotlib
</code></pre>
<p>lastly, make sure Java is installed, so that ClusterOne.jar could be used.</p>
<h2 id="3-run-epic">3. Run EPIC</h2>
<pre><code>git clone https://github.com/zqzneptune/RunEPIC.git
</code></pre>
<p>The main.py in <strong>EPIC</strong> implemented all the functions:</p>
<pre><code>python directory to RunEPIC/src/main.py \
-s 11101001 \
[Directory to Input Folder/] \
-c [path to the gold standard file ] \
[Directory to Output Folder/] \
-o PrefixName \
-M RF \
-n 6 \
-m COMB \
-f STRING
</code></pre>
</description>
</item>
<item>
<title>Rewiring of the Human Mitochondrial Interactome during Neuronal Reprogramming Reveals Regulators of the Respirasome and Neurogenesis</title>
<link>https://zqzneptune.github.io/publication/j.isci.2019.08.057/</link>
<pubDate>Sat, 21 Sep 2019 00:00:00 +0000</pubDate>
<guid>https://zqzneptune.github.io/publication/j.isci.2019.08.057/</guid>
<description></description>
</item>
<item>
<title>A Tag-Based Affinity Purification Mass Spectrometry Workflow for Systematic Isolation of the Human Mitochondrial Protein Complexes</title>
<link>https://zqzneptune.github.io/publication/978-981-13-8367-0_6/</link>
<pubDate>Tue, 27 Aug 2019 00:00:00 +0000</pubDate>
<guid>https://zqzneptune.github.io/publication/978-981-13-8367-0_6/</guid>
<description></description>
</item>
<item>
<title>Statistical Modelling of AP-MS Data (SMAD)</title>
<link>https://zqzneptune.github.io/post/2019-05-22-smad/</link>
<pubDate>Wed, 22 May 2019 09:13:14 -0600</pubDate>
<guid>https://zqzneptune.github.io/post/2019-05-22-smad/</guid>
<description><p>This R package implements statistical modelling of affinity purification–mass spectrometry (AP-MS) data to compute confidence scores to identify <em>bona fide</em> protein-protein interactions (PPI).</p>
<h2 id="installation">Installation</h2>
<p>The development version can be installed through github:</p>
<pre><code class="language-{r}"> devtools::install_github(repo=&quot;zqzneptune/SMAD&quot;)
library(SMAD)
</code></pre>
<h2 id="input-data">Input Data</h2>
<p>A demo data.frame was provided as a hint how the input data should strcutured in order to run the scoring functions:</p>
<pre><code class="language-{r}">data(TestDatInput)
colnames(TestDataInput)
[1] &quot;idRun&quot; &quot;idBait&quot; &quot;idPrey&quot; &quot;countPrey&quot; &quot;lenPrey&quot;
</code></pre>
<table>
<thead>
<tr>
<th>idRun</th>
<th align="center">idBait</th>
<th align="center">idPrey</th>
<th align="center">countPrey</th>
<th>lenPrey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique ID of one AP-MS run</td>
<td align="center">Bait ID</td>
<td align="center">Prey ID</td>
<td align="center">Prey peptide count</td>
<td>Protein sequence length of the prey</td>
</tr>
</tbody>
</table>
<p>In case of duplcates, a suffix or prefix of e.g. &ldquo;A&rdquo;, &ldquo;B&rdquo; could be added to <strong>idRun</strong> in order to make <strong>&ldquo;idRun-idBait&rdquo;</strong> combination unique to each replicate.</p>
<h2 id="run-scoring">Run scoring</h2>
<h3 id="1-comppass">1. CompPASS</h3>
<p>Comparative Proteomic Analysis Software Suite (CompPASS) is based on spoke model. This algorithm was developed by Dr. Mathew Sowa for defining the human deubiquitinating enzyme interaction landscape <a href="https://doi.org/10.1016/j.cell.2009.04.042">(Sowa, Mathew E., et al., 2009)</a>. The implementation of this algorithm was inspired by Dr. Sowa&rsquo;s <a href="http://besra.hms.harvard.edu/ipmsmsdbs/cgi-bin/tutorial.cgi">online tutorial</a>. The output includes Z-score, S-score, D-score and WD-score. In its implementation in BioPlex 1.0 <a href="https://doi.org/10.1016/j.cell.2015.06.043">(Huttlin, Edward L., et al., 2015)</a> and
BioPlex 2.0 <a href="https://www.nature.com/articles/nature22366">(Huttlin, Edward L., et al., 2017)</a>, a naive
Bayes classifier that learns to distinguish true interacting proteins from
non-specific background and false positive identifications was included in the
compPASS pipline. This function was optimized from the <a href="https://github.com/dnusinow/cRomppass">source code</a>.</p>
<p>The input data.frame, <em>datInput</em>, should include:<strong>idRun</strong>, <strong>idBait</strong>, <strong>idPrey</strong> and <strong>countPrey</strong>.</p>
<pre><code class="language-{r}">datScore &lt;- CompPASS(datInput)
</code></pre>
<h3 id="2-dice">2. DICE</h3>
<p>The Dice coefficient is used to score the interaction scores across prey pair-wise combinations, which was proposed by <a href="https://doi.org/10.1093/bioinformatics/btn036">(Bing Zhang et al., 2008)</a></p>
<p>The input data.frame, <em>datInput</em>, should include:<strong>idRun</strong> and <strong>idPrey</strong>.</p>
<pre><code class="language-{r}">datScore &lt;- DICE(datInput)
</code></pre>
<h3 id="3-hart">3. Hart</h3>
<p>Hart scoring algorithm is based on a hypergeometric distribution error model <a href="https://doi.org/10.1186/1471-2105-8-236">(Hart et al., 2007)</a>.</p>
<p>The input data.frame, <em>datInput</em>, should include:<strong>idRun</strong> and <strong>idPrey</strong>.</p>
<pre><code class="language-{r}">datScore &lt;- Hart(datInput)
</code></pre>
<h3 id="4-hgscore">4. HGScore</h3>
<p>HGScore algorithm is based on a hypergeometric distribution error model <a href="https://doi.org/10.1186/1471-2105-8-236">(Hart et al., 2007)</a> with incorporation of NSAF <a href="https://doi.org/10.1021/pr060161n">(Zybailov, Boris, et al., 2006)</a>. This algorithm was first introduced to predict the protein complex network of Drosophila melanogaster <a href="https://doi.org/10.1016/j.cell.2011.08.047">(Guruharsha, K. G., et al., 2011)</a>. This scoring algorithm was based on matrix model.</p>
<p>The input data.frame, <em>datInput</em>, should include:<strong>idRun</strong>, <strong>idPrey</strong>, <strong>countPrey</strong> and <strong>lenPrey</strong>.</p>
<pre><code class="language-{r}">datScore &lt;- HG(datInput)
</code></pre>
<h3 id="5-pe">5. PE</h3>
<p>PE incorporated both spoke and matrix model as repored in <a href="https://doi.org/10.1074/mcp.M600381-MCP200">(Sean R. Collins, et al., 2007)</a>.</p>
<p>The input data.frame, <em>datInput</em>, should include:<strong>idRun</strong>, <strong>idBait</strong> and <strong>idPrey</strong>.</p>
<pre><code class="language-{r}">datScore &lt;- PE(datInput)
</code></pre>
<h2 id="license">License</h2>
<p>MIT @ Qingzhou Zhang</p>
</description>
</item>
<item>
<title>Slides</title>
<link>https://zqzneptune.github.io/slides/example/</link>
<pubDate>Tue, 05 Feb 2019 00:00:00 +0000</pubDate>
<guid>https://zqzneptune.github.io/slides/example/</guid>
<description><h1 id="create-slides-in-markdown-with-academic">Create slides in Markdown with Academic</h1>
<p><a href="https://sourcethemes.com/academic/">Academic</a> | <a href="https://sourcethemes.com/academic/docs/managing-content/#create-slides">Documentation</a></p>
<hr>
<h2 id="features">Features</h2>
<ul>
<li>Efficiently write slides in Markdown</li>
<li>3-in-1: Create, Present, and Publish your slides</li>
<li>Supports speaker notes</li>
<li>Mobile friendly slides</li>
</ul>
<hr>
<h2 id="controls">Controls</h2>
<ul>
<li>Next: <code>Right Arrow</code> or <code>Space</code></li>
<li>Previous: <code>Left Arrow</code></li>
<li>Start: <code>Home</code></li>
<li>Finish: <code>End</code></li>
<li>Overview: <code>Esc</code></li>
<li>Speaker notes: <code>S</code></li>
<li>Fullscreen: <code>F</code></li>
<li>Zoom: <code>Alt + Click</code></li>
<li><a href="https://github.com/hakimel/reveal.js#pdf-export">PDF Export</a>: <code>E</code></li>
</ul>
<hr>
<h2 id="code-highlighting">Code Highlighting</h2>
<p>Inline code: <code>variable</code></p>
<p>Code block:</p>
<pre><code class="language-python">porridge = &quot;blueberry&quot;
if porridge == &quot;blueberry&quot;:
print(&quot;Eating...&quot;)
</code></pre>
<hr>
<h2 id="math">Math</h2>
<p>In-line math: $x + y = z$</p>
<p>Block math:</p>
<p>$$
f\left( x \right) = ;\frac{{2\left( {x + 4} \right)\left( {x - 4} \right)}}{{\left( {x + 4} \right)\left( {x + 1} \right)}}
$$</p>
<hr>
<h2 id="fragments">Fragments</h2>
<p>Make content appear incrementally</p>
<pre><code>{{% fragment %}} One {{% /fragment %}}
{{% fragment %}} **Two** {{% /fragment %}}
{{% fragment %}} Three {{% /fragment %}}
</code></pre>
<p>Press <code>Space</code> to play!</p>
<p><span class="fragment " >
One
</span>
<span class="fragment " >
<strong>Two</strong>
</span>
<span class="fragment " >
Three
</span></p>
<hr>
<p>A fragment can accept two optional parameters:</p>
<ul>
<li><code>class</code>: use a custom style (requires definition in custom CSS)</li>
<li><code>weight</code>: sets the order in which a fragment appears</li>
</ul>
<hr>
<h2 id="speaker-notes">Speaker Notes</h2>
<p>Add speaker notes to your presentation</p>
<pre><code class="language-markdown">{{% speaker_note %}}
- Only the speaker can read these notes
- Press `S` key to view
{{% /speaker_note %}}
</code></pre>
<p>Press the <code>S</code> key to view the speaker notes!</p>
<aside class="notes">
<ul>
<li>Only the speaker can read these notes</li>
<li>Press <code>S</code> key to view</li>
</ul>
</aside>
<hr>
<h2 id="themes">Themes</h2>
<ul>
<li>black: Black background, white text, blue links (default)</li>
<li>white: White background, black text, blue links</li>
<li>league: Gray background, white text, blue links</li>
<li>beige: Beige background, dark text, brown links</li>
<li>sky: Blue background, thin dark text, blue links</li>
</ul>
<hr>
<ul>
<li>night: Black background, thick white text, orange links</li>
<li>serif: Cappuccino background, gray text, brown links</li>
<li>simple: White background, black text, blue links</li>
<li>solarized: Cream-colored background, dark green text, blue links</li>
</ul>
<hr>
<section data-noprocess data-shortcode-slide
data-background-image="/img/boards.jpg"
>
<h2 id="custom-slide">Custom Slide</h2>
<p>Customize the slide style and background</p>
<pre><code class="language-markdown">{{&lt; slide background-image=&quot;/img/boards.jpg&quot; &gt;}}
{{&lt; slide background-color=&quot;#0000FF&quot; &gt;}}
{{&lt; slide class=&quot;my-style&quot; &gt;}}
</code></pre>
<hr>
<h2 id="custom-css-example">Custom CSS Example</h2>
<p>Let&rsquo;s make headers navy colored.</p>
<p>Create <code>assets/css/reveal_custom.css</code> with:</p>
<pre><code class="language-css">.reveal section h1,
.reveal section h2,
.reveal section h3 {
color: navy;
}
</code></pre>
<hr>
<h1 id="questions">Questions?</h1>
<p><a href="https://spectrum.chat/academic">Ask</a></p>
<p><a href="https://sourcethemes.com/academic/docs/managing-content/#create-slides">Documentation</a></p>
</description>
</item>
<item>
<title>Awsome affinity purification mass spectrometry (AP-MS)</title>
<link>https://zqzneptune.github.io/post/2018-07-08-apms/</link>
<pubDate>Sun, 08 Jul 2018 09:23:14 -0600</pubDate>
<guid>https://zqzneptune.github.io/post/2018-07-08-apms/</guid>
<description><p>A collection of resources regarding affinity purification mass spectrometry proteomics for the identification of protein-protein interactions.</p>
<h2 id="algorithms">Algorithms</h2>
<table>
<thead>
<tr>
<th>Year</th>
<th>Algorithm</th>
<th>Publication</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>SAI (socio-affinity index)</td>
<td><a href="https://www.nature.com/articles/nature04532">Anne-Claude Gavin et al., Nature</a></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>partial least squares based regression model</td>
<td><a href="https://www.embopress.org/doi/10.1038/msb4100134">Rob M Ewing et al., Mol Syst Biol</a></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>PE (purification enrichment)</td>
<td><a href="https://www.mcponline.org/content/6/3/439">Sean R. Collins et al., Molecular &amp; Cellular Proteomics</a></td>
<td><a href="https://github.com/zqzneptune/SMAD">SMAD</a></td>
</tr>
<tr>
<td>2007</td>
<td>Hart</td>
<td><a href="https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-236">G Traver Hart et al., BMC Bioinformatics</a></td>
<td><a href="https://github.com/zqzneptune/SMAD">SMAD</a></td>
</tr>
<tr>
<td>2008</td>
<td>Dice coefficient</td>
<td><a href="https://doi.org/10.1093/bioinformatics/btn036">Bing Zhang et al., Bioinformatics</a></td>
<td><a href="https://github.com/zqzneptune/SMAD">SMAD</a></td>
</tr>
<tr>
<td>2008</td>
<td>PP-NSAF</td>
<td><a href="https://www.pnas.org/content/105/5/1454.short">Mihaela E. Sardiu et al., PNAS</a></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>CompPASS</td>
<td><a href="https://doi.org/10.1016/j.cell.2009.04.042">Mathew E.Sowa et al., Cell</a></td>
<td><a href="https://github.com/zqzneptune/SMAD">SMAD</a></td>
</tr>
<tr>
<td>2010</td>
<td>Decontaminator</td>
<td><a href="https://pubs.acs.org/doi/abs/10.1021/pr100795z">MathieLavallée-Adam et al. J. Proteome Res. </a></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>MiST</td>
<td><a href="https://www.nature.com/articles/nature10719">Stefanie Jäger et al., Nature</a></td>
<td><a href="https://github.com/kroganlab/mist">mist</a></td>
</tr>
<tr>
<td>2011</td>
<td>HGScore</td>
<td><a href="https://doi.org/10.1016/j.cell.2011.08.047">K.G.Guruharsha et al., Cell</a></td>
<td><a href="https://github.com/zqzneptune/SMAD">SMAD</a></td>
</tr>
<tr>
<td>2011</td>
<td>SAINT</td>
<td><a href="https://doi.org/10.1038/nmeth.1541">Hyungwon Choi et al., Nature Methods</a></td>
<td><a href="http://saint-apms.sourceforge.net/Main.html">SAINT</a></td>
</tr>
<tr>
<td>2015</td>
<td>SFINX</td>
<td><a href="https://pubs.acs.org/doi/10.1021/acs.jproteome.5b00666">Kevin Titeca et al. J. Proteome Res.</a></td>
<td><a href="https://cran.r-project.org/web/packages/sfinx/index.html">SFINX</a></td>
</tr>
</tbody>
</table>
<h2 id="datasets">Datasets</h2>
<table>
<thead>
<tr>
<th>Year</th>
<th>Species</th>
<th>Abstract</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td><em>S.cerevisiae</em></td>
<td>725 bait proteins, one-step immuno-affinity purification based on the Flag epitope tag</td>
<td><a href="https://www.nature.com/articles/415180a">Yuen Ho et al., Nature</a></td>
</tr>
<tr>
<td>2002</td>
<td><em>S.cerevisiae</em></td>
<td>tandem-affinity purification processed 1,739 genes</td>
<td><a href="https://www.nature.com/articles/415141a">Anne-Claude Gavin et al., Nature</a></td>
</tr>
<tr>
<td>2006</td>
<td><em>S.cerevisiae</em></td>
<td>Genome-wide TAP–MS, first introduced</td>
<td><a href="https://www.nature.com/articles/nature04532">Anne-Claude Gavin et al., Nature</a></td>
</tr>
<tr>
<td>2009</td>
<td><em>H.sapiens</em></td>
<td>Human Deubiquitinating Enzyme Interaction Landscape(DUB)</td>
<td><a href="https://doi.org/10.1016/j.cell.2009.04.042">Mathew E.Sowa et al., Cell</a></td>
</tr>
<tr>
<td>2010</td>
<td><em>S.cerevisiae</em></td>
<td>kinase and phosphatase interaction (KPI) network</td>
<td><a href="https://science.sciencemag.org/content/328/5981/1043">Ashton Breitkreutz et al., Science</a></td>
</tr>
<tr>
<td>2009</td>
<td><em>H.sapiens</em></td>
<td>autophagy interaction network (AIN)</td>
<td><a href="https://www.nature.com/articles/nature09204">Christian Behrends et al., Nature</a></td>
</tr>
<tr>
<td>2011</td>
<td><em>D.melanogaster</em></td>
<td>a Drosophila protein interaction map (DPiM)</td>
<td><a href="https://doi.org/10.1016/j.cell.2011.08.047">K.G.Guruharsha et al., Cell</a></td>
</tr>
<tr>
<td>2012</td>
<td><em>S.cerevisiae</em></td>
<td>membrane-protein complexes in yeast</td>
<td><a href="https://www.nature.com/articles/nature11354">Mohan Babu et al., Nature</a></td>
</tr>
<tr>
<td>2014</td>
<td><em>H.sapiens</em></td>
<td>A comprehensive chromatin-related protein-protein interaction map</td>
<td><a href="https://doi.org/10.1016/j.celrep.2014.05.050">Edyta Marcon et al., Cell Reports</a></td>
</tr>
<tr>
<td>2015</td>
<td><em>H.sapiens</em></td>
<td>BioPlex v1</td>
<td><a href="https://doi.org/10.1016/j.cell.2015.06.043">Edward L. Huttlin et al., Cell</a></td>
</tr>
<tr>
<td>2015</td>
<td><em>H.sapiens</em></td>
<td>Autism Spectrum Disorders related</td>
<td><a href="https://doi.org/10.1016/j.cels.2015.11.002">Jingjing Li et al., Cell Systems</a></td>
</tr>
<tr>
<td>2016</td>
<td><em>H.sapiens</em></td>
<td>PPI mapping of 50 unannotated mitochondrial proteins</td>
<td><a href="https://doi.org/10.1016/j.molcel.2016.06.033">Brendan J.Floyd et al., Molecular Cell</a></td>
</tr>
<tr>
<td>2016</td>
<td><em>H.sapiens</em></td>
<td>Comprehensive mitochondrial sirtuin interactome</td>
<td><a href="https://doi.org/10.1016/j.cell.2016.10.016">Wen Yang et al., Cell</a></td>
</tr>
<tr>
<td>2017</td>
<td><em>H.sapiens</em></td>
<td>BioPlex v2</td>
<td><a href="https://www.nature.com/articles/nature22366">Edward L. Huttlin et al., Cell</a></td>
</tr>
<tr>
<td>2017</td>
<td><em>E.coli</em></td>
<td>Global landscape of cell envelope protein complexes</td>
<td><a href="https://www.nature.com/articles/nbt.4024">Mohan Babu et al., Nature Biotech</a></td>
</tr>
<tr>
<td>2017</td>
<td><em>H.sapiens</em></td>
<td>A Map of Human Mitochondrial Protein Interactions related to Neurodegeneration</td>
<td><a href="https://doi.org/10.1016/j.cels.2017.10.010">Ramy H.Malty et al., Cell Systems</a></td>
</tr>
</tbody>
</table>
</description>
</item>
<item>
<title>Global landscape of cell envelope protein complexes in Escherichia coli</title>
<link>https://zqzneptune.github.io/publication/nbt.4024/</link>
<pubDate>Mon, 27 Nov 2017 00:00:00 +0000</pubDate>
<guid>https://zqzneptune.github.io/publication/nbt.4024/</guid>
<description></description>
</item>
<item>
<title>A Map of Human Mitochondrial Protein Interactions Linked to Neurodegeneration Reveals New Mechanisms of Redox Homeostasis and NF-κB Signaling</title>
<link>https://zqzneptune.github.io/publication/j.cels.2017.10.010/</link>
<pubDate>Fri, 17 Nov 2017 00:00:00 +0000</pubDate>
<guid>https://zqzneptune.github.io/publication/j.cels.2017.10.010/</guid>
<description></description>
</item>
<item>
<title>Renal oncocytoma characterized by the defective complex I of the respiratory chain boosts the synthesis of the ROS scavenger glutathione</title>
<link>https://zqzneptune.github.io/publication/oncotarget.22413/</link>
<pubDate>Thu, 21 Sep 2017 00:00:00 +0000</pubDate>
<guid>https://zqzneptune.github.io/publication/oncotarget.22413/</guid>
<description></description>
</item>
<item>
<title>Renal Gene Expression Database (RGED) a relational database of gene expression profiles in kidney disease</title>
<link>https://zqzneptune.github.io/publication/rged/</link>
<pubDate>Tue, 07 Oct 2014 00:00:00 +0000</pubDate>
<guid>https://zqzneptune.github.io/publication/rged/</guid>
<description></description>
</item>
<item>
<title>Hello, RGED!</title>
<link>https://zqzneptune.github.io/post/2014-09-23-rged/</link>
<pubDate>Wed, 23 Jul 2014 01:13:14 +0800</pubDate>
<guid>https://zqzneptune.github.io/post/2014-09-23-rged/</guid>
<description><p>The Renal Gene Expression Database (RGED) is online. Number of samples colleceted in the database reached around ~10,000, including DNA microarray and RNA-seq experiments.</p>
<p>Just go ahead to this URL: <a href="http://rged.wall-eva.net/">http://rged.wall-eva.net/</a></p>
</description>
</item>
<item>
<title>1. QC and Preprocessing</title>
<link>https://zqzneptune.github.io/project/01_qc_preprocess/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>https://zqzneptune.github.io/project/01_qc_preprocess/</guid>
<description>
<p><img src="https://zqzneptune.github.io/project/01_QC_Preprocess_files/figure-html/Load%20Library-1.png" width="672" /></p>
<div id="sample-description" class="section level2">
<h2>Sample Description</h2>
<table>
<thead>
<tr class="header">
<th>Sample Name</th>
<th>Species</th>
<th>Tissue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>384-M</td>
<td>Mus musculus</td>
<td>Kidney</td>
<td>Healthy control</td>
</tr>
<tr class="even">
<td>403-P</td>
<td>Mus musculus</td>
<td>Kidney</td>
<td>PKD1 Knock out</td>
</tr>
</tbody>
</table>
</div>
<div id="cell-phases-assignment" class="section level2">
<h2>Cell phases assignment</h2>
</div>
<div id="number-of-cells" class="section level2">
<h2>Number of cells</h2>
</div>
<div id="distribution-of-total-umi-count" class="section level2">
<h2>Distribution of total UMI count</h2>
</div>
<div id="distribution-of-reads-in-mitochondrial-genes" class="section level2">
<h2>Distribution of reads in mitochondrial genes</h2>
</div>
</description>
</item>
</channel>
</rss>